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A. Proofs
A.1. Proposition 1

Proof. First, we will prove the case for k = de, with the
proof for the case k = dr following a similar argument.
For both cases, we represent entity embedding vector as
ei ∈ {0, 1}|E|, such that only i-th element is 1, and similarly,
relation embedding vector as rj ∈ {0, 1}|R|, such that only
j-th element is 1. We represent with U ∈ Rde×kde and
V ∈ Rdr×kde the model parameters, then, given any triple
(ei, rj , el) ∈ T with indices (i, j, l), such that 1 ≤ i, l ≤ |E|
and 1 ≤ j ≤ |R|:

For k = de: We let Umn = 1 for n = m+(o−1)de, for all
m in {1, ..., de} and for all o in {1, ..., k} and 0 otherwise.
Further, let Vpq = 1 for p = j and q = (l − 1)de + i and
0 otherwise. Applying g(ei, rj) and taking dot product of
the resultant vector with el (Eq. 5) perfectly represents the
ground truth as 1. Also, for any triple in T ′, a score of 0 is
assigned.

For k = dr: We let Umn = 1 for m = i and n = (l −
1)de + j and 0 otherwise. Further, let Vpq = 1 for q =
p+(o−1)de, for all p in {1, ..., dr} and for all o in {1, .., k}
and 0 otherwise. Rest of the argument follows the same as
for k = de.

A.2. Proposition 2

Proof. From Eq. 7 and 8, observe that the m-th slice of
the core tensorW on object dimension is approximated by
adding k rank-1 matrices, each of which is a cross product
between m-th column in W

(l)
U and m-th column in W

(l)
V ,

for all l in {1, ..., de}. Each slice of the core tensor W
on object dimension has a maximum rank min(de, dr) and
from Singular Value Decomposition (SVD), there exists n
(≤ min(de, dr)) scaled left singular and scaled right singu-
lar vectors whose sum of the cross products is equal to the
slice. By choosing these scaled left singular vectors, scaled
right singular vectors and zero vectors (in case the rank of
the corresponding slice is less than the maximum rank of
any such slice) as columns for matrices W(l)

U , W(l)
V , for all

l in {1, ..., de}, the core tensorW is obtained from Eq. 7
with k ≤ min(de, dr).

Please note that the bounds presented in Table 1 are weak
and in general, not very useful. They are derived only for

checking the full expressibility of a model, which is also
referred to as model being universal in Wang et al. (2018),
to handle all-types of relations with zero error, i.e., perfect
reconstruction of the binary tensor T for a given KG. Since
factorization based methods can be seen as approximating
the true binary tensor, more useful bounds can be derived
by studying the quality of the approximations for a given
accuracy level. The bounds for RESCAL, ComplEx and
HolE are reported from Wang et al. (2018) while for Sim-
plE (Kazemi & Poole, 2018) and TuckER (Balažević et al.,
2019a), from their respective papers.

As discussed in section 4.1, it was first shown in Wang et al.
(2018) that TransE is not universal, which was later gen-
eralized to other translational models by Kazemi & Poole
(2018). RotatE (Sun et al., 2019), a state-of-the-art dissimi-
larity based model, alleviates the issues of TransE by learn-
ing counterclockwise rotations in the complex space. For
a triple (h, r, t), RotatE models the tail entity as t = h ◦ r,
where h, t ∈ Cd are head and tail embeddings and r ∈ Cd

is the relation embedding with a restriction on the element-
wise modulus, |ri| = 1. Therefore, it only affects the phases
of the entity embeddings in the complex vector space. Sun
et al. (2019) showed that it can learn symmetric, assymmet-
ric, inverse and composition relations (cf. Lemma 1, 2, 3)
and degenerates to TransE (cf. Theorem 4). However, we
note that RotatE is also not fully expressive due to its inabil-
ity to model the transitive relations in the general case, i.e.,
irrespective of the size of embedding dimension.

Proposition 3. RotatE is not fully expressive due to a limi-
tation on the transitive relations.

Proof. Consider {e1, e2, e3} = ∆ ⊂ E and r ∈ R be a
transitive relation on ∆ such that r(e1, e2), r(e2, e3) and
r(e1, e3) belong to the ground truth. Let e1, e2, e3, r ∈ Cd

be the embedding vectors for RotatE. Let us assume that
r(e1, e2) and r(e2, e3) hold with RotatE, then we get e2 =
r ◦e1 and e3 = r ◦e2. From definition of transitive relation
we know that r(e1, e2) ∧ r(e2, e3) =⇒ r(e1, e3), here
we obtain e3 = r ◦ r ◦ e1. Therefore for r(e1, e3) to hold
with RotatE, we must have r ◦ r = r =⇒ r = 1, which
in turn suggest e1 = e2 = e3 but e1, e2, e3 are distinct
entities. More concretely, this condition requires that for
all elements of relation embedding ri, cos(θr,i) + isin(θr,i)
should match cos(2θr,i)+isin(2θr,i), which is only possible
when θr,i ∈ {0, 2π}, effectively no rotation.
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Figure A.1. Subsumption map of KGC models for known relation-
ships: Each node represents a model, where a directed edge shows
that the parent node has shown to subsume the child under some
conditions. The dotted line shows that the relation is not general
enough, where the grey nodes represent fully expressive models,
the white nodes represent the models that have shown to be not
fully expressive and dashed ones where this property is not known.
The size of a node is relative to the number of outgoing edges. *
HypER (Balažević et al., 2019b) has shown to be related to factor-
ization based methods up to a non-linearity, but the authors did not
specify any explicit modeling subsumption of other models.

A.3. KGC Scoring Subsumption

In sections 4.2, 4.3 and 4.4 we presented LowFER’s rela-
tions to other models. In this section, we breifly summarize
the subsumption findings of related works. Please note that
we only discuss the published findings and refrain from any
implied results.

First, Hayashi & Shimbo (2017) showed the equivalence
between ComplEx and HolE up to a constant factor using
Parseval’s theorem1, which was also discussed in Trouil-
lon & Nickel (2017). Then, the key contributions came
from the work of Wang et al. (2018), who showed that
RESCAL subsumes TransE, ComplEx, HolE and DistMult
by the arguments of ranking tensor. Kazemi & Poole (2018)
presented a unified understanding of RESCAL, DistMult,
ComplEx and SimplE as family of bilinear models under
different constraints on the bilinear map. In contrast to
the black box 2D-convolution based ConvE model, HypER
(Balažević et al., 2019b) showed that 1D-convolution with
hypernetworks (Ha et al., 2017) come close to well estab-
lished factorization based methods up to a non-linearity.
Balažević et al. (2019a) showed that with certain constraints

1For x,y ∈ Rd, it states that xTy = 1
d
F(x)TF(y), where

F : Rd → Cd is the discrete Fourier transform (DFT).

Table A.1. Datasets used for link prediction experiments, where
ne=number of entities, nr=number of relations and the entities-to-
relations ratio ne/nr is approximated to the nearest integer.

Dataset ne nr ne/nr Training Validation Testing

WN18 40, 943 18 2275 141, 442 5, 000 5, 000
WN18RR 40, 943 11 3722 86, 835 3, 034 3, 134
FB15k 14, 951 1, 345 11 483, 142 50, 000 59, 071
FB15k-237 14, 541 237 61 272, 115 17, 535 20, 466

on the core tensor of the Tucker decomposition (Tucker,
1966), it can subsume the family of bilinear models. In this
work, we showed that LowFER subsumes TuckER and can
be seen as providing low-rank approximation of the core
tensor2 with accurate representation under certain condi-
tions (Proposition 2). We also showed that LowFER can
subsume the family of bilinear models and HypER up to a
non-linearity. Figure A.13 provides a network style map for
the models discussed here.

B. Experiments
In this section, we will present the details of the datasets,
evaluation metrics, model implementation, the choice of
hyperparameters and report additional experiments.

B.1. Data

We conducted the experiments on four benchmark datasets:
WN18 (Bordes et al., 2013) - a subset of Wordnet, WN18RR
(Dettmers et al., 2018) - a subset of WN18 created through
the removal of inverse relations from validation and test
sets, FB15k (Bordes et al., 2013) - a subset of Freebase, and
FB15k-237 (Toutanova et al., 2015) - a subset of FB15k
created through the removal of inverse relations from vali-
dation and test sets. Table A.1 shows the statistics of all the
datasets.

B.2. Evaluation Metrics

We report the standard metrics of Mean Reciprocal Rank
(MRR) and Hits@k for k ∈ {1, 3, 10}. For each test triple
(es, r, eo), we score all the triples (es, r, e) for all e ∈ E . We
then compute the inverse rank of true triple and average them
over all examples. However, Bordes et al. (2013) identified
an issue with this evaluation and introduced filtered MRR,

2The rank of a tensor is the minimal number of rank-1 tensors
that yield it in a linear combination. It is known that the tensor rank
is NP-hard to compute, and for a 3rd-order tensor n×m×k, it can
be more than min(n,m, k) but no more than min(nm,nk,mk)
(Miettinen, 2011). Whereas, the n-rank of a tensorW is the dimen-
sion of the vector space spanned by the n-mode vectors, which are
the columns of the matrix unfolding W(n) (De Lathauwer et al.,
2000).

3https://bit.ly/3k641Ba

https://bit.ly/3k641Ba
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Table A.2. Best performing hyper-parameter values for LowFER,
where lr=learning rate, dr=decay rate, de=entity embedding di-
mension, dr=relation embedding dimension, k=LowFER factor-
ization rank, dE=entity embedding dropout, dMFB=MFB dropout,
dOut=output dropout and ls=label smoothing. Please note that dE,
dMFB and dOut are the same as d#1, d#2 and d#3 as in TuckER
(see Appendix A in Balažević et al. (2019a)) respectively.

Dataset lr dr de dr k dE dMFB dOut ls

WN18 0.005 0.995 200 30 10 0.2 0.1 0.2 0.1
WN18RR 0.01 1.0 200 30 30 0.2 0.2 0.3 0.1
FB15k 0.003 0.99 300 30 50 0.2 0.2 0.3 0.0
FB15k-237 0.0005 1.0 200 200 100 0.3 0.4 0.5 0.1

where we only consider triples of the form {(es, r, e) | ∀e ∈
E s.t. (es, r, e) 6∈ train ∪ valid ∪ test} during evaluation.
We therefore reported filtered MRR for all the experiments.
The Hits@k metric computes the percentage of test triples
whose ranking is less than or equal to k.

B.3. Implementation and Hyperparameters

We implemented LowFER4 using the open-source code
released by TuckER (Balažević et al., 2019a)5. We
did random search over the embedding dimensions in
{30, 50, 100, 200, 300} for de and dr. Further, we varied
the factorization rank k in {1, 5, 10, 30, 50, 100, 150, 200},
with k = 1 (LowFER-1) and k = 10 (LowFER-10) as base-
lines. For WN18RR and WN18, we found best de = 200
and dr = 30 with k value of 30 and 10 respectively. For
FB15k-237, we found best de = dr = 200 at k = 100. All
of these embedding dimensions match the best reported in
TuckER (Balažević et al., 2019a). However, for FB15k, we
found using the configuration of de = 300 and dr = 30 to
be consistently better than de = dr = 200. For fair compar-
ison, we also reported the results for de = dr = 200 and
the best configuration when de = 200 and (dr, k) ≤ 200
(Table 5).

Similar to Balažević et al. (2019a), we used Batch Normal-
ization (Ioffe & Szegedy, 2015) but additionally power nor-
malization and l2-normalization to stabilize training from
large outputs following the Hadamard product in main scor-
ing function (Yu et al., 2017)6. We tested the best reported
hyperparmeters of Balažević et al. (2019a) with random
search and observed good performance in initial testing.
With de, dr and k selected, we used fixed set of values
for rest of the hyperparameters reported in Balažević et al.
(2019a), including learning rate, decay rate, entity em-
bedding dropout, MFB dropout, output dropout and label

4https://github.com/suamin/LowFER
5https://github.com/ibalazevic/TuckER
6We observed no performance degradation by removing these

additional normalization techniques but we used it in all the exper-
iments to be consistent with prior work of Yu et al. (2017).

Table A.3. Link prediction results on YAGO3-10. Results for Dist-
Mult, ComplEx and ConvE are taken from Dettmers et al. (2018)
and for RotatE (Sun et al., 2019) (with self-adversarial negative
sampling) and HypER (Balažević et al., 2019b) are taken from
respective papers.

Model MRR Hits@1 Hits@3 Hits@10

DistMult 0.340 0.240 0.380 0.540
ComplEx 0.360 0.260 0.400 0.550
ConvE 0.440 0.350 0.490 0.620
RotatE 0.495 0.402 0.550 0.670
HypER 0.533 0.455 0.580 0.678
LowFER-k* 0.537 0.457 0.583 0.688

Table A.4. Link prediction results with LowFER-k* and additional
tanh non-linearity. The ↓ shows that the performance went down
compared to the linear counterparts reported in Table 2.

Dataset MRR Hits@1 Hits@3 Hits@10

FB15k-237 ↓ 0.345 0.256 0.378 0.526
FB15k ↓ 0.818 0.771 0.850 0.898
WN18RR ↓ 0.457 0.429 0.469 0.511
WN18 0.950 0.946 0.952 0.957

smoothing (Szegedy et al., 2016; Pereyra et al., 2017) (see
Table A.2 for the best hyperparameters). We used Adam
(Kingma & Ba, 2015) for optimization. In all the experi-
ments, we trained the models for 500 epochs with batch size
128 and reported the final results on test set.

B.4. Results on YAGO3-10

We report additional results on YAGO3-10, which is a sub-
set of YAGO3 (Mahdisoltani et al., 2013), consisting of
123, 182 entities and 37 relations such that have each entity
has at least 10 relations. We used the same best hyperpa-
rameters as for WN18RR. Table A.3 shows that our model
outperforms state-of-the-art models including RotatE and
HypER. It is worth noting that LowFER-k* on YAGO3-10
has only ∼26M parameters compared to ∼61M parame-
ters of RotatE (Sun et al., 2019), which also includes their
self-adversarial negative sampling.

B.5. LowFER with Non-linearity

Similar to Kim et al. (2016), we perform a simple abla-
tion study by adding non-linearity to the LowFER scoring
function as follows:

f̄(es, r, eo) = (σ(Skdiag(UTes)V
T r))Teo

where we use hyperbolic tangent σ = tanh non-linearity.
Applying non-linear activation function can be seen as in-
creasing the representation capacity of the model but Table

https://github.com/suamin/LowFER
https://github.com/ibalazevic/TuckER
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A.4 shows that the general performance of LowFER goes
down.

B.6. Models Comparison

We compared LowFER with non-linear models including
ConvE (Dettmers et al., 2018), R-GCN (Schlichtkrull et al.,
2018), Neural LP (Yang et al., 2017), RotatE (Sun et al.,
2019)7, TransE (Bordes et al., 2013), TorusE (Ebisu &
Ichise, 2018) and HypER (Balažević et al., 2019b). In linear
models, we compared against DistMult (Yang et al., 2015),
HolE (Nickel et al., 2016), ComplEx (Trouillon et al., 2016),
ANALOGY (Liu et al., 2017), SimplE (Kazemi & Poole,
2018) and state-of-the-art TuckER (Balažević et al., 2019a)
model. Results for the Canonical Tensor Decomposition
(Lacroix et al., 2018) were not included due to the uncom-
mon choice of extremely large embedding dimensions of
de = dr = 2000.

Additional models that were not reported in the main re-
sults (Table 2) due to partial results but were still outper-
formed by LowFER include M-Walk (Shen et al., 2018)
with their reported metrics of MRR=0.437, Hits@1=0.414
and Hits@3=0.445 on WN18RR and MINERVA (Das et al.,
2017) with Hits@10=0.456 on FB15k-237. The results in
Table 2 for all the models were taken from Balažević et al.
(2019b) and Balažević et al. (2019a). Lastly, in the section
5.4, to perform per relations comparisons, we trained the
TuckER models with the best reported configurations in
Balažević et al. (2019a) for WN18 and WN18RR.

7Where we reported their results in Table 2 without the self-
adversarial negative sampling. For fair comparison, see Appendix
H in their paper.


