Discriminative Jackknife: Quantifying Uncertainty in Deep Learning via
Higher-Order Influence Functions

Ahmed M. Alaa'! Mihaela van der Schaar ! 2

Appendix
A. Influence Functions: Background & Key Concepts

A.1. Formal Definition

Robust statistics is the branch of statistics concerned with the detection of outlying observations. An estimator is deemed
robust if it produces similar results as the majority of observations indicates, regardless of how a minority of other
observations is perturbed ((Huber & Ronchetti, 1981)). The influence function measures these effects in statistical functionals
by analyzing the behavior of a functional not only at the distribution of interest, but also in an entire neighborhood of
distributions around it. Lack of model robustness is a clear indicator of model uncertainty, and hence influence functions
arise naturally in our method as a (pointwise) surrogate measure of model uncertainty. In this section we formally define
influence functions and discuss its properties.

The pioneering works in ((Hampel et al., 2011)) and ((Huber & Ronchetti, 1981)) coined the notion of influence functions
to assess the robustness of statistical functionals to perturbations in the underlying distributions. Consider a statistical
functional 7' : P — R, defined on a probability space P, and a probability distribution P € P. Consider distributions
of the form P. , = (1 — ¢)P + Az where Az denotes the Dirac distribution in the point z = («,y), representing the
contaminated part of the data. For the functional T to be considered robust, T'(P. ) should not be too far away from T'(IP)
for any possible z and any small . The limiting case of € — 0 defines the influence function. That is, Then the influence
function of T" at IP in the point z is defined as

T(2:P) = tim L08e) ZT®) 2 0 | (1)
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The influence function measures the robustness of 7' by quantifying the effect on the estimator 7" when adding an
infinitesimally small amount of contamination at the point z. If the supremum of Z(.) over z is bounded, then an
infinitesimally small amount of perturbation cannot cause arbitrary large changes in the estimate. Then small amounts of
perturbation cannot completely change the estimate which ensures the robustness of the estimator.

A.2. The von Mises Expansion

The von Mises expansion is a distributional analog of the Taylor expansion applied for a functional instead of a function.
For two distributions P and Q, the Von Mises expansion is ((Fernholz, 2012)):

Q) =T(®) + [I0(ERAQ-P + ;5 [TOERAQ-P) + ..., @

where Z(*) (z;P) is the k" order influence function. By setting Q to be a perturbed version of P, i.e., Q = P., the von
Mises expansion at point z reduces to:

2
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and so the k' order influence function is operationalized through the derivative

M (2 P) & ——T(P. ) . 4)

A.3. Influence Function of Model Loss

Now we apply the mathematical definitions in Sections A.1 and A.2 to our learning setup. In our setting, the functional 7'(.)

corresponds to the (trained) model parameters 6 and the distribution PP. In this case, influence functions of 6 computes how
much the model parameters would change if the underlying data distribution was perturbed infinitesimally.

90, .. R 1, .
— , O, = argmin — ;E(zl, 0) +el(z;0). (5)
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Recall that in the definition of the influence function P. , = (1 — €)P + ¢ Az where Az denotes the Dirac distribution in the
point z = (,y). Thus, the (first-order) influence function in (5) corresponds to perturbing a training data point z by an
infinitesimally small change € and evaluating the corresponding change in the learned model parameters 6. More generally,
the k' order influence function of @ is defined as follows:

%0,

(6)
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By applying the von Mises expansion, we can approximate the parameter of a model trained on the training dataset with
perturbed data point z as follows:

b .m0+ () + =T () + ... + Ezgm)(z), 7

where m is the number of terms included in the truncated expansion. When m = oo, the exact parameter ég,z without the
need to re-train the model.

A.4. Connection to leave-one-out estimators

Our uncertainty estimator depends on perturbing the model parameters by removing a single training point at a time. Note
that removing a point z is the same as perturbing z by ¢ = ’71, hence we obtain an (m!" order) approximation of the
parameter change due to removing the point z as follows:
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where §_ is the model parameter learned by removing the data point z from the training data.

B. Derivation of Influence Functions

Recall that the LOO parameter éi,e is obtained by solving the optimization problem:

bi = arg gni(r)lL(D,H) +e-L(y;, f(xi;0)). 9)
<6

Let us first derive the first order influence function Z(1) (@i, ys). Let us first define A, £ 91-75 — . The first order influence
function is given by:
90;. A
T (@, ) = 225 = —2€, 10
(i, 9:) = —5 e (10)
Note that, since é” is the minimizer of (9), then the perturbed loss has to satisfy the following (first order) optimality
condition:

Vo {L(D,0) + ¢ Uyi, f(xi:0)} |, . =0 (11)
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Since lim._,q HA,F = é, then we can write the following Taylor expansion:

o Ak A )
k=0 :

Now by dropping the o(||A; ||) terms, we have:
Vo ({LD.0) + € tlyi, flis0) b+ Aie- Vo {L(D,0) + € el f w0 }) = 0. (13)

Since 6 is a indeed a minimizer of the loss function £(.), then we have V£(.) = 0. Thus, (13) reduces to the following
condition:

(e Vo by, fl@i:0) } + i - {V3 LD B) + € V3 Uy, f(2::0))} = 0. (14)
By solving for Vg, we have

i =~ {V3 L(D,0) +e- V3 tlys, f@is0) | - {e- Vo tlyis f(2i30) ], (15)
which can be approximated by keeping only the O(¢) terms as follows:
D=~ {38} LYoty S} (16)
Noting that V3 L(D, 0) is the Hessian matrix H 4» we have:
i = —Hy'{e- Vo tly:, f(2i30) }. 17
By taking the derivative with respect to €, we arrive at the expression for first order influence functions:

Ai.e
I(l) (w“yl) — 6’ |e:0 =

—H" Vo U(ys, f(::6)). (18)

Now let us examine the second order influence functions. In order to obtain Z(?)(z;, y;), we need to differentiate (14) after
omitting the O(e€) once again as follows:

{2800 V3 tlyi, f(@is0)) | + {2, - V3 L(D,0) + A AV L(D,O) } = 0. (19)

Where we have applied the chain rule to obtain the above. By substituting V2 L(D, é) = Hy and dividing both sides of (19)

by €2, we have
2
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{QA V3 f(yhf(wi;e))} +{ e Hyt (A) V3 L(D,e>} = 0. (20)

Thus, by re-arranging (19), we can obtain Z(?) (x;, ;) in terms of Z() (z;, ;) as follows:
2 ) .
IO (@i, i) = —Hy' ((I“)(wi, v)) - V5 LD, 6) + 20 (@i, y:) - V5 Ly, f (s 9))) :

Similarly, we can obtain the £*" order influence function, for any & > 1, by repeatedly differentiating equation (14) k times,
i.e.,

) . A
o {e Vo Uys, f(2i:0)) + Ao - V2 L(D, 9)} ~0. 1)

and solving for 3A§ ./0€®. By applying the higher-order chain rule to (21) (or equivalently, take the derivative of Z 2) (xi, )
for k — 2 times), we recover the expressions in Definition 2 and Lemma 3 in (Giordano et al., 2019).
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C. Theorem 1

Theorem 1 follows from Theorem 1 in (Barber et al., 2019) for m — oo when all HOIFs exist.

Recall that the exact DJ interval width is bounded above by:
W(CES) (@:6)) < 2Qa,n(Rn) + 2 Qan(Va(®)). (22)
Since the term @an(Rn) is constant for any @, discrimination boils down to the following condition:

E[Qan(Va(@))] 2 E[Qan(Va(a)] & E[Ly, f(x;0))] = E[L(y, f(2';0))]. (23)
Note that to prove the above, it suffices to prove the following:

Evi(z)] > E[vi(2')] & E[ly, f(2;0))] = E[L(y, f(2';0))]- (24)

If the model is stable (based on the definition in (Bousquet & Elisseeff, 2002)), then a classical result by (Devroye & Wagner,
1979) states that:

E[|6(y, f(20)) = aly, f(@:0))1°] = E[|€(y, f(x:0)) - (y, f(2;0-:))]*] + Const., (25)

as n — oo, where £,,(.) is the empirical risk on the training sample, and the expectation above is taken over y | . From
(25), we can see that an increase in the LOO risk £(y, f(a;0_;)) implies an increase in the empirical risk £, (y, f(z; 0)),
and vice versa. Thus, for any two feature points « and &/, if v(x) is greater than v(’), then on average, the empirical risk
at x is greater than that at ',

D. Experimental Details
D.1. Implementation of Baselines

In what follows, we provide details for the implementation and hyper-parameter settings for all baseline methods involved in
Section 5.

Probabilistic backpropagation (PBP). We implemented the PBP method proposed in ((Herndndez-Lobato &
Adams, 2015)) with inference via expectation propagation using the theano code provided by the authors in
(github.com/HIPS/Probabilistic-Backpropagation). Training was conducted via 1000 epochs.

Monte Carlo Dropout (MCDP). We implemented a Pytorch version of the MCDP method proposed in ((Gal &
Ghahramani, 2016)). In all experiments, we tuned the dropout probability using Bayesian optimization to optimize the
AUC-ROC performance on the training sample. We used 1000 samples at inference time to compute the mean and variance
of the predictions. The credible intervals were constructed as the (1 — «) quantile function of a posterior Gaussian distribution
defined by the predicted mean and variance estimated through the Monte Carlo outputs. Similar to the other baselines, we
conducted training via 1000 epochs for the SGD algorithm.

Bayesian neural networks (BNN). We implemented BNNs with inference via stochastic gradient Langevin dynam-
ics (SGLD) ((Welling & Teh, 2011)). We initialized the prior weights and biases through a uniform distribution over
[—0.01,0.01]. We run 1000 epochs of the SGLD inference procedure and collect the posterior distributions to construct the
credible intervals.

Deep ensembles (DE). We implemented a Pyt orch version of the DE metho (without adversarial training)d proposed in
((Lakshminarayanan et al., 2017)). We used the number of ensemble members M = 5 as recommended in the recent study
in ((Ovadia et al., 2019)). Predictions of the different ensembles were averaged and the confidence interval was estimated as
1.645 multiplied by the empirical variance for a target coverage of 90%. We trained the model through 1000 epochs.
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