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Abstract

Recent work has argued that neural networks can
be understood theoretically by taking the number
of channels to infinity, at which point the out-
puts become Gaussian process (GP) distributed.
However, we note that infinite Bayesian neural
networks lack a key facet of the behaviour of
real neural networks: the fixed kernel, determined
only by network hyperparameters, implies that
they cannot do any form of representation learn-
ing. The lack of representation or equivalently
kernel learning leads to less flexibility and hence
worse performance, giving a potential explana-
tion for the inferior performance of infinite net-
works observed in the literature (e.g. Novak et
al. 2019). We give analytic results characterising
the prior over representations and representation
learning in finite deep linear networks. We show
empirically that the representations in SOTA ar-
chitectures such as ResNets trained with SGD
are much closer to those suggested by our deep
linear results than by the corresponding infinite
network. This motivates the introduction of a new
class of network: infinite networks with bottle-
necks, which inherit the theoretical tractability of
infinite networks while at the same time allowing
representation learning.

One approach to understanding and improving neural net-
works is to perform Bayesian inference in an infinitely wide
network (Lee et al., 2018; Matthews et al., 2018; Garriga-
Alonso et al., 2019; Novak et al., 2019). In this limit the
outputs become Gaussian process distributed, enabling ef-
ficient and exact reasoning about uncertainty, and giving
a means of interpretation using the parameter-free kernel
function (which depends only on network hyperparameters
such as depth). However, the performance of Bayesian infi-
nite networks lags considerably behind state-of-the-art finite
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networks trained using SGD (e.g. compare performance
in Garriga-Alonso et al. (2019), Novak et al. (2019) and
Arora et al. (2019) against He et al. (2016) and Chen et al.
(2018)). This seems surprising, because, to our knowledge,
there are no reports of wider networks degrading classi-
fication performance (indeed, the opposite is sometimes
argued; see Zagoruyko & Komodakis, 2016), and because
exact Bayesian inference is provably optimal, if the prior
accurately describes our beliefs (Ramsey, 1926). Indeed,
recent work on the Neural Tangent Kernel (NTK) (Li et al.,
2019) has suggested that deterministic gradient descent in
an infinite network gives slighly lower performance than
Bayesian inference in the same network.

Our hypothesis is that the poor performance of Bayesian
infinite networks arises because the top-layer representation
(equivalent to the kernel), is fixed by the network hyperpa-
rameters, and thus cannot be learned from data. This breaks
many of our key intuitions about why deep networks are
effective. For instance in transfer learning (Huh et al., 2016)
we use a large-scale dataset such as ImageNet to a learn a
good high-level representation, then apply this representa-
tion to other tasks where less data is available. However,
transfer learning is impossible in infinite Bayesian neural
networks, because the top-layer representation is fixed by
the network hyperparameters and so cannot be learned using
e.g. ImageNet.

To understand these issues, we analysed finite networks
using tools from the infinite network literature (Lee et al.,
2018; Matthews et al., 2018; Garriga-Alonso et al., 2019;
Novak et al., 2019). We begin by giving a toy, two-layer ex-
ample, contrasting the flexibility of finite networks with the
inflexibility of infinite networks, showing that flexible finite
networks offer benefits under conditions of model-mismatch.
We then introduce infinite networks with bottlenecks, which
combine the theoretical tractability of infinite networks with
the flexibility of finite networks. To obtain an analytic un-
derstanding of kernel/representation flexibility and learning
in such networks, we consider linear infinite networks with
bottlenecks, which are equivalent to finite deep linear net-
works. We took two approaches to characterising these
networks. First, we considered the prior viewpoint, i.e. the
covariance in the top-layer kernel induced by randomness
in the lower-layer weights. In particular, we showed that
narrower, deeper networks offer more flexibility, and that
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CNNss offer more flexibility than locally connected networks
(LCNs) when the input is spatially structured. Second, we
considered the posterior viewpoint, showing that under both
MAP inference and posterior sampling, the representations
in learned neural networks slowly transition from being sim-
ilar to the input kernel (i.e. the inner product of the inputs)
to being similar to the output kernel (i.e. the inner product
of one-hot vectors representing the labels). We found an
important difference between MAP inference and sampling:
for MAP inference, the learned representations transition
from the input to the output kernel, irrespective of the net-
work width. Bayesian networks behave similarly when the
network width and the number of output channels are equal,
but as the network width increases, the learned represen-
tations become increasingly dominated by the prior, and
insensitive to the outputs. Remarkably, we find that in a
ResNet trained using SGD on CIFAR-10, the representation
differs dramatically from the corresponding infinite network
and is instead very close to the output kernel, as suggested
by our deep linear results. This confirms the importance of
working with a theoretical model, such as infinite networks
with bottlenecks, that is capable of capturing representation
learning.

1. Toy Example

In the introduction, we noted that infinite Bayesian networks
perform worse than standard neural networks trained using
stochastic gradient descent. Thus, as we make finite neu-
ral networks wider, there should be some point at which
performance begins to degrade. We considered a simple,
two-layer, fully-connected linear network with the full set of
20 4-dimensional inputs denoted X, hidden unit activations
denoted H, and 10-dimensional outputs denoted Y,

H=XW Y = HV + 02 (1)

where = is IID standard Gaussian noise, W is the input-to-
hidden weight matrix and V is the hidden-to-output weight
matrix, whose columns, w,, and v,, are generated IID from,

P (W) =N (w0, 1) P (vi) =N (vi:0,771) .
2

and where the variance of the weights is normalised by the
number of inputs to that layer, X = 4 for the 4-dimensional
input, and H for the width of the hidden layer.

In the first example (Fig. 1 left), we generated targets for
supervised learning using a second neural network with
weights generated as described above, with Hye, € {1,2,4}
hidden units. We evaluated the Bayesian model-evidence
for networks with many different numbers of hidden units
(x-axis). Bayesian reasoning would suggest that the model
evidence for the true model (i.e. with a matched number
of hidden units) should be higher than the model evidence

for any other model, as indeed we found (Fig. 1 top left),
and these patterns held true for the predictive probability, or
equivalently test performance (Fig. 1 bottom left). While
these results give an example where smaller networks per-
form better, they do not necessarily help us to understand
the behaviour of neural networks on real datasets, where
the true generative process for the data is not known, and is
not in our model class. As such, we considered two further
examples where the neural network generating the targets
lay outside of our model class. In particular, we again gen-
erated target outputs by sampling a “true” network from
the prior, but we modified the inputs to this network, first
by multipling those inputs by 100 (Fig. 1 middle), then by
zeroing-out all but the first input unit (Fig. 1 right). Crit-
cally, we ensured model-mismatch by putting the original,
unmodified inputs into the trained networks. In both of
these experiments, there was an optimium number of hidden
units, after which performance degraded as more hidden
units were included.

To understand why this might be the case, it is insightful
to consider the methods we used to evaluate the model
evidence and generate these results. In particular, note that
conditioned on H, the output for any given channel, y,, is
IID and depends only on the corresponding column of the
output weights, v,

P (Y|V,H) = [P (yulv.. H)

= H/\/ (yl,; HVU7O'2I) . 3)

Thus, we can integrate over the output weights, v,,, to obtain
a distribution over Y conditioned on H,

P (Y[H) = [[ P (v./H)

=[N (y»;0. FHH +0°T). (4

This is the classical Gaussian process representation of
Bayesian linear regression (Rasmussen & Williams, 2006).
Remembering that the hidden activities, H, is a determinis-
tic function of the weights, W, and inputs, X, we can write
this distribution as,

P (y,|[H) =P (y,|W, X)
=N (v,;0, 5 XWWTXT +5°T).  (5)

Thus, the first-layer weights, W, act as kernel hyperparam-
eters in a Gaussian process: they control the covariance of
the outputs, y,. To evaluate the model evidence we need to
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Figure 1. A toy fully-connected, two-layer Bayesian linear network showing situations in which smaller networks perform better than
larger networks. The red dots indicate the optimal number of hidden units in that simulation. Left: training data generated from the prior
with Hgeq hidden units. Middle: training data generated from the prior with Hgen = 4 but where we scale-up the inputs by a factor of 100.
Right: training data generated from the prior with Hge, = 4, but where we zero-out all but the first input dimension. Top: Bayesian model
evidence. Bottom: predictive log-probability, or equivalently test-error.

integrate over W,

P (Y|X) = /dWP W) P (v./W,X)

E
P(W)

1P oW, X)] (6)

and we estimate this integral by drawing 64 000 samples
from the prior, P (W). Importantly, while W provides
flexibility in the kernel in finite networks, this flexibility
gradually disappears as we consider wider hidden layers
networks. In particular,

H

lim LWW7T = lim AE w,wr

H~>00H H—)ooH 1 w
s

=E[w,w)] = L 7

Therefore, in this limit, the distribution over Y converges
to,

Jim P(Y[X) =[]V (3:0, £ XXT +0°T) . 8)
This is exactly the distribution we would expect from
Bayesian linear regression in a one-layer network. Thus, by
taking the infinite limit, we have eliminated the additional
flexibility afforded by the two-layer network, and we can
see that the superior performance of smaller networks in
Fig. 1 emerges because they give additional flexibility in

the covariance of the outputs, which gradually disappears
as network size increases. Finally, note that sampling from
the prior works well here both because of the concentration
result above, and because we use relatively small amount of
data, 20 points.

2. Infinite networks with finite bottlenecks

In the previous section, we considered the simplest networks
in which these phenomena emerge: a two-layer, linear net-
work. In this section, we setup a full infinite network with
bottlenecks and show that activity flowing through this net-
work can be understood entirely in terms of kernel and
covariance matricies.

Consider a single layer within a fully-connected network,
where the potentially infinite activity at the previous layer,
H,_,, corresponding to a batch containing all inputs, is
multiplied by a weight matrix, W/, to give a finite number
of activations, A,. This activation matrix, A, is multiplied
by another matrix, M, to give a potentially infinite up-
dated activation matrix, A/, which is then passed through
a non-linearity, ¢, to give the potentially infinite activity at
this layer, Hy. Note that following Matthews et al. (2018),
we use “activation” pre-nonlinearity and “activity” post-
nonlinearity.

Ay,=H, W, Alg =AM, H/=¢ (AZ) 9
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Figure 2. The relationships between the feature-space and kernel representations of the neural network. For a typical finite neural network,

My =1s0oM, =

N,. For a finite-infinite network (which allows us to compute L, from K¢), we send My — oo, and draw the elements

of M, IID from a Gaussian distribution with zero mean and variance 1/M,.

where the input data is Hy = X, and

Hl c RPXMg RPX]\/[@

W, € RMe-1xNe

AZ c RPXNZ A} c
M, € RNexMe (10)

For an infinite network with bottlenecks, we take the limit as
M, goes to infinity, leaving N, finite. As such, the activity
before, A}, and after, Hy, the nonlinearity is infinite, with a
finite linear bottleneck formed by A,.

For a fully-connected network, the columns of W, and M,
denoted Wﬁ\ and mﬁ\ are generated IID from a Gaussian
distribution,

Ny Ny
P (W) =]]P(w}) = H/\/(wﬁ;O,ﬁI) (11)
A=1 A=1

HN(m)\, ,N%I). (12)

where the normalization constants, 1 /M,_; and 1/N;_1, en-
sure that activations remain normalized as they flow through
the network.

Following the infinite network literature, we would like to
characterise activity flowing through the network in terms
of the activation kernel, K, and activity kernel, Ly,

K(E
LZE

N%AZAZT
- HH] Lo =

M%)XXT (13)

We begin by characterising the relationship between A, and
A,. As each channel (column) of A} is a linear function
of the corresponding channel of the weights, a = A/m e
these activations are Gaussian and IID condltloned on Ay,

HP Y1A,)

1{
=[[V (a%;0,K,) =
A=1

P (AfA,) =

P (A})K,) (14

and taking the limit of M, — oo,

lim -M/M] = g1

My—o00
. 1 T _ 1 T AT
= v AA] =K, (15)

Thus, the kernel for A is equivalent to the kernel for AZ in
infinite networks with finite bottlenecks (Fig. 2).

Next, consider computing K, from L;_;. As each chan-
nel (column) of the activations is a linear function of the
corresponding channel of the weights, a§ = H,_;w¥, the
activations are Gaussian and IID conditioned on the activity
at the previous layer,

Ny
P (A/H, ) = [ P (al|H1)
p=1
N,
= HN(aﬁ;Osz) =P (AJr), (16)
p=1

with covariance J,. For a fully connected network, the
covariance, Jy, is equal to the previous layer’s activity-
kernel, Ly,

Jo=Li = 7 —He  Hj, a7

but the relationship is more complex in convolutional archi-
tectures (Garriga-Alonso et al., 2019; Novak et al., 2019)
(Appendix A.2). As Ay is always finite and random, K,
is also a random variable, and inspecting the above expres-
sions, its distribution can be written as a Wishart, centered
onL,_q.

Finally consider computing L, from K. Note that as both
Ag and Hy are infinite, we can directly use standard results
from infinite neural networks, i.e. those from Cho & Saul
(2009), as in Lee et al. (2018); Matthews et al. (2018);
Garriga-Alonso et al. (2019); Novak et al. (2019).

Linear infinite networks with finite bottlenecks can be ob-
tained by setting H, = ¢(A}) = Aj, implying that
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L, = K. Critically, this is equivalent to a deep linear
network obtained by in adddition setting M, = I so that
A; = Ay and M, = Ny, as these choices imply that the
A, = A), = H; so that again, L, = K,.

2.1. DNNs are deep GPs

Given this setup, we can see that even a finite nonlinear net-
work (i.e. with M, = I) is a deep Gaussian process. In par-
ticular, in a deep Gaussian process, the activations at layer ¢,
denoted A, consist of NV, IID channels that are Gaussian-
process distributed (Eq. 16), with a kernel/covariance deter-
mined by the activations at the previous layer. For a fully
connected network,

Jo=Li1=5—0(Ar1)¢" (Arr).  (18)
The relationship between finite neural networks and deep
GPs is worth noting, because the same intuition, of the lower-
layers shaping the top-layer kernel, arises in both senarios
(e.g. Bui et al., 2016), and because there is potential for
applying GP inference methods for neural networks, and
vice versa.

3. The prior view on kernel flexibility

We can analyse how flexibility in the kernel emerges by
looking at the variability (i.e. the variance and covariance)
of Jy, Ky and L. If the prior gives a stochastic kernel with
higher variance, then it will be easier to shape that kernel by
conditioning on data. In the appendix, we derive recursive
updates for deep, linear, convolutional networks, but here,
for simplicity we give the fully-connected updates,

C [, JulL°] =C [L5 ", L ' KO (19a)
C [K{;, K|L°] ~C [J5, J4 L] (19b)
+ 5 () (Ti) + (T) (Tj))
C [LY;, Ly [L°] =C [K};, Kj, |1 (19¢)
where,
(J;y =B [J5IL°] = LY, (19d)

where i, j, k and [ index datapoints.

This expression predicts that the variance of the kernel is
proportional to the depth (including the last layer; L + 1)
and inversely proportional to the width, NV,

C[EE™ KETLO) ~ L (L, L9 + LYLY,) . (20)

This expression is so simple because, for a fully-connected
linear network, the expected covariance at each layer is the
same. For nonlinear and convolutional or locally-connected
networks the covariance is still proportional to 1/N, but the

depth-dependence becomes more complex, as the covari-
ance changes as it propagates through layers.

To check the validity of these expressions, we sampled
10,000 neural networks from the prior, and evaluated the
variance of the kernel for a single input (Fig. 3). These
inputs were either spatially unstructured (i.e. white noise),
or spatially structured, in which case the inputs were the
same across the whole image. For fully connected networks,
we confirmed that the variance of the kernel is proportional
to the depth including the last layer, L + 1, and inversely
proportional to width, N (Fig. 3A). For locally connected
networks, we found that structured and unstructured inputs
gave the same kernel variance, which is expected as any
spatial structured is destroyed after the first layer (Fig. 3B).
Further, for convolutional networks with structured input,
the variance of the kernel was proportional to network depth
(Fig. 3C bottom), but whenever that spatial structure was
absent, either because it was absent in the inputs or be-
cause it was eliminated by an LCN (Fig. 3BC bottom) the
variance of the kernel was almost constant with depth (see
Appendix A.2.1).

The large decrease in kernel flexibility for locally connected
networks might be one reason behind the result in Novak
et al. (2019) that locally connected networks have perfor-
mance that is very similar to an infinite-width network, in
which all flexibility has been eliminated. In essence, for a
locally connected network, we sample the weights for each
spatial region independently, so we in effect average over
more IID random variables, reducing the variance of the
kernel at the next layer, and hence reducing the possibil-
ity for data to shape that representation. In contrast, for a
convolutional network we share weights across locations,
increasing the variance in the kernel, and hence increasing
the possibility for data to shape the representation. Finally,
as the spatial input size, S, increases, for convolutional net-
works with spatially structured inputs, the variance of the
kernel is constant, whereas for locally connected or spatially
unstructured inputs, the variance falls (Fig. 3D).

4. The posterior view on kernel flexibility

An alternative approach to understanding flexibility in fi-
nite neural networks is to consider the posterior viewpoint:
how learning shapes top-level representations. To obtain
analytical insights, we considered maximum a-posteriori
and sampling based inference in a deep, fully-connected,
linear network. In both cases, we found that learned neural
networks shift the representation from being close to the
input kernel, defined by,

Ko=L, = ]%%XXT, (21)
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Figure 3. The variance of the stochastic kernel induced by randomly sampling weights in finite, linear, fully connected and convolutional
networks, with spatially structured and unstructured inputs. We use normalized inputs and circular convolutions to ensure that the kernel’s
expected value remains equal to 1 at all locations as it propagates through the network. The dashed lines in all plots display the theoretical
approximation (Eq. 19) which is valid when the width is much greater than the number of layers. The solid lines display the empirical
variance of the kernel from 10,000 simulations. A The variance of the kernel for fully connected networks, plotted against network
width, IV, for shallow (blue; L + 1 = 1), and deep (orange; L + 1 = 16) networks (top) and plotted against network depth, L + 1, for
narrow (green; N = 64) and wide (red; N = 1024) networks. B The variance of the kernel for locally connected networks with spatially
structured and unstructured inputs, plotted against the number of channels, IV, and against network depth, L + 1. Note that the structured
line lies underneath the unstructured line. The inputs are 1-dimensional with S = 32 spatial locations, and 100 input channels. C As in B,
but for convolutional networks. D The variance of the kernel as a function of the input spatial size, .S, for deep (L + 1 = 16) LCNs (top)

and CNNs (bottom) with spatially strutured and unstructured inputs.

to being close the output kernel, defined by,

K= NLl YYT. (22)

+1

In particular, under MAP inference, the shape of the kernel
smoothly transitions from the input to the output kernel
(Appendix B.2),

N, L+1
- ()

where N, is the geometric average of the width in layers
¢4 1to L + 1, and N<, is the geometric average of the
width in layers 1 to £. Thus, the kernels (and the underlying
weights) at each layer can be made arbitrarily large or small
by changing the width, despite the prior distribution being
chosen specifically to ensure that the scale of the kernels
was invariant to network width. This is an issue inherent
to the use of MAP inference, which often finds modes that
give a poor characterisation of the Bayesian posterior. In
contrast, if we sample the weights using Langevin sampling
(Appendix C), and set all the intermediate widths, from /Ny

_1\¢/(L+1
(KoK )"V K, (23)

to N to N, then we get a similar expression,

K, (24)

K, = (K.K;")
where the kernels slowly transition from K to K. The
key difference is that the similarity between the top-layer
representation, K, and the output kernel, K, depends
on the ratio between the network width, N, and the number
of output units, Y = Ny, 1. In particular, if Y = N, then
we get a relationship very similar to that for MAP inference,

£/(L+1)

K, = (K.11Kgy") Ko, (25)

However, as the network width grows very large, the prior
begins to dominate, and the posterior becomes dominated
by the prior,

lim K, =Ky, (26)
N/Y —oo
as K; = Kj. Finally, if the network width is small in
comparison to the number of units,

) _17\2/L
lim K, = (KL+1K0 1) / Ko, 27

N/Y =0
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Figure 4. Comparison of kernels for finite and infinite neural networks at different layers. All kernels are computed on test data. A (top)
Correlation (coefficient) between the kernel defined by the infinite network, and kernel defined by a finite network after different numbers

of training epochs. A (bottom) Correlation (coefficient) between the

kernel defined by the infinite network, and the output kernel defined

by taking the inner product of one-hot vectors representing the class label. B (top) The Gaussian process marginal likelihood for the 10
functions given by the one-hot class labels, evaluated using the kernel output by different ResNet blocks. B (bottom) The fraction of

variance in the direction of the one-hot output class labels. C (top)

The eigenvalues of the kernel defined by the infinite network as we

progress through layers, and compared to a —1 power law (grey). C (top) The eigenvalues of the kernel defined by the finite network after

200 training epochs, as we progress through ResNet blocks.

as the top-layer kernel converges to the output, K; =
Kry1.

The above results suggest that finite neural networks per-
form well by giving flexibility to interpolate between the
input kernel and output kernel. To see how this happens
in real neural networks, we considered a 34-layer ResNet
without batchnorm corresponding to the infinite network
in Garriga-Alonso et al. (2019) trained on CIFAR-10. We
began by computing the correlation between elements of
the finite and infinite kernel (Fig. 4A top) as we go through
ResNet blocks (x-axis), and as we go through training (blue
lines). As expected, the randomly initialized, untrained net-
work retains a high correlation with the infinite kernel at
all layers, though the correlation is somewhat smaller for
higher layers, as there have been more time for random
sampling to build up discrepancies. However, for trained
networks, this correspondence between the finite and in-
finite networks is far weaker: even at the first layer, the
correlation is only around 0.5, and as we go through lay-
ers, the correlation decreases to almost zero. To understand
whether kernels were being actively shaped, we computed
the correlation between the kernel for the finite network and
the output kernel, defined by taking the inner product of vec-
tors representing the one-hot class labels (Fig. 4A bottom).
We found that while the correlation for the untrained net-

work decreased across layers, training gives strong positive
correlations with the output kernel, and these correlations
increase as we move through network layers. Combined,
these results indicate that the top-layer representation is
much closer to the output kernel, as suggested by the deep
linear results, than it is to the corresponding infinite network.
While correlation is a useful simple measure of similarity,
there are other measures of similarity that take into account
the special structure of kernel matricies. In particular, we
considered the marginal likelihood for the one-hot outputs
corresponding to the class label, under a GP, with a kernel
given by a scaled sum of the kernel at that ResNet block, and
the identity (see Appendix D; Fig. 4B top). For the infinite
network, the marginal likelihood increased somewhat as we
moved through network layers, and the untrained finite net-
work performed similarly, except that there was a decrease
in performance at the last layer. In contrast, the marginal
likelihood for the finite, trained networks was initially very
close to the infinite networks, but grew rapidly as we move
through ResNet blocks.

To gain an insight into how training shaped the neural net-
work kernels, we computed the variance in the subspace
defined by the one-hot outputs (i.e. the classification direc-
tions; Fig. 4B bottom). We might have expected to see a
steady increase in the variance in this subspace as we move
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through layers, but in fact the level was very small, only
rising appreciably at the final block, and only for trained net-
works. To try to understand these results, we computed the
eigenvalue spectrum of the kernels. For the infinite network
(Fig. 4C top), we found that the eigenvalue spectrum at all
levels decayed as a —1 power law. This is expected at the
lowest level due to the well known 1/ f power spectrum of
images (Van der Schaaf & van Hateren, 1996), but is not nec-
essarily the case at higher-levels. Given the power-spectrum
of the output kernel is just a small set of equal-sized eigen-
values corresponding to the class labels (Fig. 4C bottom,
green line), we might expect the eigenspectrum of finite
networks to gradually get steeper as we move through net-
work layers. In fact, we find the opposite: for intermediate
layers, the eigenvalue spectrum becomes flatter, which can
be interpreted as the network attempting to retain as much
information as possible about all aspects of the image. It
is only at the last layer where the relevant information is
selected, giving an eigenvalue spectrum with around 10 — 1
large and roughly equally-sized eigenvalues, followed by
much smaller eigenvalues, which mirrors the spectrum of
the output kernel. This again confirms that the top-layer rep-
resentation in trained networks is much closer to the output
kernel than it is to corresponding infinite network.

5. Related work

Agrawal et al. (2020) independently introduced infinite net-
works with finite bottlenecks, but then made a very different
contribution in that context. In particular, they highlighted
that if we take the limit as some layers of a neural network
go to infinity, convergence to the infinite networks with bot-
tlenecks considered here is not immediate, but requires the
neural network components to exhibit sufficient uniformity
with respect to their inputs. In contrast, we show that finite
bottlenecks can introduce flexibility and thereby improve
performance even in two-layer linear networks, give analytic
results in the case of linear networks, and show that these
considerations are likely to be important in realistic large-
scale networks, by showing that the kernel for a trained
ResNet differs dramatically from that for the corresponding
infinite network.

Technically, our work bears similarity to classical work on
the dynamics of gradient descent in unregularised deep lin-
ear networks (Saxe et al., 2013). Importantly, the lack of
regularisation in this work implies that infinitely many opti-
mal solutions are available (e.g. all the lower-layer weights
being fixed to the identity). In contrast, we focused on
Bayesian inference, but also considered the optimal solution
for regularised networks, which are much more constrained.

6. Conclusions

We have shown that finite Bayesian neural networks have
more flexibility than infinite networks, and that this may
explain the superior performance of finite networks. Thus,
we introduced infinite networks with bottlenecks, and argue
that they may be as incorporate flexibility and are able to
perform representation learning, they may be a better model
of real neural networks. We then assessed the flexibility
of deep linear networks from two perspectives. First, we
looked at the prior viewpoint: the variability in the top-layer
kernel induced by the prior over a finite neural network.
Second, we looked at the posterior viewpoint: the ability
of the learning process to shape the top-layer kernel. Un-
der both MAP inference and sampling in finite networks,
learning gradually shaped top-layer representations so as to
match the output-kernel. But, as Bayesian neural networks
increase in width, the kernels become gradually less flex-
ible, eliminating the possibility for learning to shape the
kernel. In contrast, for MAP inference, the degree of kernel
shaping is not affected by network width, and this additional
flexibility might be an avenue for overfitting.
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