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Abstract
Knowledge graphs are incomplete by nature, with
only a limited number of observed facts from the
world knowledge being represented as structured
relations between entities. To partly address this
issue, an important task in statistical relational
learning is that of link prediction or knowledge
graph completion. Both linear and non-linear
models have been proposed to solve the problem.
Bilinear models, while expressive, are prone to
overfitting and lead to quadratic growth of param-
eters in number of relations. Simpler models have
become more standard, with certain constraints
on bilinear map as relation parameters. In this
work, we propose a factorized bilinear pooling
model, commonly used in multi-modal learning,
for better fusion of entities and relations, lead-
ing to an efficient and constraint-free model. We
prove that our model is fully expressive, provid-
ing bounds on the embedding dimensionality and
factorization rank. Our model naturally general-
izes Tucker decomposition based TuckER model,
which has been shown to generalize other models,
as efficient low-rank approximation without sub-
stantially compromising the performance. Due
to low-rank approximation, the model complex-
ity can be controlled by the factorization rank,
avoiding the possible cubic growth of TuckER.
Empirically, we evaluate on real-world datasets,
reaching on par or state-of-the-art performance.
At extreme low-ranks, model preserves the perfor-
mance while staying parameter efficient.

1. Introduction
Knowledge graphs (KGs) are large collections of structured
knowledge, organized as subject and object entities and rela-
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tions, in the form of fact triples <sub, rel, obj>. The useful-
ness of knowledge graphs, however, is affected primarily by
their incompleteness. The task of link prediction or knowl-
edge graph completion (KGC) aims to infer missing facts
from existing ones, by essentially scoring a relation and
entities triple for use in predicting its validity, and thereby
avoiding the cost and time of extending knowledge graphs
manually. To accomplish this, several models have been
proposed, including linear and non-linear models. Bilinear
models have additionally been used in multi-modal learning
due to their expressive nature, where the fusion of features
from different modalities plays a key role towards the per-
formance of a model, with concatenation or element-wise
summation being commonly used fusion techniques. The
underlying assumption is that the distributions of features
across modalities may vary significantly, and the represen-
tation capacity of the fused features may be insufficient,
therefore limiting the final prediction performance (Yu et al.,
2017). In this work, we apply this assumption to knowledge
graphs by considering that the entities and relations come
from different multi-modal distributions and good fusion
between them can potentially construct a KG.

A major drawback of using bilinear modeling methods is
the quadratic growth of parameters, which results in high
computational and memory costs and risks overfitting. In
multi-modal learning, factorization techniques have there-
fore been researched to address these challenges (Kim et al.,
2016; Fukui et al., 2016; Yu et al., 2017; Ben-Younes et al.,
2017; Li et al., 2017; Liu et al., 2018), and constraints based
bilinear maps have become a more prevalent standard in
link prediction (Yang et al., 2015; Trouillon et al., 2016;
Kazemi & Poole, 2018). Applying constraints can be seen
as hard regularization since it allows for incorporating back-
ground knowledge (Kazemi & Poole, 2018), but restricts
the learning potential of the model due to limited parameter
sharing (Balažević et al., 2019a). We focus on a constraint-
free approach, using the low-rank factorization of bilinear
models, as it offers flexibility and generalizes well, naturally
leading to other models under certain conditions. Our work
extends the multi-modal factorized bilinear pooling (MFB)
model, introduced by Yu et al. (2017), and applies it to the
link prediction task.

Our contributions are outlined as follows:
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• We propose a simple and parameter efficient linear
model by extending multi-modal factorized bilinear
(MFB) pooling (Yu et al., 2017) for link prediction.

• We prove that our model is fully expressive and provide
bounds on entity and relation embedding dimensions,
along with the factorization rank.

• We provide relations to the family of bilinear link
prediction models and Tucker decomposition (Tucker,
1966) based TuckER model (Balažević et al., 2019a),
generalizing them as special cases. We also show
the relation to 1D convolution based HypER model
(Balažević et al., 2019b), bridging the gap from bilin-
ear to convolutional link prediction models.

• On real-world datasets the model achieves on par or
state-of-the-art performance, where at extreme low-
ranks, with limited number of parameters, it outper-
forms most of the prior arts, including deep learning
based models.

2. Related Work
Given a set of entities E and relations R in a knowledge
graph KG, the task of link prediction is to assign a score s
to a triple (es, r, eo):

s = f(es, r, eo)

where es ∈ E is the subject entity, eo ∈ E is the object
entity and r ∈ R is the relation between them. The scoring
function f estimates the general binary tensor T ∈ |E| ×
|R| × |E|, by assigning a score of 1 to Tijk if relation rj
exists between entities ei and ek, 0 otherwise. The scoring
function can be a linear or non-linear model, trained to
predict true triples in a KG.

Deep learning based scoring functions such as ConvE
(Dettmers et al., 2018) and HypER (Balažević et al., 2019b)
use 2D and 1D convolution on subject entity and relation
representations respectively. Both perform well in practice
and are efficient, but the former lacks direct interpretation,
whereas the latter has shown to be related to tensor factoriza-
tion. Transitional methods (Bordes et al., 2013; Wang et al.,
2014; Ji et al., 2015; Lin et al., 2015; Nguyen et al., 2016;
Feng et al., 2016) use additive dissimilarity scoring func-
tions, whereby they differ in terms of the constraints applied
to the projection matrices. While interpretable, they are the-
oretically limited as they have shown to be not fully expres-
sive (Wang et al., 2018; Kazemi & Poole, 2018). There are
several other related works (Nickel et al., 2016; Das et al.,
2017; Yang et al., 2017; Shen et al., 2018; Schlichtkrull
et al., 2018; Ebisu & Ichise, 2018; Sun et al., 2019), but we
will mainly focus on different types of linear models here,
as they are more relevant to our work.

All discussed linear models can be seen as a decomposition
of the tensor T, using different factorization methods. One
way to factorize this tensor is to factorize its slices in the
relation dimension with DEDICOMP (Harshman, 1978).
RESCAL (Nickel et al., 2011), a relaxed version of DEDI-
COMP, decomposes using a scoring function that consists of
a bilinear product between subject and object entity vectors
with a relation specific matrix. RESCAL, however, tends to
overfit due to the quadratic growth of parameters in number
of relations. Others use Canonical Polyadic decomposition
(CPD or simply CP) (Hitchcock, 1927; Harshman & Lundy,
1994) to factorize the binary tensor. In CP, each value in the
tensor is obtained as a sum of multiple Hadamard products
of three vectors, representing subject, object and relation.
DistMult (Yang et al., 2015), equivalent to INDSCAL (Car-
roll & Chang, 1970), is as such and uses a diagonal relation
matrix, unlike RESCAL, to account for overfitting. Com-
plEx (Trouillon et al., 2016; Trouillon & Nickel, 2017) uses
complex valued vectors for entities and relations to explic-
itly model asymmetric relations. SimplE (Kazemi & Poole,
2018) extends CP by introducing two vectors (head and
tail) for each entity and two for relations (including the in-
verse). Tucker decomposition (Tucker, 1966) based TuckER
(Balažević et al., 2019a) learns a 3D core tensor, which is
multiplied with a matrix along each mode to approximate
the binary tensor. A key difference between CP based meth-
ods and TuckER is that it learns representations not only via
embeddings, but also through a shared core tensor.

3. Model
Downstream performance for tasks such as visual question
answering strongly depends on the multi-modal fusion of
features to leverage the heterogeneous data (Liu et al., 2018).
Bilinear models are expressive as they allow for pairwise in-
teractions between the feature dimensions but also introduce
huge number of parameters that lead to high computational
and memory costs and the risk of overfitting (Fukui et al.,
2016). Substantial research has therefore focused on ef-
ficiently computing the bilinear product. In multi-modal
compact bilinear (MCB) pooling (Gao et al., 2016; Fukui
et al., 2016), authors employ a sampling based approxima-
tion that uses the property that the tensor sketch projection
(Charikar et al., 2004; Pham & Pagh, 2013) of the outer
product of two vectors can be represented as their sketches
convolution. Multi-modal low-rank bilinear (MLB) pooling
(Kim et al., 2016) uses two low-rank projection matrices to
transform the features from the original space to a common
space, followed by the Hadamard product, which was later
generalized by the multi-modal factorized bilinear (MFB)
pooling (Yu et al., 2017). Our work is based on the MFB
model but can also be seen as related to Liu et al. (2018). In
contrast to KGC bilinear models, these bilinear models al-
low for parameter sharing and generally, are constraint-free.
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3.1. Multi-modal Factorized Bilinear Pooling (MFB)

Given two feature vectors x ∈ Rm, y ∈ Rn and a bilinear
map W ∈ Rm×n, the bilinear transformation is defined as
z = xTWy ∈ R. To obtain a vector in Ro, o such maps
have to be learned (e.g. in RESCAL these would be relation
specific matrices), resulting in large number of parameters.
However, W can be factorized into two low-rank matrices:

z = xTUVTy = 1T (UTx ◦VTy)

where U ∈ Rm×k, V ∈ Rn×k, k is the factorization
rank, ◦ is the element-wise product of two vectors and
1 ∈ Rk is vector of all ones. Therefore, to obtain a
output feature vector z ∈ Ro, two 3D tensors are re-

quired, Wx = [U1,U2, ...,Uo]
reshape−−−−→ W

′

x and Wy =

[V1,V2, ...,Vo]
reshape−−−−→ W

′

y, where Wx ∈ Rm×k×o,
Wy ∈ Rn×k×o are 3D tensors and W

′

x ∈ Rm×ko, W
′

y ∈
Rn×ko are their reshaped 2D matrices respectively. The
final (fused) vector z is then obtained by summing non-
overlapping windows of size k over the Hadamard product
of projected vectors using W

′

x and W
′

y:

z = SumPool(W
′T
x x ◦W

′T
y y, k) (1)

At k = 1, MFB reduces to MLB, which converges slowly,
and MCB requires very high-dimensional vectors to perform
well (Yu et al., 2017). Further, MFB significantly lowers
the number of parameters with low-rank factorized matrices
and leads to better performance.

3.2. Low-rank Bilinear Pooling for Link Prediction

Consider that entities and relations are not intrinsically
bound and come from two different modalities, such that
good fusion between them can potentially result in a knowl-
edge graph of fact triples. Entities and relations can be
shown to possess certain properties that allow them to func-
tion similarly to others within the same modality. For ex-
ample, the relation place-of-birth shares inherent properties
with the relation residence. As such, similar entity pairs
can yield similar relations, given appropriate shared prop-
erties. Like in multi-modal auditory-visual fusion, where
the sound of a roar may better predict a resulting image
within the distribution of animals that roar, a relation such
as place-of-birth, can better predict an entity pair within a
distribution of (person, place) entity pairs. In link predic-
tion, we assume that the latent decomposition with MFB
can help the model capture different aspects of interactions
between an entity and a relation, which can lead to better
scoring with the missing entity. We therefore, apply the
Low-rank Factorization trick of bilinear maps with k-sized
non-overlapping summation pooling (section 3.1) to Entities
and Relations (LowFER).

Figure 1. Overview of the LowFER model. For an input tuple
(es, r) and target entity eo, we first get entity vectors es, eo ∈ Rde

from entity embedding matrix E ∈ Rne×de and relation vec-
tor r ∈ Rdr from relation embedding matrix R ∈ Rnr×dr ,
where ne and nr are number of entities and relations in KG.
LowFER projects es and r into a common space Rkde followed
by Hadamard product and k-summation pooling, where k is the
factorization rank. The output vector z is then matched against
target entity eo to give final score.

More formally, for an entity e ∈ E , we represent its em-
bedding vector e of de dimension as a look-up from entity
embedding matrix E ∈ Rne×de , where ne = |E|. Similarly,
for a relation r ∈ R, we represent its embedding vector
r of dr dimension as a look-up from relation embedding
R ∈ Rnr×dr , where nr = |R|. Then, for a given triple
(es, r, eo), we define our scoring function as:

f(es, r, eo) := g(es, r) · eo = g(es, r)
Teo (2)

where g(., .) ∈ Rde is a vector valued function of the subject
entity vector es and the relation vector r, defined from Eq.
1 as:

g(es, r) := SumPool(UTes ◦VT r, k) (3)

where matrices U ∈ Rde×kde and V ∈ Rdr×kde represent
our model parameters. We can re-write the Eq. 3 more
compactly as:

g(es, r) = Skdiag(UTes)V
T r (4)

where diag(UTes) ∈ Rkde×kde and Sk ∈ Rde×kde is a
constant matrix1 such that:

Sk
i,j =

{
1, ∀j ∈ [(i− 1)k + 1, ik]

0, otherwise

Using this compact notation in Eq. 2, the final scoring
function of LowFER is obtained as:

f(es, r, eo) = (Skdiag(UTes)V
T r)Teo (5)

1Note that at k = 1, S1 = Ide
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Table 1. Bounds for fully expressive linear models, where n is the
number of true facts and the trivial bound is given by n2

enr .

Model Full Expressibility Bounds

RESCAL (Nickel et al., 2011) (de, dr) = (ne, n
2
e)

HolE (Nickel et al., 2016) de = dr = 2nenr + 1

ComplEx (Trouillon et al., 2016) de = dr = nenr

SimplE (Kazemi & Poole, 2018) de = dr = min(nenr, n+ 1)

TuckER (Balažević et al., 2019a) (de, dr) = (ne, nr)

LowFER (de, dr) = (ne, nr) for k = min(ne, nr)

3.3. Training LowFER

To train the LowFER model, we follow the setup of
Balažević et al. (2019a). First, we apply sigmoid non-
linearity after Eq. 5 to get the probability p(y(es,r,eo)) =
σ(f(es, r, eo)) of a triple belonging to a KG. Then, for
every triple (es, r, eo) in the dataset, a reciprocal relation
is added by generating a synthetic example (eo, r

−1, es)
(Dettmers et al., 2018; Lacroix et al., 2018) to create the
training set D. For faster training, Dettmers et al. (2018) in-
troduced 1-N scoring, where each tuple (es, r) and (eo, r

−1)
is simultaneously scored against all entities e ∈ E to predict
1 if e = eo or es respectively and 0 elsewhere (see Trouil-
lon et al. (2017) and Sun et al. (2019) for other methods to
collect negative samples). The model is trained with binary
cross-entropy instead of margin based ranking loss (Bordes
et al., 2013), which is prone to overfitting for link prediction
(Trouillon & Nickel, 2017; Kazemi & Poole, 2018). For a
mini-batch B of size m drawn from D, we minimize:

min
Θ

1

m

∑
(e,r)∈B

1

ne

ne∑
i=1

(yi log(p(y(e,r,ei)))

+ (1− yi) log(1− p(y(e,r,ei))))

where yi is a target label for a given entity-relation pair
(e, r) for entity ei, y(e,r,ei) is the model prediction and Θ
represents model parameters. Following Yu et al. (2017), we
also apply the power normalization x← sign(x)|x|0.5 and
l2-normalization x← x/||x|| before summation pooling to
stabilize the training from large output values as a result of
Hadamard product in Eq. 3.

4. Theoretical Analysis
4.1. Full Expressibility

A key theoretical property of link prediction models is their
ability to be fully expressive, which we define formally as:

Definition 1. Given a set of entities E , relationsR, correct
triples T ⊆ E ×R×E and incorrect triples T ′ = E ×R×
E \ T , then a modelM with scoring function f(es, r, eo) is
said to be fully expressive iff it can accurately separate T
from T ′ for all es, eo ∈ E and r ∈ R.

Figure 2. LowFER model parameters for a toy dataset under the
settings used in Proposition 1. Top: For the case when k = de =
ne. Bottom: For the case when k = dr = nr .

A fully expressive model can represent relations of any type,
including symmetric, asymmetric, reflexive, and transitive
among others. Models such as RESCAL, HolE, ComplEx,
SimplE and TuckER have been shown to be fully expressive
(Trouillon & Nickel, 2017; Wang et al., 2018; Kazemi &
Poole, 2018; Balažević et al., 2019a). On the other hand,
DistMult is not fully expressive as it enforces symmetric
relations only. Further, Wang et al. (2018) showed that
TransE is not fully expressive, which was later expanded by
Kazemi & Poole (2018), showing that other translational
variants, including, FTransE, STransE, FSTransE, TransR
and TransH are likewise not fully expressive. By the virtue of
universal approximation theorem (Cybenko, 1989; Hornik,
1991), neural networks can be considered fully expressive
(Kazemi & Poole, 2018). Table 1 summarizes the bounds
of linear models that are fully expressive. With Proposition
1 (proof in Appendix A.1), we establish that LowFER is
fully expressive and provide bounds on entity and relation
embedding dimensions and the factorization rank k.

Proposition 1. For a set of entities E and a set of relations
R, given any ground truth T , there exists an assignment
of values in the LowFER model with entity embeddings
of dimension de = |E|, relation embeddings of dimension
dr = |R| and the factorization rank k = min(de, dr) that
makes it fully expressive.

As a given example, consider a set of entities E =
{e1, e2, e3, e4} and relations R = {r1, r2, r3, r4} such
that r1 is reflexive, r2 is symmetric, r3 is asym-
metric, and r4 is transitive, then for ground truth
T = {(e1, r1, e1), (e1, r2, e2), (e2, r2, e1), (e3, r3, e2)
, (e4, r4, e3), (e3, r4, e1), (e4, r4, e1)} and following the set-
tings in Proposition 1, Figure 2 shows the model parameters
U and V for this toy example. Now, consider the case
k = de = ne, then U copies each entity vector in k-sized
slices and V buckets target entities per relation such that
each source entity is distributed into disjoint sets. Note
that reshaping V as 3D tensor of size nr × ne × ne and
transposing first two dimensions results in binary tensor T.
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Figure 3. Low-rank approximation of the core tensor W of TuckER (Balažević et al., 2019a) with LowFER by summing k low-rank 3D
tensors, where each tensor is obtained by stacking de rank-1 matrices obtained by the outer product of k-apart columns of U and V.

4.2. Relation with TuckER

Initially, it was shown by Kazemi & Poole (2018) that
RESCAL, DistMult, ComplEx and SimplE belong to a fam-
ily of bilinear models with different set of constraints. Later,
Balažević et al. (2019a) established that TuckER general-
izes all of these models as special cases. In this section,
we will formulate relation between our model and TuckER
(Balažević et al., 2019a), followed by relations with the
family of bilinear models in the next section. This provides
a unifying view and shows LowFER’s ability to generalize.

TuckER’s scoring function is defined as follows (Balažević
et al., 2019a):

φt(es, r, eo) =W ×1 es ×2 r×3 eo (6)

whereW ∈ Rde×dr×de is the core tensor, es, eo ∈ Rde and
r ∈ Rdr are subject entity, object entity and the relation
vectors respectively. ×n denotes the tensor product along
the n-th mode. First, note that Eq. 4 can be expanded as:

Sk(UTes ◦VT r) =



eTs (
∑k

i=1 ui ⊗ vi)r
...

eTs (
∑jk

i=(j−1)k+1 ui ⊗ vi)r
...

eTs (
∑kde

i=k(de−1) ui ⊗ vi)r


where ui ∈ Rde and vi ∈ Rdr are column vectors of U
and V respectively and ⊗ represents the outer product of
two vectors. To take the vectors es and r out, we realize
the above matrix operations in a different way. We first
create k matrices sliced from U and V each, such that each
matrix is formed by choosing all adjacent column vectors
that are k distance apart in U (and V), i.e., for the l-th slice,
we have W

(l)
U = [ul,uk+l, ...,uk(de−1)+l] ∈ Rde×de and

W
(l)
V = [vl,vk+l, ...,vk(de−1)+l] ∈ Rdr×de . Taking the

column-wise outer product of these sliced matrices forms

a 3D tensor in Rde×dr×de . With slight abuse of notation,
we also use ⊗ to represent this tensor operation. It can
be viewed as transforming the matrix obtained by mode-2
Khatri-Rao product into a 3D tensor (Cichocki et al., 2016).
Now consider a 3D tensor W ∈ Rde×dr×de as the sum of
these k products:

W =

k∑
i=1

W
(i)
U ⊗W

(i)
V (7)

Figure 3 shows these operations. With this tensor, the scor-
ing function f in Eq. 5 can be re-written as TuckER’s
scoring function as follows:

φ̂t(es, r, eo) = W ×1 es ×2 r×3 eo (8)

It should be noted that W in Eq. 8 is obtained as a summa-
tion of k low-rank 3D tensors, each of which is obtained by
stacking rank-1 matrices in contrast to TuckER’s core tensor
W in Eq. 6, which can be a full rank 3D tensor. Our model
can therefore approximate TuckER and can be viewed as a
generalization of TuckER (Balažević et al., 2019a). We fur-
ther show that we can accurately obtainW with appropriate
W

(i)
U ’s and W

(i)
V ’s in Eq. 7 (proof in Appendix A.2).

Proposition 2. Given a TuckER model with entity em-
bedding dimension de, relation embedding dimension dr
and core tensor W , there exists a LowFER model with k
<= min(de, dr), entity embedding dimension de and rela-
tion embedding dimension dr that accurately represents the
former.

LowFER and TuckER parameters grow linearly in the num-
ber of entities and relations as O(nede + nrdr). However,
LowFER’s shared parameters complexity can be controlled
by decoupled low-rank matrices through the factorization
rank, making it more flexible, e.g., consider d = de = dr,
the core tensor W of TuckER grows as O(d3), whereas
LowFER grows only as O(kd2). As an example, in Lacroix
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Figure 4. Modeling the family of bilinear models with LowFER, (from left-to-right): RESCAL (Nickel et al., 2011), DistMult (Yang et al.,
2015), SimplE (Kazemi & Poole, 2018) and ComplEx (Trouillon et al., 2016) (see section 4.3 for details).

et al. (2018) authors used de = dr = 2000 which would re-
quire more than 8 billion parameters to model with TuckER
compared to only 4k million for LowFER, with k control-
ling the growth. More generally, at k = de/2, LowFER
has equal number of parameters as TuckER therefore, we
expect similar performance at such rank values. In practice,
k = {1, 10, 30} performs extremely well (section 5.1).

4.3. Relations with the Family of Bilinear Models

In this section, we will establish relations between LowFER
and other bilinear models. For simplicity, we consider the
relation embedding to be a constant matrix R = Inr in all
the cases and use V to model relation parameters. However,
the conditions presented here can be extended otherwise,
with the remark that they are not unique.

RESCAL (Nickel et al., 2011): scoring function is defined
as:

φr(es, rl, eo) = eTs Wleo

where Wl ∈ Rde×de is l-th relation matrix. For LowFER
to encode RESCAL with Eq. 5, we set k = de, dr = nr
and U = [ Ide | Ide | ... | Ide ] ∈ Rde×d2

e (block matrix
partitioned as de identity matrices of size de × de). This is
effectively taking a row l from V ∈ Rnr×de

2

, reshaping it
to de × de matrix and then taking the transpose to get the
equivalent Wl in RESCAL’s scoring function.

DISTMULT (Yang et al., 2015): scoring function is defined
as:

φd(es, rl, eo) = eTs diag(wl)eo

where wl ∈ Rde is the vector for l-th relation. For LowFER
to encode DistMult with Eq. 5, we set k = 1, dr = nr
and U = Ide . This is effectively taking a row l from
V ∈ Rnr×de and creating a diagonal matrix of it to get
the equivalent diag(wl) in DistMult’s scoring function.

SIMPLE (Kazemi & Poole, 2018): scoring function is de-
fined as:

φs(es, rl, eo) =
1

2
(hT

esdiag(rl)teo + hT
eodiag(r−1

l )tes)

where hes ,heo ∈ Rd are subject, object entities head vec-
tors, tes , teo ∈ Rd are subject, object entities tail vectors
and rl, r

−1
l ∈ Rd are relation and inverse relation vectors.

Let ês = [tes ;hes ] ∈ R2d, eo = [heo ; teo ] ∈ R2d and
r̂l = [r−1

l ; rl] ∈ R2d then SimplE scoring is equivalent to
1
2 ê

T
s diag(r̂l)eo, where ês and r̂l are obtained by swapping

the head, tail vectors in es = [hes ; tes ] and relation, inverse
relation vectors in rl = [rl; r

−1
l ] respectively. For LowFER

to encode SimplE, U becomes a permutation matrix (ignor-
ing the 1

2 scaling factor), swapping the first d-half with the
second d-half of a given vector in R2d and l-th row in V is
r̂l, more specifically, with Eq. 5, we set k = 1, de = 2d,
dr = nr and U ∈ R2d×2d is a block matrix with four
partitions such that, U12 = U21 = 1

2Id and 0s elsewhere.

COMPLEX (Trouillon et al., 2016) scoring function is de-
fined as:

φc(es, rl, eo) = Re(es)
T diag(Re(rl))Re(eo)

+ Im(es)
T diag(Re(rl))Im(eo)

+ Re(es)
T diag(Im(rl))Im(eo)

− Im(es)
T diag(Im(rl))Re(eo)

where Re(.) and Im(.) represents the real and imag-
inary parts of a complex vector. Consider ês =
[Re(es); Im(es)] ∈ R2d and êo = [Re(eo); Im(eo)] ∈ R2d

then the ComplEx scoring function can be obtained as
êTs Wlêo, where Wl ∈ R2d×2d represents the l-th rela-
tion matrix such that its diagonal is [Re(rl); Re(rl)], the d
offset diagonal is Im(rl) and −d offset diagonal is −Im(rl).
For LowFER to encode ComplEx, similar to SimplE, we
will use two permutation matrices to obtain the above four
terms. That is, in Eq. 8, we have k = 2, de = 2d, dr = nr,
U ∈ R2d×4d is such that W(1)

U is a block matrix with
W

(1)
U11

= W
(1)
U12

= Id and 0 elsewhere. Further, W(2)
U is

also a block matrix with W
(2)
U21

= −Id, W(2)
U22

= Id and 0

elsewhere. Lastly, V ∈ Rnr×4d is such that W(1)
V row l has

[Re(rl); Im(rl)] and W
(2)
V row l has [Im(rl); Re(rl)], i.e.,
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Table 2. Link prediction results. Best scores per metric are boldfaced and second best underlined.

WN18RR FB15k-237 WN18 FB15k

Linear Model MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

No

TransE (Bordes et al., 2013) − − − − − − − − 0.454 0.089 0.823 0.934 0.380 0.231 0.472 0.641
Neural LP (Yang et al., 2017) − − − − 0.250 − − 0.408 0.940 − − 0.945 0.760 − − 0.837
R-GCN (Schlichtkrull et al., 2018) − − − − 0.248 0.151 0.264 0.417 0.819 0.697 0.929 0.964 0.696 0.601 0.760 0.842
ConvE (Dettmers et al., 2018) 0.430 0.400 0.440 0.520 0.325 0.237 0.356 0.501 0.943 0.935 0.946 0.956 0.657 0.558 0.723 0.831
TorusE (Ebisu & Ichise, 2018) − − − − − − − − 0.947 0.943 0.950 0.954 0.733 0.674 0.771 0.832
RotatE (Sun et al., 2019) − − − − 0.297 0.205 0.328 0.480 − − − − − − − −
HypER (Balažević et al., 2019b) 0.465 0.436 0.477 0.522 0.341 0.252 0.376 0.520 0.951 0.947 0.955 0.958 0.790 0.734 0.829 0.885

Yes

DistMult (Yang et al., 2015) 0.430 0.390 0.440 0.490 0.241 0.155 0.263 0.419 0.822 0.728 0.914 0.936 0.654 0.546 0.733 0.824
HolE (Nickel et al., 2016) − − − − − − − − 0.938 0.930 0.945 0.949 0.524 0.402 0.613 0.739
ComplEx (Trouillon et al., 2016) 0.440 0.410 0.460 0.510 0.247 0.158 0.275 0.428 0.941 0.936 0.936 0.947 0.692 0.599 0.759 0.840
ANALOGY (Liu et al., 2017) − − − − − − − − 0.942 0.939 0.944 0.947 0.725 0.646 0.785 0.854
SimplE (Kazemi & Poole, 2018) − − − − − − − − 0.942 0.939 0.944 0.947 0.727 0.660 0.773 0.838
TuckER (Balažević et al., 2019a) 0.470 0.443 0.482 0.526 0.358 0.266 0.394 0.544 0.953 0.949 0.955 0.958 0.795 0.741 0.833 0.892

LowFER-1 0.454 0.422 0.470 0.515 0.318 0.233 0.348 0.483 0.949 0.945 0.951 0.956 0.720 0.639 0.774 0.859
LowFER-10 0.464 0.433 0.477 0.523 0.352 0.261 0.386 0.533 0.950 0.946 0.952 0.958 0.810 0.760 0.843 0.896
LowFER-k* 0.465 0.434 0.479 0.526 0.359 0.266 0.396 0.544 0.950 0.946 0.952 0.958 0.824 0.782 0.852 0.897

W
(2)
V = W

(1)
V P, where P ∈ R2d×2d is the d-half swapping

permutation matrix. Figure 4 demonstrates LowFER param-
eters for the family of bilinear models under the conditions
discussed in this section.

4.4. Relation to HypER

HypER (Balažević et al., 2019b) is a convolutional model
based on hypernetworks (Ha et al., 2017), where the relation
specific 1D filters are generated by the hypernetwork and
convolved with the subject entity vector. Balažević et al.
(2019b) showed that it can be understood in terms of tensor
factorization up to a non-linearity. With a similar argument,
we show that LowFER encodes HypER, bringing it closer
to the convolutional approaches as well.

HypER scoring function is defined as (Balažević et al.,
2019b):

φh(es, r, eo) = h(vec(es ∗ Fr)W)eo (9)

where Fr = vec−1(Hr) ∈ Rnf×lf , H ∈ Rnf lf×dr (hyper-
network), W ∈ Rnf lm×de , vec(.) transforms n×m matrix
to nm-sized vector, vec−1(.) does the reverse operation, ∗
is the convolution operator, h(.) is ReLU non-linearity and
nf , lf and lm = de − lf + 1 are number of filters, filter
length and output length of convolution. The convolution
between a filter and the subject entity embedding can be
seen as a matrix multiplication, where the filter is converted
to a Toeplitz matrix of size lm × de. With nf filters, we can
realize a 3D tensor of size nf × lm × de. Since the filters
are generated by the hypernetwork, we have dr such 3D
tensors, resulting in a 4D tensor of size nf × lm × de × dr
(Balažević et al., 2019b). Without loss of generality, we
can view this 4D tensor as a 3D tensor F ∈ Rnf lm×de×dr .
Taking mode-1 product as F ×1 W

T returns a final tensor
G ∈ Rde×de×dr . Thus, HypER operations vec(es ∗ Fr)W

simplify to G ×3 r ×2 es. At k = de, with U ∈ Rde×d2
e

as block identity matrices (same as in LowFER’s relation
to RESCAL) and V ∈ Rdr×de2 set to GT (G viewed as a
matrix of size d2

e × dr and transposed), LowFER’s score in
Eq. 5 represents HypER, up to the non-linearity.

5. Experiments and Results
We conducted the experiments on four benchmark datasets:
WN18 (Bordes et al., 2013), WN18RR (Dettmers et al.,
2018), FB15k (Bordes et al., 2013) and FB15k-237
(Toutanova et al., 2015) (see Appendix B for the details,
including best hyperparameters and additional experiments).

5.1. Link Prediction

Table 2 shows our main results, where LowFER-1, LowFER-
10 and LowFER-k* represent our model for k = 1, k = 10
and k = best. We choose LowFER-1 and LowFER-10 as
baselines. Overall, LowFER reaches competitive perfor-
mance on all the datasets with state-of-the-art results on
FB15k and FB15k-237. On WN18 and WN18RR, TuckER
is marginally better than LowFER.

LowFER performs well at low-ranks with significantly less
number of parameters compared to other linear models (Ta-
ble 3). At k = 1, it performs better than or on par with both
non-linear and linear models (including ComplEx and Sim-
plE) except HypER and TuckER. For FB15k-237, LowFER-
1 (∼3M parameters) outperforms R-GCN, RotatE, DistMult
and ComplEx by an average of 5.9% on MRR, and it addi-
tionally outperforms convolutional models (ConvE, HypER)
at k = 10 with only +0.8M parameters. On FB15k, the best
reported TuckER model is improved upon, with absolute
+1.9% increase on toughest Hits@1 metric. This already
achieves state-of-the-art with almost half the parameters,
∼5.5M in contrast to TuckER’s ∼11.3M. On WN18RR
and WN18, LowFER-1 outperforms all the models exclud-
ing TuckER and HypER. With LowFER-k*, we marginally
reach state-of-the-art performance on WN18RR and FB15k-
237. On FB15k, we reach new state-of-the-art for ∼9.51M
parameters with +2.9% and +4.1% improvement on MRR
and Hits@1.

The empirical gains can be attributed to LowFER’s ability
to perform good fusion between entities and relations while
avoiding overfitting through low-rank matrices remaining
parameter efficient, with strong performance even at ex-
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Table 3. Comparison between the number of parameters in millions
(M) of strong linear models. For LowFER-k*, the k values are
10, 100, 30 and 50 for WN18, FB15k-237, WN18RR and FB15k
respectively.

Model WN18 FB15k-237 WN18RR FB15k

ComplEx 16.4 6.0 16.4 6.5
SimplE 16.4 - 16.4 6.5
TuckER 9.4 11.0 9.4 11.3
LowFER-1 8.2 3.0 8.2 4.6
LowFER-10 8.6 3.8 8.6 5.5
LowFER-k* 8.6 11.3 9.6 9.5

Figure 5. Influence of increasing the factorization rank on MRR
and Hits@1 scores for FB15k.

treme low-ranks. Further, like TuckER, it allows for param-
eter sharing through the U and V matrices, unlike ComplEx
and SimplE which rely only on embedding matrices.

5.2. Effect of Factorization Rank

From link prediction results, we observe that rank plays
an important role depending on the entities-to-relations ra-
tio in the dataset. For de = 200 and dr = 30, we vary
k from {1, 5, 10, 30, 50, 100, 150, 200} on FB15k and plot
the MRR and Hits@1 scores (Figure 5). From k = 1 to
k = 5, the MRR score increases from 0.62 to 0.72 and
Hits@1 increases from 0.53 to 0.64. For higher ranks (after
50), the change is minimal. Empirically, the effect of k di-
minishes as the number of the entities per relation becomes
larger, e.g., it is ∼ 3722 for WN18RR in contrast to ∼ 11
for FB15k. We suspect that this could be due to the fact
that as ne � de, most of the knowledge is learned through
embedding matrices rather than the model parameters U
and V. To test this, we took a trained LowFER model, on
WN18 dataset, and added zero mean Gaussian noise with
variance in {1.0, 1.25, 1.5, 1.75, 2.0} to U and V and eval-
uated on the test set. The MRR score changed from 0.95 to
{0.92, 0.84, 0.65, 0.42, 0.24} for each level of noise. This
shows that in cases as such, the embeddings have potential
to capture more knowledge than the shared parameters.

Figure 6. Influence of changing the entity embedding dimension
de on Hits@1 metric and growth of parameters in million (M).

Table 4. Link prediction results on FB15k with de = dr = 200.

k Params (M) MRR Hits@1 Hits@3 Hits@10

1 3.60 0.634 0.538 0.695 0.803
5 3.92 0.720 0.641 0.776 0.860

10 4.33 0.742 0.667 0.790 0.871
30 5.93 0.774 0.709 0.817 0.885
50 7.53 0.776 0.713 0.818 0.886

100 11.53 0.779 0.717 0.821 0.887

Empirically, we found when de = dr, taking k = de/2
performs nearly the same as TuckER (Balažević et al.,
2019a). This can be observed in LowFER-k* for FB15k-237
(de = dr = 200, k = 100), where our results are almost
indistinguishable from TuckER’s. This can be expected as
the number of parameters in both models are almost the
same (∼11M). It should be noted that in practice when we
train LowFER, we initialize with two i.i.d matrices, which
are not shared, compared to TuckER’s core tensor (Eq. 6),
allowing us to reach almost the same performance despite
less parameter sharing.

5.3. Effect of Embedding Dimension

The size of entity embedding dimension de accounts
for the significant number of parameters in LowFER,
growing linearly with number of entities ne. To study
the effect, we trained our models on FB15k, with
dr = 30, k = 50 constant, and varying de in
{30, 50, 100, 150, 200, 250, 300, 350, 400}. As can be seen
in Figure 6, increasing the entity embedding dimension sig-
nificantly increases the Hits@1 metric, for almost linear
growth in number of parameters. However, it only improves
till 300 and starts overfitting afterwards.

In Balažević et al. (2019a), authors reported de = dr = 200
as best choice of dimensions for TuckER on FB15k, how-
ever, we found using de = 300 and dr = 30 better with
lesser number of parameters for LowFER. For fair compari-
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Table 5. Link prediction results on FB15k with de = 200, dr =
50, k = 150 and l2-regularization 0.0005.

Model Params (M) MRR Hits@1 Hits@3 Hits@10

TuckER 11.3 0.795 0.741 0.833 0.892
LowFER-k* 10.6 0.795 0.739 0.831 0.891
LowFER-k* + Reg 10.6 0.802 0.749 0.837 0.892

son, we also provide the results for de = dr = 200 for k in
{1, 5, 10, 30, 50, 100} in Table 4. As k is increased, we see
an improvement over all the metrics. At k = 100, where
we expected LowFER to match TuckER’s performance
(MRR=0.795, Hits@1=0.741, ∼11 million parameters), it
was lower (−1.6% on MRR and −2.4% on Hits@1). In
comparison, our model with de = 300, dr = 30 and k = 10
with ∼5.6 million parameters only, gives better results than
this setting and TuckER. Therefore, at de = dr = 200, our
model is most likely overfitting.

As noted above that it could be that LowFER is over-
fitting therefore, we did coarse grid search over relation
embedding dimension in {30, 50, 100, 150, 200} and k in
{1, 5, 10, 30, 50, 100, 150, 200} while keeping de = 200
fixed. We found dr = 50 at k = 150 reaches almost the
same performance as TuckER with ∼10.6M parameters
compared to TuckER’s ∼11.3M parameters. We also ex-
perimented with l2-regularization (Reg) and noted minor
improvements, with regularization strength 0.0005. Table
5 summarizes these results. Note that all the experiments
reported in main results (Table 2) were without any regular-
ization. In general, we only noticed slight improvements in
FB15k with l2-regularization.

5.4. Analysis of Relation Results

Link prediction models that can discover relation types au-
tomatically without prior knowledge indicate better gener-
alization. As shown, and discussed in section 4, LowFER,
among other models (Table 1), can learn to capture all re-
lation types without additional constraints. However, in
practice, these bounds are loose and require very large
dimensions, raising an inspection into their performance
on different relation types. In Kazemi & Poole (2018), it
was identified that WN18 contains redundant relations, i.e.,
∀ei, ej ∈ E : (ei, r1, ej) ∈ T ⇔ (ej , r2, ei) ∈ T , such
as <hyponym, hypernym>, <meronym, holonym> etc. To
alleviate this, Dettmers et al. (2018) proposed WN18RR
with such relations removed, since knowledge about one
can help infer the knowledge about the other. Table 6 shows
the per relation results of LowFER and TuckER on WN18
and WN18RR. We see that performance drops for 7 rela-
tions, with an average performance decrease of−70.6% and
−69.3% for LowFER and TuckER respectively (with high-
est decrease on member of domain usage for both). For
symmetric relations (such as derivationally related form),

Table 6. Relation specific test set results on WN18 and WN18RR
with LowFER-k* and best reported TuckER model (Balažević
et al., 2019a).

WN18 WN18RR

LowFER TuckER LowFER TuckER

also see 0.638 0.630 0.627 0.614
derivationally related form 0.954 0.956 0.957 0.957
has part 0.944 0.945 0.138 0.129
hypernym 0.961 0.962 0.189 0.189
instance hypernym 0.986 0.982 0.576 0.591
member meronym 0.930 0.927 0.155 0.131
member of domain region 0.885 0.885 0.060 0.083
member of domain usage 0.917 0.917 0.025 0.096
similar to 1.0 1.0 1.0 1.0
synset domain topic of 0.956 0.952 0.494 0.499
verb group 0.974 0.974 0.974 0.974

the performance is approximately the same where we ob-
serve severe limitation to model asymmetry. We believe this
is because LowFER (also TuckER) is constraint-free and
adding certain constraints based on background knowledge
is necessary to improve the model’s accuracy. SimplE is
the only fully expressive model that has formally shown
to address these limitations (cf. Proposition 3, 4 and 5 in
Kazemi & Poole (2018)). Since LowFER subsumes SimplE
therefore, such rules can be studied for extending LowFER
to incorporate the background knowledge.

6. Conclusion
This work proposes a simple and parameter efficient fully
expressive linear model that is theoretically well sound and
performs on par or state-of-the-art in practice. We showed
that LowFER generalizes to other linear models in KGC,
providing a unified theoretical view. It offers a strong base-
line to the deep learning based models and raises further
interest into the study of linear models. We also highlighted
some limitations with respect to gains on harder relations,
which still pose a challenge. We conclude that the constraint-
free and parameter efficient linear models, which allow for
parameter sharing, are better from a modeling perspective,
but are still similarly limited in learning difficult relations.
Therefore, studying the trade-off between parameters shar-
ing and constraints becomes an important future work.
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