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Abstract
We introduce a randomly extrapolated primal-
dual coordinate descent method that adapts to
sparsity of the data matrix and the favorable struc-
tures of the objective function. Our method up-
dates only a subset of primal and dual variables
with sparse data, and it uses large step sizes with
dense data, retaining the benefits of the specific
methods designed for each case. In addition to
adapting to sparsity, our method attains fast con-
vergence guarantees in favorable cases without
any modifications. In particular, we prove linear
convergence under metric subregularity, which
applies to strongly convex-strongly concave prob-
lems and piecewise linear quadratic functions. We
show almost sure convergence of the sequence
and optimal sublinear convergence rates for the
primal-dual gap and objective values, in the gen-
eral convex-concave case. Numerical evidence
demonstrates the state-of-the-art empirical perfor-
mance of our method in sparse and dense settings,
matching and improving the existing methods.

1. Introduction
In this paper, we consider the problem

min
x∈X

f(x) + g(x) + h(Ax), (1)

where f, g : X → R ∪ {+∞} and h : Y → R ∪ {+∞} are
proper, lower semicontinuous, convex functions, A : X →
Y is a linear operator. X and Y are Euclidean spaces such
that X =

∏n
i=1 Xi, and Y =

∏m
j=1 Yj . Moreover, f is

assumed to have coordinatewise Lipschitz continuous gradi-
ents and g, h admit easily computable proximal operators.

Problem (1) is a general template that covers many problems
in different fields, such as regularized empirical risk mini-
mization (Shalev-Shwartz & Zhang, 2013; Zhang & Xiao,
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2017), optimization with large number of constraints (Pa-
trascu & Necoara, 2017; Fercoq et al., 2019), and total vari-
ation (TV) regularized problems (Chambolle et al., 2018;
Fercoq & Bianchi, 2019).

The classic choice for solving problem (1) is to use primal-
dual methods (Chambolle & Pock, 2011; Vũ, 2013; Condat,
2013). These methods utilize the proximal operators for
g, h∗ and gradient of the differentiable component f . Ran-
domized versions that we refer to as primal dual coordinate
descent (PDCD), are proposed in several works (Zhang &
Xiao, 2017; Dang & Lan, 2014; Gao et al., 2019; Fercoq &
Bianchi, 2019; Chambolle et al., 2018; Latafat et al., 2019).

First advantage of coordinate-based methods is that they
access to blocks of A and update a subset of variables,
resulting in cheap per iteration costs. Moreover, they utilize
larger step sizes depending on the properties of the problem
in selected blocks.

Existing PDCD methods fail to retain both these advantages,
as sparsity of A varies. In particular, methods that have
cheap per-iteration costs with sparse A (Fercoq & Bianchi,
2019; Latafat et al., 2019), are restricted to use small step
sizes with dense A. On the other hand, methods that can
use large step sizes with dense A (Chambolle et al., 2018),
have high per-iteration costs with sparse A.

Contributions. In this paper, we identify random extrapola-
tion as the key to design a method that combines the benefits
of the methods in two camps and propose the primal-dual
method with random extrapolation and coordinate descent
(PURE-CD). PURE-CD exhibits the advantages of (Fercoq
& Bianchi, 2019; Latafat et al., 2019) in the sparse setting
and the advantages of (Chambolle et al., 2018) in the dense
setting simultaneously, achieving the best of both worlds.
As PURE-CD has the favorable properties in both ends of
the spectrum, it has the best performance in the regime in be-
tween: moderately sparse data. Table 1 compiles a summary
for the comparison of PURE-CD and previous methods.

In addition to adapting to the sparsity of A, we prove that
PURE-CD also adapts to unknown structures in the problem,
and obtains linear rate of convergence, without any modi-
fications in the step sizes. Our linear convergence results
apply to strongly convex-strongly concave problems, linear
programs, and problems with piecewise linear quadratic
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Step sizes
with dense data

per iteration
cost

block-wise
Lipschitz

probability
law

Efficient
implementation

(Chambolle et al., 2018) nτiσ‖Ai‖2 < 1 m N/A arbitrary direct†

(Fercoq & Bianchi, 2019) n2τiσ‖Ai‖2 < 1 |J(i)|∗ Yes uniform direct or duplication
(Latafat et al., 2019) n2τiσ‖Ai‖2 < 1 |J(i)|∗ No arbitrary duplication‡

PURE-CD nτiσ‖Ai‖2 < 1 |J(i)|∗ Yes arbitrary direct

Table 1. Comparison of primal-dual coordinate descent methods. Note that we only compare here the most related methods to ours and
include a comprehensive review of other existing methods with comparison to PURE-CD in Section 5. In the last column, we refer to the
way one needs to implement the algorithm, for it to be efficient in both sparse and dense settings. ∗J(i) is defined in (2). †SPDHG only
has implementation for dense setting and not for sparse. ‡The concept of duplication for PDCD is described in (Fercoq & Bianchi, 2019).

functions, involving Lasso, support vector machines and lin-
early constrained problems with piecewise linear-quadratic
objectives. In the general convex case, we prove that the
iterates of PURE-CD converges almost surely to a solution
of problem (1). Moreover, we show that in this case, the
ergodic sequence obtains the optimal O(1/k) sublinear rate
of convergence.

2. Preliminaries
2.1. Notation

For a positive definite matrix V , we denote ‖x‖2V =
〈x, V x〉. We define the distance of a point x from a set
X as dist(x,X ) = minu∈X ‖u − x‖2. Given an index
i ∈ {1, . . . , n}, the corresponding coordinate of the gradi-
ent vector is ∇if(x) and the corresponding coordinate of
a vector x ∈ X is xi. Graph of mapping F is denoted by
gra F . Recall that X =

∏n
i=1 Xi, and Y =

∏m
j=1 Yj and

Z = X × Y . For u ∈ Xi, Ui(u) ∈ X is such that each
element of Ui(u) is 0, except the block i which contains u.
We denote the indicator function of a set X as δX .

Proximal operator with a positive definite V is defined as

proxV,g(x) = arg min
u
g(u) +

1

2
‖u− x‖2V −1 .

We will need the following notation for the sparse setting,

J(i) = {j ∈ {1, . . . ,m} : Aj,i 6= 0}
I(j) = {i ∈ {1, . . . , n} : Aj,i 6= 0}. (2)

Given a matrix A and i ∈ {1, . . . , n}, J(i) denotes the row
indices that correspond to nonzero values in the column
indexed by i. Similarly, with j ∈ {1, . . . ,m}, I(j) gives
the column indices corresponding to nonzero values in the
row indexed by j.

Moreover, given positive probabilities (pi)1≤i≤n, we define

πj =
∑
i∈I(j)

pi. (3)

In the simple case of pi = 1/n, it is easy to see that nπj
corresponds to number of nonzeros in the row indexed by j.

At iteration k, the algorithm randomly picks an index
ik+1 ∈ {1, . . . , n}. To govern the selection rule, we de-
fine the probability matrix P = diag(p1, . . . , pn), where
pi = P(ik+1 = i), and p = mini pi. We define as Fk the
filtration generated by the random indices {i1, . . . , ik}.
Denoting z = (x, y), we define the functions

Dp(xk+1; z) = f(xk+1) + g(xk+1)− f(x)− g(x)

+ 〈A>y, xk+1 − x〉,
Dd(ȳk+1; z) = h∗(ȳk+1)− h∗(y)− 〈Ax, ȳk+1 − y〉.

2.2. Optimality

Problem (1) has the following saddle point formulation

min
x∈X

max
y∈Y

f(x) + g(x) + 〈Ax, y〉 − h∗(y).

Karush-Kuhn-Tucker (KKT) conditions state that the vector
z? = (x?, y?) is a primal-dual solution of the problem when

0 ∈
[
∇f(x?) + ∂g(x?) +A>y?

Ax? − ∂h∗(y?)

]
=: F (z?). (4)

We call Z? the set of such solutions.

2.3. Metric subregularity

We utilize the metric subregularity assumption for prov-
ing linear convergence. This assumption has been used
in primal-dual optimization literature for both determinis-
tic (Liang et al., 2016) and randomized algorithms (Latafat
et al., 2019; Alacaoglu et al., 2019).

Definition 1. A set valued mapping F : X ⇒ Y is metri-
cally subregular at x̄ for ȳ, with (x̄, ȳ) ∈ gra F , if there
exists η > 0 with a neighborhood of regularity N (x̄) such
that

dist(x, F−1ȳ) ≤ η dist(ȳ, Fx), ∀x ∈ N (x̄).

We will be interested in the metric subregularity of KKT
operator F (see (4)) for 0. Intuitively speaking, as 0 ∈
F (z?),∀z? ∈ Z?, metric subregularity of F for 0 essentially
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gives us a way to characterize the behavior of the iterates
around the solution set.

Even though Definition 1 looks daunting, fortunately, one
does not need to check it for a given problem. Metric sub-
regularity is well-studied in the literature and it is known to
be satisfied in the following cases:

Example 1.
. If f + g and h∗ are strongly convex, Definition 1 holds
with N (x̄) = Rd (Latafat et al., 2019, Lemma IV.2).
. If f, g, h are piecewise linear quadratic (PLQ) func-
tions, Definition 1 holds with any bounded neighborhood
N (x̄) (Latafat et al., 2019, Lemma IV.4).

PLQ functions include `1 norm, hinge loss, indicator of poly-
hedral sets. Thus, second bullet point apply to Lasso, sup-
port vector machines, elastic net, and linearly constrained
problems with PLQ loss functions (Latafat et al., 2019).

We now state our main assumptions which are standard in
the literature (Fercoq & Bianchi, 2019; Chambolle et al.,
2018; Latafat et al., 2019; Bauschke & Combettes, 2011):

Assumption 1.
. f , g and h are proper, lower semicontinuous, convex.
. g is separable, i.e., g(x) =

∑n
i=1 gi(x

i), and f has coor-
dinatewise Lipschitz gradients such that ∀x ∈ X ,∀u ∈ Xi,

f(x+ Ui(u)) ≤ f(x) + 〈∇if(x), u〉+
βi
2
‖u‖2. (5)

. Set of solutions to problem (1), defined in (4) is nonempty.

. Slater’s condition holds, which states that 0 ∈ ri(domh−
A dom g) where ri denotes the relative interior.

3. Algorithm
In this section, we will sketch the main ideas behind our
algorithm. Primal-dual method1, due to (Chambolle & Pock,
2011; Condat, 2013; Vũ, 2013) reads as

x̄k+1 = proxτ,g
(
x̄k − τ

(
∇f(x̄k) +A>ȳk

))
ȳk+1 = proxσ,h∗ (ȳk + σA(2x̄k+1 − x̄k)) .

(6)

The main intuition behind PDCD methods proposed
by (Zhang & Xiao, 2017; Fercoq & Bianchi, 2019; Cham-
bolle et al., 2018) is to incorporate coordinate based updates.
Among these methods, (Zhang & Xiao, 2017) specializes
in strongly convex-strongly concave problems, whereas the
other other ones focus on more general classes of problems.

A closely related approach concentrated on the following
interpretation of primal-dual method (6) which is named as

1This method is also known as Vũ-Condat algorithm.

TriPD in (Latafat et al., 2019, Algorithm 1)

ȳk+1 = proxσ,h∗ (ŷk + σAx̄k)

x̄k+1 = proxτ,g
(
x̄k − τ

(
∇f(x̄k) +A>ȳk+1

))
ŷk+1 = ȳk+1 + σA(x̄k+1 − x̄k).

(7)

We notice that by moving the ȳk+1 update in TriPD to take
place after ŷk+1 update, one obtains (6).

As observed in (Latafat et al., 2019), this particular inter-
pretation of primal-dual method is useful for randomization.
TriPD-BC as proposed in (Latafat et al., 2019) iterates as

ȳk+1 = proxσ,h∗ (yk + σAxk)

x̄k+1 = proxτ,g
(
xk − τ

(
∇f(xk) +A>ȳk+1

))
ŷk+1 = ȳk+1 + σA(x̄k+1 − xk)

Draw an index ik+1 ∈ {1, . . . , n} randomly.

x
ik+1

k+1 = x̄
ik+1

k+1 , xjk+1 = xjk,∀j 6= ik+1

yjk+1 = ŷjk+1,∀j ∈ J(ik+1), yjk+1 = yjk,∀j 6∈ J(ik+1).

One immediate limitation of TriPD-BC is that to update
yk+1, one needs to know x̄k+1, whereas only x̄

ik+1

k+1 is
needed to update xk+1. As also discussed in (Latafat et al.,
2019), this scheme is suitable when A has special structure
such as sparsity. When A is dense, one needs to update
all elements of yk+1 and ŷk+1, in which case one needs to
compute both ȳk+1 and x̄k+1 which has the same cost as a
deterministic algorithm.

In the dense setting, for an efficient implementation, one can
use duplication of dual variables as described in (Fercoq &
Bianchi, 2019). However, in this case one is restricted to use
small step sizes as discussed in (Fercoq & Bianchi, 2019).
Compared to SPDHG in (Chambolle et al., 2018), the step
sizes can be n times worse, deteriorating the performance
of the method considerably in the dense setting.

On the other hand, the drawback of SPDHG is that it needs
to update all dual variables at every iteration, whereas the
methods in (Fercoq & Bianchi, 2019; Latafat et al., 2019)
update only a subset of dual variables depending on the
sparsity ofA. When the dual dimension is high, per iteration
cost of (Chambolle et al., 2018) becomes prohibitive.

Our idea, inspired by (Chambolle et al., 2018), to make
TriPD-BC efficient for dense setting is to use xk+1 rather
than x̄k+1 in the update of ŷk+1. Although simple to state,
this modification makes ŷk+1 random, rendering the anal-
ysis of (Latafat et al., 2019) and other analyses based on
monotone operator theory not applicable.

This leads to our algorithm, primal-dual method with ran-
dom extrapolation and coordinate descent (PURE-CD). Our
method uses large step sizes as in (Chambolle et al., 2018)
in the dense setting, while staying efficient in terms of per
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iteration costs in the sparse setting as in (Fercoq & Bianchi,
2019; Latafat et al., 2019); leading to the first general PDCD
algorithm that obtains favorable properties in both sparse
and dense settings.

Algorithm 1 Primal-dual method with random extrapola-
tion and coordinate descent (PURE-CD)

1: Input: Diagonal matrices θ, τ, σ > 0, chosen accord-
ing to (8), (9).

2: for k = 0, 1 . . . do
3: ȳk+1 = proxσ,h∗ (yk + σAxk)

4: x̄k+1 = proxτ,g
(
xk − τ

(
∇f(xk) +A>ȳk+1

))
5: Draw ik+1 ∈ {1, . . . , n} with P(ik+1 = i) = pi
6: x

ik+1

k+1 = x̄
ik+1

k+1

7: xjk+1 = xjk,∀j 6= ik+1

8: yjk+1 = ȳjk+1+σjθj(A(xk+1−xk))j ,∀j ∈ J(ik+1),
yjk+1 = yjk,∀j 6∈ J(ik+1)

9: end for

4. Convergence Analysis
In this section, we analyze the convergence behavior of
Algorithm 1 under various assumptions. We first start with
a lemma analyzing one iteration of the algorithm.

Lemma 1. Let Assumption 1 hold. Recall the definitions of
Dp and Dd from Section 2.1 and let θ = diag(θ1, . . . , θm)
and π = diag(π1, . . . , πm) be chosen as

θj =
πj
p
, where πj =

∑
i∈I(j)

pi, and p = min
i
pi. (8)

We define the functions, given z,

V (z) =
p

2
‖x‖2τ−1P−1 +

p

2
‖y‖2σ−1π−1 ,

Ṽ (z) =
p

2
‖x‖2C(τ) +

p

2
‖y‖2σ−1 ,

where C(τ)i = 2pi
pτi
− 1

τi
− pi

∑m
j=1 π

−1
j σjθ

2
jA

2
j,i − βipi

p .

Then, for the iterates of Algorithm 1, ∀z ∈ Z , it holds that:

Ek [Dp(xk+1; z)] + pDd(ȳk+1; z) + Ek [V (zk+1 − z)]
≤ (1− p)Dp(xk; z) + V (zk − z)− Ṽ (z̄k+1 − zk).

The main technical challenge in the proof of the lemma,
compared to the corresponding results in (Latafat et al.,
2019) and (Chambolle et al., 2018) is handling stochasticity
in both variables xk+1, yk+1 (and also ŷk+1 for (Latafat
et al., 2019)). Using coordinatewise Lipschitz constants of
f with arbitrary sampling also requires an intricate analysis.

The result of Lemma 1 is promising for deriving conver-
gence results for Algorithm 1. When z = z? in Lemma 1,

as Dp(xk+1; z?) ≥ 0, Dd(ȳk+1; z?) ≥ 0 and when
step sizes are chosen such that Ṽ is a squared norm,
Lemma 1 describes a stochastic monotonicity property sim-
ilar to (Fercoq & Bianchi, 2019). In particular, it shows that
Dp(xk+1; z?) +V (zk+1− z?) which measures the distance
to solution in a Bregman distance sense, is monotonically
nonincreasing in expectation.

4.1. Almost sure convergence

Almost sure convergence is a fundamental property for ran-
domized methods describing the limiting behavior of the
iterates in different realization of the algorithm. The follow-
ing theorem states that the iterates of Algorithm 1 converge
almost surely to a point in the solution set.

Theorem 1. Let Assumption 1 hold and let θ, π be as
in Lemma 1. Choose step sizes τ , σ such that

τi <
2pi − p

βipi + p−1pi
∑m
j=1 πjσjA

2
j,i

. (9)

The iterates zk are produced by Algorithm 1. Then, almost
surely, there exist z? ∈ Z? such that zk → z?.

We analyze the step size rule (9) in Theorem 1 and compare
with existing efficient methods in dense and sparse settings.

Remark 1.
. Let A be dense, with all its elements being nonzero, pi =
1/n and f(·) = 0, then the step size rule reduces to

τi <
1

nσ‖Ai‖2
,

which is the step size rule of SPDHG (Chambolle et al.,
2018; Alacaoglu et al., 2019), which is shown to be fa-
vorable in the dense setting. In contrast, step size rules
of (Fercoq & Bianchi, 2019; Latafat et al., 2019) are n times
worse due to duplication, in this case.

. Let A be diagonal, and we use pi = 1
n , which results in

πj = 1
n . Then,

τi <
1

βi +
∑m
j=1 σjA

2
j,i

,

which is the step size rule of Vu-Condat-CD (Fercoq &
Bianchi, 2019), upon using the definition of J(i) from (2).
Similarly, Algorithm 1 updates 1 dual coordinate and 1
primal coordinate, in this case. In contrast, SPDHG (Cham-
bolle et al., 2018) updates m dual coordinates, resulting in
m times higher per iteration cost.

We note that the step sizes of TriPD-BC (Latafat et al.,
2019) depend on global Lipschitz constant of f rather than
the coordinatewise ones. Using coordinatewise Lipschitz
constants in practice is very important for the success of
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coordinate descent, as they give larger step sizes (Nesterov,
2012; Richtárik & Takáč, 2014; Fercoq & Richtárik, 2015).

The takeaway from Remark 1 is that Algorithm 1 recovers
the characteristics of the best performing methods in fully
dense and fully sparse settings. Moreover, as it is the only
method with the desirable dependencies in both cases, it has
the best properties in the moderate sparse cases. We validate
this observation with numerical experiments in Section 6.

4.2. Linear convergence

Linear convergence of primal-dual methods in practice is a
widely observed phenomenon (Chambolle & Pock, 2011;
Liang et al., 2016). We show that Algorithm 1 also shares
this property and obtains linear convergence under metric
subregularity, without any modification on the algorithm.

We define the Bregman-type projection onto the solution set

z?k = arg min
u∈Z?

Dp(xk;u) + V (zk − u). (10)

We now show that z?k is well-defined under our assump-
tions. First, the solution set is convex and closed. Second,
Dp(xk;u) ≥ 0 for all u ∈ Z? and it is also lower semicon-
tinuous. Third, we remark that V (zk−u) is a squared norm
(see Lemma 1), thus coercive, therefore the sum is coercive
and lower semicontinuous over Z?. Hence, z?k exists.

The definition of z?k in (10) is more involved compared to
the corresponding quantity in (Latafat et al., 2019). This is
in fact due to us using coordinatewise Lipschitz constants
in our step sizes, rather than the global Lipschitz constant
in (Latafat et al., 2019).
Assumption 2.
KKT operator F is metrically subregular at all z? ∈ Z? for
0, and z̄k ∈ N (z?),∀z?,∀k.
Theorem 2. Let Assumptions 1 and 2 hold. Let θ and the
step sizes τ, σ be chosen according to (8) and (9), respec-
tively. Moreover, z?k = (x?k, y

?
k) is as defined in (10). Then,

for zk generated by Algorithm 1, it follows that

E
[p

2
‖xk − x?k‖2τ−1P−1 +

p

2
‖yk − y?k‖2σ−1π−1

]
≤ (1− ρ)k∆0,

where ρ = min
(
p,

C2,Ṽ

CV,2((2+2c)+(1+c)(η‖H−M‖+β̄))2

)
,

∆0 = Dp(x0; z?0) + V (z0 − z?0), β̄ is the global Lipschitz
constant of f ,
C2,Ṽ =

p

2 min
{

mini C(τ)i,minj σ
−1
j

}
,

CV,2 = 1
2 max

{
maxi

1
τi
,maxj

1
σj

}
, c = C2,V

√
‖A‖/2,

C2,V =
√

2

pmin{mini τ
−1
i p−1

i ,minj σ
−1
j π−1

j } , and

H =

[
τ−1 A>

0 σ−1

]
, M =

[
0 A>

−A 0

]
.

The first remark about Theorem 2 is that since metric sub-
regularity constant η is not required in the algorithm, the
step sizes to achieve linear convergence are the same step
sizes as (9). Therefore, PURE-CD adapts to structures on
the problem, without any need to modify the algorithm, and
attains linear rate of convergence. This supports the well-
known observation that primal-dual algorithms converge
linearly on most problems, with standard step sizes in (9).

In particular, a direct corollary of our theorem is that for
problems listed in Example 1, PURE-CD obtains linear rate
of convergence. For the first two cases in Example 1, our
result applies directly since the neighborhood of subregular-
ity N (z?) is the whole space. For the third case, we have
to assume additionally that z̄k is contained in a compact
set, since N (z?) is not the whole space, and is bounded. A
sufficient assumption for this is when the domains of g and
h∗ are compact. We note that compactness is only required
for this result in our paper. This is common to other re-
sults for PDCD methods with metric subregularity (Latafat
et al., 2019; Alacaoglu et al., 2019). The issue, as explained
in (Alacaoglu et al., 2019), stems from a fundamental limi-
tation of the existing analyses of PDCD methods.

Many results in the literature for linear convergence only ap-
plies to the first case in Example 1, when g, h∗ are strongly
convex (Zhang & Xiao, 2017; Chambolle et al., 2018).
Moreover, these results require setting step sizes depending
on strong convexity constants of g, h∗, therefore not appli-
cable when strong convexity is absent. Our result applies to
more general problems and it uses step sizes independent
of these constants. Our algorithm can be directly applied to
any problem satisfying Assumption 1 and fast convergence
will occur provably, if the selected problem is in Example 1.

Compared with the linear convergence rate in (Latafat et al.,
2019) for TriPD-BC, our result have a similar contraction
factor, however, due to larger step sizes (see Remark 1), the
rate comes with a better constant.

4.3. Ergodic rates

In this section, we study Algorithm 1 in the general case,
under Assumption 1, and show the optimal O(1/k) conver-
gence rate on the ergodic sequence. The quantity of interest
is the primal-dual gap function (Chambolle & Pock, 2011)

G(x̄, ȳ) = sup
z∈Z

f(x̄) + g(x̄) + 〈Ax̄, y〉 − h∗(y)

− f(x)− g(x)− 〈Ax, ȳ〉+ h∗(ȳ). (11)

A related quantity is the restricted gap function (Chambolle
& Pock, 2011), which, for any set C ⊂ Z is defined as

GC(x̄, ȳ) = sup
z∈C

f(x̄) + g(x̄) + 〈Ax̄, y〉 − h∗(y)

− f(x)− g(x)− 〈Ax, ȳ〉+ h∗(ȳ). (12)
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Due to randomization in PDCD, we are interested in the ex-
pected primal-dual gap, denoted as E [GC(x̄, ȳ)]. As noted
by Dang & Lan (2014), it is technically challenging to
prove rates for this quantity as it is the expectation of supre-
mum. Recently, (Alacaoglu et al., 2019) used a technique to
show convergence of expected primal-dual gap for SPDHG
of (Chambolle et al., 2018). This rate is for ergodic sequence
averaging xk and the full dual variable ȳk. We can use this
technique for our analysis. However, there remains another
technical challenge as full dual variable is not computed in
PURE-CD. Thus, averaging ȳk is not feasible in our case.

In addition to Assumption 1, in this section we will assume
separability of h, to be able to do an efficient averaging with
the dual iterate.

Due to the asymmetric nature of Algorithm 1, there are
fundamental difficulties for proving a rate with averaging
yk+1. On this front, we propose a new type of analysis for
the dual variable. To start with, we define the following
iterate which has the same cost to compute as yk+1 each
iteration. Let y̆1 = y1 = ȳ1,

y̆jk+1 = ȳjk+1, ∀j ∈ J(ik+1),

y̆jk+1 = y̆jk, ∀j 6∈ J(ik+1).
(13)

We note that y̆k isFk-measurable and more useful properties
of y̆k for analysis are given in Lemma 5 in Appendix B.4.

Due to the definition of y̆k, it is now feasible to compute
and average this iterate. We can show the convergence of
expected primal-dual gap by averaging y̆k and xk. We re-
mark that we use some coarse inequalities to give simple
constants for Theorem 3 and Theorem 4. Therefore, the
bounds are not optimized with respect to dimension depen-
dence. In Appendix B, we give these theorems with their
original, tighter bounds and we show how we transform the
tighter bounds into the constants we give in this section.
Theorem 3. Let Assumption 1 hold and θ, τ, σ are chosen
as in (8), (9). Moreover, let h be separable.

We define xavK = 1
K

∑K
k=1 xk and yavK = 1

K

∑K
k=1 y̆k,

where y̆k is defined in (13), then it holds that for any
bounded set C = Cx × Cy ⊂ Z

E [GC(x
av
K , y

av
K )] ≤ Cg

pK
,

where Cg =
∑4
i=1 Cg,i, Cτ,Ṽ = mini C(τ)iτi,

Cg,1 = supz∈C
{

2p‖x0−x‖2τ−1P−1+2p‖y0−y‖2σ−1π−1

}
+

4
√

∆0p−1‖A‖ supy∈Cy ‖y‖τP
+ 2
√

∆0(p−1 + 2p−3C−1

τ,Ṽ
)‖A‖ supx∈Cx ‖x‖σπ ,∑4

i=2 Cg,i = ∆0

(
5 + 9p−1 + C−1

τ,Ṽ

(
1 + 10p−1 + 14p−2

))
+(1−p)(f(x0)+g(x0)−f(x?)−g(x?))+h∗(y0)−h∗(y?)
+ p‖Ax?‖2σπ−1 + ‖A>y?‖2τP .

Remark 2. When implementing averaging of xk, and y̆k,
one should use a technique similar to (Dang & Lan, 2015).
The main idea is to only update the averaged vector at the
coordinates where an update occurred. For this, one needs
to remember for each coordinate, the last time it is updated,
wait until a coordinate is selected again and update the
averaged vector using this information.

The result in Theorem 3 would give a rate for primal-dual
gap when C = Z . However, in general such a rate is not
desirable as taking a supremum over Z might result in an
infinite bound. This rate would be meaningful when both pri-
mal and dual domains are bounded in which case one would
take the supremum in Cg,1 over the bounded domains.

Alternatively, in the following theorem, we show that for two
important special cases, we can extend this result to show
guarantees without bounded domains. Namely, we show
the same rate for the case when h(·) = δ{b}(·), b ∈ Rm to
cover linearly constrained problems. Moreover, we show
the result for the case when h is Lipschitz continuous.

Theorem 4. Let Assumption 1 hold. We use the same pa-
rameters θ, τ, σ and the definitions for xavK and yavK as The-
orem 3. We consider two cases separately:
. If h(·) = δ{b}(·), we obtain

E[f(xavK ) + g(xavK )− f(x?)− g(x?)] ≤
Co
pK

.

E[‖AxavK − b‖] ≤
Cf
pK

.

. If h is Lh-Lipschitz continuous, we obtain

E[f(xavK ) + g(xavK ) + h(AxavK )

− f(x?)− g(x?)− h(Ax?)] ≤
Cl
pK

,

where Cf = 3c1‖x? − x0‖τ−1P−1 + 2
√
c1Cs + 4c1‖y? −

y0‖σ−1π−1 ,
Co = Cs + ‖y?‖σ−1π−1Cf + 2c1p

−1V (z0 − z?),
Cl = Cs + c1‖x? − x0‖2τ−1P−1 + 4c1L

2
h,

Cs = Cg,2 + Cg,5 + Cg,6, with c1 = 2p + 2, Cg,2 as
defined in the statement of Theorem 3 in Appendix B.4 and
Cg,5, Cg,6 are defined in the proof in (79), (80).

5. Related works
In the deterministic setting, many primal-dual methods are
proposed (Chambolle & Pock, 2011; Vũ, 2013; Condat,
2013; Tan et al., 2020; Latafat et al., 2019). The standard
results in these papers include linear convergence when
g, h∗ are strongly convex, with step sizes selected by using
strong convexity constants. In addition, these papers also
show sublinear O(1/k) rate with general convexity, which
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is known to be optimal (Nesterov, 2005). Moreover, linear
rates under metric subregularity is shown for deterministic
methods in (Liang et al., 2016; Latafat et al., 2019).

Randomized coordinate descent is proposed in (Nesterov,
2012) and improved by a large body of subsequent pa-
pers (Richtárik & Takáč, 2014; Fercoq & Richtárik, 2015).
Primal randomized coordinate descent requires full separa-
bility on the nonsmooth parts of the objective function. Non-
smooth and nonseparable functions are handled by primal-
dual coordinate descent methods (Fercoq & Bianchi, 2019).

One of the first primal-dual coordinate descent (PDCD)
methods is SPDC, which is proposed in (Zhang & Xiao,
2017), that solves a special case of problem (1) with f = 0.
SPDC has linear convergence when g, h∗ are strongly con-
vex and the step sizes are selected according to strong con-
vexity constants. In the general convex case, SPDC has
perturbation-based analysis, which needs to set an ε, re-
quires knowing ‖x?‖2, and shows ε-based iteration com-
plexity results, and not anytime convergence rates. Almost
sure convergence of the iterates of SPDC is not proven in
the general convex case. Moreover, the step sizes of SPDC
are scalar and they depend on the maximum block norm of
A. It is shown in (Zhang & Xiao, 2017) that in the specific
cases when g(x) = ‖x‖2 or g(x) = ‖x‖1 + ‖x‖2, one can
use a special implementation for efficiency with sparse data.

Tan et al. (2020) proposed a new method similar to SPDC
with the same type of guarantees as (Zhang & Xiao, 2017).
Due to similar analysis techniques, this method inherits the
abovementioned drawbacks of SPDC. For this method, Tan
et al. (2020) showed a new implementation technique for
sparse data, that can be used with any separable g(x).

For solving the specific case of empirical risk minimization
problems, stochastic dual coordinate ascent (SDCA) is pro-
posed in (Shalev-Shwartz & Zhang, 2013; 2014). SDCA
uses strong convexity constant to set step sizes and attain lin-
ear convergence. A limitation of SDCA is to require strong
convexity in the primal, to ensure smoothness of the dual
objective, which is essential in the design of the method.

Another early PDCD method is by (Dang & Lan, 2014)
where the authors focused on showing sublinear conver-
gence rates. The authors showed guarantees for a relaxed
version of expected primal-dual gap function in (11).

Building on (Dang & Lan, 2014), block-coordinate variants
of alternating direction method of multipliers (ADMM) are
proposed in (Gao et al., 2019; Xu & Zhang, 2018). These
papers focus on linearly constrained problems and show er-
godic sublinear convergence rates. Moreover, (Xu & Zhang,
2018) showed that under strong convexity assumption and
special decomposition of the blocks, the method achieves
linear convergence. This linear convergence result, simi-
lar to (Zhang & Xiao, 2017) requires knowing the strong

convexity constants to set the algorithmic parameters. More-
over, these results generally set step sizes depending on
global Lipschitz constants and norm of whole matrix A.

PDCD variants are also proposed in (Combettes & Pesquet,
2015; 2019; Pesquet & Repetti, 2015) and analyzed under
the general setting of monotone operators. These methods
use global constants of the problem such as global Lipschitz
constant of smooth part and ‖A‖, rather than blockwise
constants, resulting in worse practical performance, as illus-
trated in the experiments of (Chambolle et al., 2018).

Another early PDCD variant to solve problem (1) in its full
generality, where f, g, h are all nonseparable, is by Fercoq &
Bianchi (2019). This method uses coordinatewise Lipschitz
constants of the smooth part and it is designed to exploit
sparsity of A. This method has almost sure convergence
guarantees as well as linear convergence when g, h∗ are
strongly convex. As opposed to most results in this nature,
it is not required to know strong convexity constants to set
the step sizes. In the general convex case, the method has
O(1/

√
k) rate for a randomly selected iterate. As argued in

Section 4.1, main limitation of (Fercoq & Bianchi, 2019) is
that small step sizes are required when matrix A is dense.
Moreover, the results in this paper are restricted to uniform
probability law for selecting coordinates.

One of the most related works to ours, and a building block
of PURE-CD is TriPD-BC from (Latafat et al., 2019). The
authors showed almost sure convergence of the iterates and
linear convergence under metric subregularity, by using
global Lipschitz constants of f for the step sizes. This paper
did not have any sublinear convergence rates in the general
convex case. Similar to (Fercoq & Bianchi, 2019), TriPD-
BC is designed for sparse setting and a naive implementation
in the dense setting requires the same per iteration cost as the
deterministic algorithm. An efficient implementation is by
duplication of dual variables, which as explained in (Fercoq
& Bianchi, 2019) results in small step sizes (see Section 4.1).

Another building block of PURE-CD is SPDHG by (Cham-
bolle et al., 2018), to solve (1) when f = 0. Linear con-
vergence result of SPDHG by (Chambolle et al., 2018) is
similar to (Zhang & Xiao, 2017) and requires setting step
sizes with strong convexity constants. In the general convex
case and partially strongly convex case, (Chambolle et al.,
2018) proved optimal sublinear rates. Recently, (Alacaoglu
et al., 2019) analyzed SPDHG and proved additional theo-
retical results. In particular, this work showed almost sure
convergence of the iterates of SPDHG and linear conver-
gence under metric subregularity. Even though it is fast
in the dense setting, the main limitation of SPDHG, as
discussed in Section 4.1 is that it needs to update all the
dual coordinates, resulting in high per iterations costs in the
sparse setting.
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Figure 1. Lasso: Left: rcv1, n = 20, 242,m = 47, 236, density = 0.16%, λ = 10; Middle: w8a, n = 49, 749,m = 300, density
= 3.9%, λ = 10−1; Right: covtype, n = 581, 012, m = 54, density = 22.1%, λ = 10.
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Figure 2. Ridge regression: Left: sector, n = 6, 412,m = 55, 197, density = 0.3%, λ = 0.1; Middle: a9a, n = 32, 561,m = 123,
density = 11.3%, λ = 0.1; Right: mnist, n = 60, 000, m = 780, density = 19.2%, λ = 1.

Other PDCD methods are proposed in (Luke & Malitsky,
2018; Alacaoglu et al., 2017) where the authors focused on
linearly constrained problems and proved sublinear rates.

6. Numerical experiments
6.1. Effect of sparsity

As explained in Section 4.1, and Remark 1, PURE-CD
brings together the benefits of different methods that are
designed for dense and sparse cases. We will now compare
the empirical performance of PURE-CD with Vu-Condat-
CD from (Fercoq & Bianchi, 2019) which has desirable
properties with sparse data and SPDHG from (Chambolle
et al., 2018) which has desirable properties with dense data.

We select uniform sampling, pi = 1/n, so (9) simplifies to

τi <
1∑m

j=1 θjσjA
2
j,i

. (14)

We provide a step size policy inspired by the step size rules
chosen in (Chambolle et al., 2018) and (Fercoq & Bianchi,
2019). We use the following step sizes, for γ < 1

σj =
1

θj maxi′ ‖Ai′‖
, τi =

γmaxi′ ‖Ai′‖
‖Ai‖2

.

We note that in contrast to (Chambolle et al., 2018), step
sizes are both diagonal. In our case, it is important to utilize
diagonal step sizes for both primal and dual variables since
we perform coordinate-wise updates for both primal and

dual variables and the step sizes need to be set appropriately
to obtain good practical performance. For SPDHG and
Vu-Condat-CD, we use step sizes suggested in the papers.

In the edge cases (one nonzero element per row or fully
dense), it is easy to see that our step size policy reduces to
the suggested step sizes of (Chambolle et al., 2018) and (Fer-
coq & Bianchi, 2019).

For experiments, we used the generic coordinate descent
solver, implemented in Cython, by Fercoq (2019), which
includes an implementation of Vu-Condat-CD with duplica-
tion and we implemented SPDHG and PURE-CD. We solve
Lasso and ridge regression, where we let g(x) = λ‖x‖1,
h(Ax) = 1

2‖Ax − b‖2, f = 0, and g(x) = λ
2 ‖x‖2,

h(Ax) = 1
2‖Ax − b‖2, f = 0, respectively, in our tem-

plate (1). Then, we apply all the methods to the dual prob-
lems of these, to access data by rows.

We use datasets from LIBSVM with different sparsity lev-
els (Chang & Lin, 2011). The properties of each data matrix
are given in the caption of the corresponding figures. For pre-
processing, we removed all-zero rows and all-zero columns
of A and we performed row normalization. The results are
compiled in Figures 1 and 2.

We observe the behavior predicted by theory. With sparse
data such as rcv1, where density level is 0.16%, SPDHG
makes very little progress in the given time window. The
reason is that the per iteration cost of SPDHG in this case
is updating 47, 236 dual variables, whereas for PURE-CD
and Vu-Condat-CD, the cost is updating 75 dual variables.
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Figure 3. top: a9a, n = 32, 561, m = 123, bottom: sector, n = 6, 412, m = 55, 197.

We note that PURE-CD is faster than Vu-Condat-CD due to
better step sizes. On the other hand, with moderate sparsity,
SPDHG and Vu-Condat-CD is comparable, whereas PURE-
CD exhibits the best performance. For denser data, SPDHG
and PURE-CD exhibit similar behavior where Vu-Condat-
CD is slower than both due to smaller step sizes.

6.2. Comparison with specialized methods

In this section, we compare the practical performance of
PURE-CD with state-of-the-art algorithms that are designed
for strongly convex-strongly concave problems. Due to
space constraints, we defer some of the plots and more
details about experiments to the appendix. We focus on the
problem minx

1
n

∑n
i=1 hi(Aix) + λ

2 ‖x‖2, where hi(x) =
(x−bi)2. Each hi is smooth with Lipschitz constantsLi = 2
and the second component is strongly convex, which results
in strong convexity in both primal and dual problems.

In this case, the algorithms SDCA (Shalev-Shwartz &
Zhang, 2013), ProxSVRG (Xiao & Zhang, 2014), Accel-
erated SVRG (Zhou et al., 2018), SPDC (Zhang & Xiao,
2017) are all designed to use the strong convexity to ob-
tain linear convergence. These algorithms use the strong
convexity constant λ for setting the algorithmic parame-
ters. Moreover, as all the abovementioned algorithms have
special implementations to exploit sparsity, we make the
comparison with respect to number of passes of the data,
rather than time. The results are compiled for two datasets

in Figure 3 and more datasets are included in Appendix A.
We use theoretical step sizes for all the algorithms, given in
the respective papers.

• PURE-CD-λ: This variant uses the non-agnostic step sizes,
using λ, which still satisfy the theoretical requirement (14).

σj =
n

θj
√
nλmaxi′ ‖Ai′‖

, τi =
γ
√
nλmaxi′ ‖Ai′‖
n‖Ai‖2

.

• PURE-CD: This variant is with the standard agnostic step
sizes.

σj =
n

θj maxi′ ‖Ai′‖
, τi =

γmaxi′ ‖Ai′‖
n‖Ai‖2

.

We observe that PURE-CD has a consistent linear con-
vergence behavior as predicted by theory. In most of the
datasets (see Appendix A), it has the fastest convergence
behavior. However, in some datasets, as λ gets smaller, we
observed that the linear rate of PURE-CD slowed down,
which motivated us to try PURE-CD-λ, which incorporates
the knowledge of λ as the other methods. It seems to show
favorable behavior when PURE-CD slows down.

The takeaway message is that PURE-CD, which is designed
for a general problem, adapts to strong convexity well with
agnostic step sizes in most cases. However, in some cases,
it does not perform as good as the algorithms which are de-
signed to exploit strong convexity. In those cases however,
one can choose separating step sizes of PURE-CD accord-
ingly, and use PURE-CD-λ to get better performance.
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Vũ, B. C. A splitting algorithm for dual monotone inclusions
involving cocoercive operators. Advances in Computa-
tional Mathematics, 38(3):667–681, 2013.

Xiao, L. and Zhang, T. A proximal stochastic gradient
method with progressive variance reduction. SIAM Jour-
nal on Optimization, 24(4):2057–2075, 2014.

Xu, Y. and Zhang, S. Accelerated primal–dual proximal
block coordinate updating methods for constrained con-
vex optimization. Computational Optimization and Ap-
plications, 70(1):91–128, 2018.

Zhang, Y. and Xiao, L. Stochastic primal-dual coordinate
method for regularized empirical risk minimization. The
Journal of Machine Learning Research, 18(1):2939–2980,
2017.

Zhou, K., Shang, F., and Cheng, J. A simple stochastic
variance reduced algorithm with fast convergence rates.
In International Conference on Machine Learning, pp.
5975–5984, 2018.


