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Abstract
The causal relationships among a set of random
variables are commonly represented by a Directed
Acyclic Graph (DAG), where there is a directed
edge from variable X to variable Y if X is a di-
rect cause of Y . From the purely observational
data, the true causal graph can be identified up
to a Markov Equivalence Class (MEC), which is
a set of DAGs with the same conditional inde-
pendencies between the variables. The size of an
MEC is a measure of complexity for recovering
the true causal graph by performing interventions.
We propose a method for efficient iteration over
possible MECs given intervention results. We
utilize the proposed method for computing MEC
sizes and experiment design in active and passive
learning settings. Compared to previous work for
computing the size of MEC, our proposed algo-
rithm reduces the time complexity by a factor of
O(n) for sparse graphs where n is the number of
variables in the system. Additionally, integrating
our approach with dynamic programming, we de-
sign an optimal algorithm for passive experiment
design. Experimental results show that our pro-
posed algorithms for both computing the size of
MEC and experiment design outperform the state
of the art.

1. Introduction
Directed Acyclic Graphs (DAGs) are the most commonly
used structures to represent causal relations between ran-
dom variables, where a directed edge X → Y means that
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variable X is a direct cause of variable Y . Under the faith-
fulness assumption, conditional independencies between
different variables can be inferred from observational data
and consequently, the ground truth graph is identified up
to Markov Equivalence Class (MEC) (Pearl, 2009; Spirtes
et al., 2000). Unique identification of the ground truth DAG
among the graphs in an MEC generally requires interven-
tions on variables (Eberhardt & Scheines, 2007). In some
scenarios, interventions could be costly (for instance, in
biological experiments), and therefore, selecting the opti-
mal intervention target to learn the causal structure is of
great interest (Eberhardt et al., 2005; He & Geng, 2008;
Eberhardt, 2008; Hauser & Bühlmann, 2014; Shanmugam
et al., 2015; Kocaoglu et al., 2017; Ghassami et al., 2018;
Lindgren et al., 2018; Agrawal et al., 2019). Several metrics
have been suggested in the literature for target selection (He
& Geng, 2008; Hauser & Bühlmann, 2014; Ghassami et al.,
2018; Agrawal et al., 2019). A good metric for measuring
the effectiveness of an intervention is the number of remain-
ing DAGs in an MEC after the intervention (He & Geng,
2008). To use this metric for target selection, we must be
able to efficiently count the number of DAGs in an MEC.

Some previous work used the clique tree representation of
chordal graphs to divide the causal graph into smaller sub-
graphs, and perform counting on each subgraph separately
(Ghassami et al., 2019; Talvitie & Koivisto, 2019). The
main issue with this approach is the dependence on the max-
imum clique size which can result in O(n!) operations in
some cases where n is the number of variables. Ghassami
et al. (2019) and Talvitie & Koivisto (2019) used dynamic
programming to count DAGs in an MEC. The best time
complexity of these approaches is in the order of O(2nn4).
However, both approaches do not take advantage of sparsity
if the graph is sparse. In some other work, the number of
edges oriented after an intervention is proposed as the target
selection metric (Hauser & Bühlmann, 2014). Hauser &
Bühlmann (2014) used the idea of conditioning on different
edge orientations for edges connected to a single node to
choose the optimal single-node intervention target. The time
complexity of proposed algorithm depends on the size of
largest clique in MEC which in the worst case is exponential.
In Radhakrishnan et al. (2018) they have taken advantage
of generating functions and have discussed several families
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of graphs. Recently, several work have been proposed for
experiment design in passive and active learning settings
which use the aforementioned metrics for target selection
(Ghassami et al., 2018; Kocaoglu et al., 2017; Agrawal et al.,
2019). As such, it is desirable to efficiently compute the
MEC size.

In this paper, we propose “LazyIter”, a method for efficiently
iterating over possible DAGs that we might get after an inter-
vention on a single node. In this method, we start by setting
a node as the root of the DAG and finding the correspond-
ing essential graph resulting from intervening on this node.
Subsequently, we take advantage of similarities between
different candidate graphs to eliminate the recalculation of
edge orientations and find other graphs just by reorienting a
small subset of the edges. We utilize this method to design
algorithms for computing the size of MECs and solving
the budgeted experiment design problem in active and pas-
sive settings. The main contributions of this paper are the
following:

• We propose an algorithm for computing the MEC size
of a graph, which improves the time complexity by a
factor of O(n) in sparse graphs with respect to previous
work (Talvitie & Koivisto, 2019; Ghassami et al., 2019).
Our experiments show that the algorithm outperforms
previous work in dense graphs too.

• In the active learning setting, we propose two algo-
rithms for designing experiments for both metrics dis-
cussed earlier (number of edges and size of MEC).
These algorithms are up to O(n) times faster than the
previous approaches (He & Geng, 2008; Hauser &
Bühlmann, 2014).

• In the passive learning setting, we propose a dynamic
programming algorithm for experiment design. To the
best of our knowledge, this is the first efficient exact
algorithm capable of finding the optimal solution in the
passive learning setting. The most closely related work
is an approximation algorithm presented in (Ghassami
et al., 2019), which has a considerably higher compu-
tational complexity.

The paper is organized as follows: First, we discuss the ter-
minology and preliminaries in Section 2. Then, in Section 3,
we explain our iteration approach and prove its correctness.
In Sections 4 and 5, we apply this approach to design algo-
rithms for computing the MEC size and experiment design
and also analyze their complexities. Finally, in Section 6, we
demonstrate the efficiency of these algorithms by evaluating
them on a diverse set of MECs.

2. Preliminaries
2.1. Graph Terminology

A graph G(V,E) is represented with a set of nodes V and
a set of edges E, where each edge is a pair (a, b) such
that a, b ∈ V . We say there is an undirected edge be-
tween nodes a and b if both (a, b) ∈ E, (b, a) ∈ E, and
say there is a directed edge from a to b if (a, b) ∈ E, and
(b, a) /∈ E. A directed (undirected) edge is denoted with
a → b ∈ G (or a − b ∈ G). We also use (a, b) ∈ E
and (a, b) ∈ G subsequently. The set of all directed edges
of G is denoted by Dir(G), and the number of directed
edges in G is denoted by |Dir(G)|. A graph is called undi-
rected (directed) if all of its edges are undirected (directed),
and is called partially directed if it has both undirected and
directed edges. The induced subgraph G[S] is the graph
with node set S and with edge set containing all of the
edges in E that have both endpoints in S. Union of graphs
G1(V,E1), G2(V,E2), ..., Gk(V,Ek) with the same set of
nodes is defined as

�k
i=1 Gi = G(V,

�k
i=1 Ei). For conve-

nience, we may use G and V interchangeably. Two graphs
are equal if they have the same set of nodes and the same
set of edges.

A path is a sequence of nodes x1, x2, x3, . . . , xk such that
∀1 ≤ i < k : (xi, xi+1) ∈ E. A cycle is a sequence of
nodes x1, x2, ..., xk such that ∀1 ≤ i ≤ k : (xi, xi+1) ∈ E
where xk = x1. A path (cycle) is called directed if all of
its edges are directed. Node x is called a descendant of
node v if there is directed path from v to x, and there are
no directed paths from x to v in the graph. A chain graph
is a graph with no directed cycles, and a chain component
is a connected component of a chain graph after removing
all its directed edges. An undirected graph is chordal if for
every cycle of length four or more in it, there exists an edge
which is not a part of the cycle but connects two nodes of
the cycle to each other.

Let G(V,E) be a partially directed graph. The skeleton of
G is an undirected graph that we get by replacing all of
the directed edges in E by undirected edges. We say node
v ∈ V is separated from node u by set T ⊂ V if there is no
path from v to u in the skeleton of G[V \T ], and we call T ,
a (v, u)-separator in G 1. We denote parents, children, and
neighbors of node v ∈ V by paG(v), chG(v), and neG(v),
respectively. A perfect elimination ordering (PEO) in a
graph G is an ordering of its vertices such that for every
vertex v, v and its neighbors prior to it in the ordering form
a clique. A graph is chordal if and only if it has a perfect
elimination ordering (Fulkerson & Gross, 1965).

1Please note that the definition of separator here is different
from the definition of d-separation in causal Bayesian networks.
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2.2. Causal Model

A causal DAG D is a DAG with variables V1, · · · , Vn where
there is a directed edge from Vi to Vj if Vi is a direct cause
of Vj . A joint probability distribution P over these variable
satisfies Markov property with respect to D if any variable
is independent of its non-descendants given its parents. A
Markov Equivalence Class (MEC) is a set of DAGs with
the same Markov property. Verma & Pearl (1992) showed
that the graphs in an MEC have the same skeleton and the
same set of v-structures (induced subgraphs of the form
a → b ← c). The essential graph of D is defined as a
partially directed graph G(V,E) where E is the union of all
edge sets of the DAGs in the same MEC as D. An essential
graph is necessarily a chain graph with chordal chain com-
ponents (Hauser & Bühlmann, 2012). Verma & Pearl (1992)
showed that having observational data, essential graph is
obtainable by applying four rules (called ”Meek” rules) con-
secutively on the graph, until no more rules are applicable.
A valid orientation of edges of a chain component is an ori-
entation in which no cycles and no v-structures are formed.
An intervention target I ⊆ V is a set of nodes which we in-
tervene on simultaneously. An intervention family I is a set
of intervention targets. Intervention graph D(I) is the DAG
we get from D after removing all edges directed towards
nodes in I .

Definition 1. For a set of intervention targets I , two DAGs
D1 and D2 are called I-Markov Equivalent (denoted with
D1 ∼I D2) if they are statistically indistinguishable under
intervention targets in I.

Hauser & Bühlmann (2012) proved that two DAGs D1 and
D2 are I-Markov equivalent if and only if D1 and D2 have
the same set of v-structures, and D

(I)
1 and D

(I)
2 have the

same skeleton for every I ∈ I ∪ {∅}.

The I-essential graph EI(D) of a DAG D(V,E) is a par-
tially directed graph with the node set V and the edge set
equal to the union of all edge sets of the DAGs which are
I-Markov equivalent with D. I-MEC is defined as the set
of all DAGs that are I-Markov equivalent.

Definition 2. For undirected chordal chain graph (UCCG)
G(V,E) and intervention family I, the intervention result
space is defined as:

IRI(G) = {EI(D) : D ∈ D(G)},

where D(G) denotes the set of all DAGs inside MEC corre-
sponding to G.

We use MEC(EI(D)) to show the set of all DAGs in an I-
MEC. Throughout the paper, we assume UCCGs are chain
components of sufficient, faithful essential graphs.

3. LazyIter
We first propose a method to select the best single-node
intervention target in an essential graph. As I-essential
graph EI(D) on DAG D is a chain graph with undirected
chordal chain components, it could be shown that knowing
orientations of edges inside a component does not provide
any information about the orientation of edges in other com-
ponents (Hauser & Bühlmann, 2012). Hauser & Bühlmann
(2014) showed that each chain component can be treated
as an observational essential graph when it comes to inter-
vening on the nodes (i.e., D(G) is the same set of DAGs,
whether G is an observational essential graph or it is a chain
component of an I-essential graph). Consequently, we can
restrict our attention to UCCGs. He & Geng (2008) pre-
sented a method to find I-essential graph from intervention
results when the intervention target is the root, which takes
O(nΔ2) operations. We will use this method in the next sec-
tions as a subroutine for computing the size of I-essential
graph whenever conditioning on edge orientations results in
the intervention target becoming root.

Let G(V,E) be a UCCG and {v} be a single-node interven-
tion target on it. After the intervention, we will obtain an
I-essential graph E{{v}}(D) ∈ IR{{v}}(G) based on the
ground truth DAG D. The following theorem allows us to
use parent set of v for uniquely representing the resulting
I-essential graph:
Proposition 1. Let G(V,E) be a UCCG, D ∈ MEC(G)
be a DAG, and v ∈ V be an arbitrary node. Then each
I-essential graph E{{v}}(D) could be uniquely determined
given the parent set of v in D, and there is a one-to-one cor-
respondence between sets {P ⊆ neG(v) : P is a clique}
and IR{{v}}(G) .

The proof of this proposition as well as all other proofs
are available in the supplementary material. The theorem
suggests a way for iterating over IR{{v}}(G): Iterate over
all cliques in the neighborhood of v and set each clique
as the parent set of v and then apply Meek rules to orient
as many edges as possible (Hauser & Bühlmann, 2014).
According to Proposition 1, the essential graph E{{v}}(D)
can be determined by paD(v). Thus, we use the notation of
PP
v (G) to point to E{{v}}(D) where D ∈ D(G) is a DAG

such that paD(v) = P .

Let R(V,E�) = PP
v (G) be a possible single-node-

intervention result on a UCCG G(V,E). Setting aside the
nodes in P , we divide the other nodes of R into three dis-
tinct groups CR, AR, and DR. CR is the set of children of
v, and CR ∪ P = neG(v). AR is the set of all nodes which
are separated from v by P , and DR is the set of all other
nodes. We have:

AR = {a ∈ V \neG(v) : P is an (a, v)-separator in G}
DR = V \(AR ∪ CR ∪ P ).
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Figure 1. a) A separation of R = PP
v into different sets. b) Constructing R� = PP∪{u}

v from R by moving u from CR to P and M from
DR to AR. An arrow between two sets/nodes means that any edge between them is directed in the corresponding direction. A straight
line between two sets/nodes, means that any edge between them is undirected. Dashed lines show how nodes are moved from DR to AR

upon the construction.

See Figure 1a for an illustration. The following theorem
states several key properties of the three proposed node
groups.

Theorem 1. Let R = PP
v (G) be an I-essential graph on a

UCCG G(V,E). The following statements hold:

• There are no edges in G connecting a node in AR to a
node in CR ∪DR ∪ {v}.

• Every edge (a, b) in R where a ∈ P and b ∈ CR is
directed as a → b.

• Every edge (a, b) in R where a ∈ CR∪P and b ∈ DR

is directed as a → b.

• All of the edges in R[AR ∪ P ] are undirected.

Now we show that direction of many edges in PP
v (G) stay

intact when we change the parent set P slightly, and there-
fore if we already know direction of edges in an I-essential
graph, we can find the direction of edges in other I-essential
graphs by reorienting just a small fraction of the edges.

Assume we are given R and we want to find R� =

PP∪{u}
v (G) where u ∈ CR, and G[P ∪ {u}] is a clique.

Note that the skeleton of both R� and R is G, and they only
differ in the direction of some edges.

It is easy to see AR ⊆ AR� as every node which is separated
from v by P is also separated from v by P ∪{u}. Moreover
we know that AR ∪DR = AR� ∪DR� as both of them rep-
resent the set of nodes in V \(neG(v)∪ {v}). Consequently,
we have DR� ⊆ DR and DR\DR� = AR�\AR = M . We
construct R� from R by moving u from children to the par-
ents and M from DR to AR, and then reorienting some

specific edges as we explain. We have:

M = {a ∈ DR : P ∪ {u} is an (a, v)-separator in G}

CR� = CR\{u}, AR� = AR ∪M,DR� = DR\M.

Applying the first statement of Theorem 1 to R�, we con-
clude that there are no edges between M and DR\M in
G (as M ⊆ AR� and DR\M = DR�). The third state-
ment of Theorem 1 implies that in R�, any edge between
(P ∪ {u}) ∪ CR� = P ∪ CR and DR� = DR\M is di-
rected towards the node in DR\M . The same thing is
true in R, as we have DR\M ⊆ DR. This means any
edge in R[DR\M ] which is directed by applying Meek
rules, can be similarly directed in R�[DR\M ], and there-
fore R�[DR\M ] = R[DR\M ]. Moreover, we can say that
R�[AR ∪ P ] = R[AR ∪ P ] because both are undirected
graphs on the same skeleton. Using the fourth statement of
Theorem 1, we can infer that all of edges in R�[M∪{u}] are
undirected, as M ∪ {u} ⊆ AR� . The same is true for edges
with one end in M ∪ {u} and the other end in P . Finally,
by the second statement of Theorem 1, all of the edges in
R�[CR] which are connected to u are directed away from
u. This means we can find the orientation of edges in R� by
executing the following three steps on R:

1. Obtain the set M by finding nodes in G[V \AR] which
are separated from v by (P ∪ {u}). If we execute a
breadth first search (BFS) in G[V \(P ∪ {u})] with v
as root, the nodes which are not observed in the BFS
constitute AR� . By removing nodes of AR from AR�

we will get the set M . This will take O(n + m) =
O(n+ nΔ) = O(nΔ) operations, where n,m, and Δ
are the number of variables, the number of the edges,
and the maximum degree of the graph respectively.
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Algorithm 1 LazyIter
1: Input: UCCG G(V,E), Node v ∈ V
2: Output: IR{{v}}(G)
3: L ← ∅
4: Find P∅

v (G) by setting v as the root of G and orienting as much edges as possible.
5: Iter(P∅

v (G), v)
6: return L

———————————————————————————————————————————————
7: function Iter(PP

v (G), v)
8: Add PP

v (G) to L.
9: for u ∈ CR do

10: if u is connected to all nodes in P then
11: NewGraph ←− PP

v (G)
12: M ←− Set of all nodes separated from v by P ∪ {u} in G[V \APP

v (G)]
13: Change direction of v → u to u → v in NewGraph
14: In NewGraph, make all edges with both ends in M ∪ {u} undirected
15: In NewGraph, make all edges connecting a node in P to a node in M ∪ {u} undirected
16: In NewGraph, direct all edges between u and a node c ∈ CR as u → c
17: In NewGraph[CPP

v (G)], orient edges using Meek rules until no more undirected edges are orientable
18: Iter(NewGraph, v)
19: end if
20: end for

2. Remove the directions of all edges inside R[M ∪ {u}]
and all edges between M ∪ {u} and P . This could be
done in O(nΔ) operations.

3. Direct all edges u− x in R[CR] as u → x, and apply
Meek rules on R[CR] to find R�[CR\{u}]. This could
be done in O(Δ3) operations (He et al., 2015), as we
have |CR| ≤ Δ.

The procedure for finding IR{{v}}(G) is given in Algo-
rithm 1. In order to find IR{{v}}(G), first we obtain
P∅
v (G) by setting v as the root of the graph and direct-

ing edges based on Meek rules in O(nΔ2) operations (He
et al., 2015). Then we initiate L as an empty set and call
LazyIter(P∅

v (G), v) which will add all desired I-essential
graphs to set L (for finding P∅

v (G) we can use the algorithm
presented in (He et al., 2015) which needs O(nΔ2) oper-
ations). The algorithm will call itself recursively O(2Δ)
times, and the three mentioned operations are executed
in each call in order to find the new I−essential graph
corresponding to the new parent set. When the execu-
tion is completed, L will contain the list of all obtainable
I-essential graphs. The complexity of the algorithm is
O(nΔ2 + 2Δ(nΔ+Δ3)) = O(2Δ(nΔ+Δ3)). The first
step is executed in line 12 of Algorithm 1, the second step
is executed in lines 14 and 15, and the last step is executed
in lines 16 and 17.

4. Computing size of MEC
We count the number of DAGs inside an MEC by partition-
ing them into I-Markov equivalence classes.

Lemma 1. Let G(V,E) be a UCCG and I be an arbitrary
intervention family. Then we have:

|MEC(G)| =
�

R∈IRI(G)

� �

C∈C(R)

|MEC(C)|
�
,

where C(R) denotes the set of all chain components of R.

Assume we are given a UCCG G(V,E) and want to calcu-
late |MEC(G)|. We first choose an arbitrary node v ∈ V ,
set I = {{v}}, and use LazyIter to find all of the I-
essential graphs. Then for each of them, we calculate
the number of DAGs inside its corresponding I-MEC by
multiplying size of its chain components. As each chain
component of an I-essential graph is a UCCG (Hauser &
Bühlmann, 2014), Lemma 1 is applicable on it and we could
do the calculation recursively. Finally, we sum up all these
values to get |MEC(G)|.
We take advantage of dynamic programming to eliminate
repetitive calculations. Ghassami et al. (2019); Talvitie
& Koivisto (2019) used a similar idea for observational
essential graphs, which we extended to interventional cases.

The algorithm is presented in Algorithm 2. Every time
Count(S) is called, it will take O(1) operations if DP [S]
is already calculated. Otherwise, it calls LazyIter once
which takes O(2Δ(nΔ+Δ3)) operations, and executes the
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Algorithm 2 LazyCount
1: Input: UCCG G(V,E)
2: Output: |MEC(G)|
3: CountDP [] ← A storage indexed on S ⊆ V and initi-

ated by 1 if |S| = 1 and NULL otherwise.
4: return Count(V )

————————————————————
5: function Count(S)
6: if CountDP [S] is not NULL then
7: return DP [S]
8: end if
9: CountDP [S] ← 0

10: v ← an arbitrary node in S
11: L ← LazyIter(G[S], v)
12: for R ∈ L do
13: num ← 1
14: for C(S�, E�) ∈ C(R) do
15: num ← num× Count(S�)
16: end for
17: CountDP [S] ← CountDP [S] + num
18: end for
19: return CountDP [S]

two for-loops. The outer for-loop is executed at most 2Δ

times, and the inner for-loop is executed at most n times.
Calculation of C(E) could also be done in O(nΔ) steps.
After these calculations, DP [S] will be saved and there is
no need to calculate it in later calls. On the other hand, there
are at most 2n values for index of DP , and therefore the
time complexity of Algorithm 2 is:

O
�
2n

�
2Δ(nΔ+Δ3)+2Δ(n+nΔ)

��
= O(2n2Δ(nΔ+Δ3)).

5. Experiment Design
Assume we want to find the best intervention target I ⊆ V in
UCCG G(V,E). For experiment design, given an objective
function, we need to compare the efficiency of different in-
tervention targets based on it. A common objective function
is the size of I-essential graph obtained after intervention
(Ghassami et al., 2019). The smaller the class is, the more
information we have gained from the intervention. If we
consider the worst-case setting, we have:

Iopt = argmin
I⊆V

�
max

R∈IR{I}(G)
|MEC(R)|

�
. (1)

Another objective function used in previous work is the
number of directed edges after an intervention (Ghassami
et al., 2018; Hauser & Bühlmann, 2014):

Iopt = argmax
I⊆V

�
min

R∈IR{I}(G)
|Dir(R)|

�
, (2)

Algorithm 3 Active Learning by Minimizing I-MEC size
1: Input: UCCG G(V,E)
2: Output: A single-node intervention target {vopt}
3: CountDP [] ← A storage indexed on S ⊆ V and initi-

ated by 1 if |S| = 1 and NULL otherwise.
4: sopt ← 0
5: vopt ← NULL
6: for v ∈ V do
7: L ← LazyIter(G, v)
8: sv ← 0
9: for R ∈ L do

10: mecsize ← 1
11: for C(V �, E�) ∈ C(R) do
12: mecsize ← mecsize× Count(V �)
13: end for
14: sv ← max(sv,mecsize)
15: end for
16: if sv < sopt then
17: sopt ← sv
18: vopt ← v
19: end if
20: end for
21: return vopt

We solve the experiment design problem for both of these
objective functions, in both active and passive learning set-
tings.

5.1. Active Learning

In the active learning, the information obtained from the
former interventions can be used to choose the next targets.
Similar to the approach taken in Hauser & Bühlmann (2014),
we aim to find the best single-node intervention target in
each learning step. We take advantage of LazyIter and
LazyCount for this purpose.

Let G(V,E) be a UCCG. Considering objective function
(1), we want to find a node v such that intervening on it,
minimizes the size of the resulting I-MEC. We first use
LazyIter to find the set of all I-essential graphs for dif-
ferent single-node intervention targets. Then, for each I-
essential graph PP

v (G), we obtain the size of its correspond-
ing I-MEC by multiplying sizes of its chain components.
Finally, we use these values to find the optimal intervention
target. The description of this algorithm is presented in
Algorithm 3. The procedure is almost the same for objective
function (2). We just need to calculate number of directed
edges for each I-essential graph, instead of calculating its
I-MEC size.

All of the operations in Algorithm 3 could be divided to two
parts:
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• Calculating the values of CountDP [] using function
Count(), which takes at most O(2n2Δ(nΔ + Δ3))
operations.

• Iterating over the three for-loops (taking n, 2Δ,
and n steps respectively), calling LazyIter (taking
O(2Δ(nΔ +Δ3)) operations), and calculating C(R)
(taking O(nΔ) operations). All of these steps together
need O(n2Δ(nΔ+Δ3)) operations.

Therefore Algorithm 3 calculates the MEC size in at
most O(2n2Δ(nΔ + Δ3)) + O(n2Δ(nΔ + Δ3)) =
O(2n2Δ(nΔ+Δ3)) operations. If we want to find the best
target with respect to objective function (2), there is no need
to calculate CountDP [], but all other operations should be
executed similarly. Consequently, the time complexity in
this case would be O(n2Δ(nΔ+Δ3)).

5.2. Passive Learning

Let G(V,E) be a UCCG, where each node v ∈ V is as-
signed a cost cv. We aim to find a set of k single-node
interventions, and therefore our intervention family is of
the form I = {{v1}, {v2}, ..., {vk}}, similar to the model
considered in Ghassami et al. (2018). Using the following
lemma, we break the problem down to smaller subproblems
and take advantage of dynamic programming:

Lemma 2. Let G(V,E) be a UCCG, I =
{{v1}, {v2}, ..., {vk}} an intervention family, D the
ground truth DAG of G, and for each chain component
C ∈ C(E{{v1}}(G)), {vC1 , vC2 , ..., vCmC

} ⊆ V be the subset
of intervention targets which are inside C. Then we have:

Dir(E{{v1},{v2},...,{vk}}(D)) = Dir(E{{v1}}(D)) ∪ Z,

where

Z =
�

C∈C(E{{v1}}(D))

Dir(E{{vC
1 },{vC

2 },...,{vC
mC

}}(D[C])).

Assume we want to find the optimum intervention target
with respect to objective function (2). For any T, S ⊆
V where T = {v1, v2, ..., vt} and T ⊆ S, we define
DP [S][T ] as follows:

DP [S][T ] = min
D∈D(G)

|Dir(E{{v1},{v2},...,{vt}}(D[S])|.
(3)

Proposition 2. The following equation holds for DP func-
tion (3):

DP [S][T ] =

min
R∈IR{{v1}}(G[S])

�
|Dir

�
R
�
|+

�

C∈C(R)

DP
�
C
��
T ∩ C

��
.

(4)

Algorithm 4 Passive Learning by Maximizing Number of
Oriented Edges

1: Input: UCCG G(V,E), budget b, intervention cost for
each node v ∈ V as costv

2: Output: A single-node intervention target {vopt}
3: DP [S][T ] ← A storage indexed on S ⊆ V and T ⊆ S,

and initiated by 0 if |S| = 1 and NULL otherwise.
4: best ← ∅
5: for T ⊆ V do
6: if

�
x∈T costx ≤ budget then

7: if Calculate(V, best) ≤ Calculate(V, T ) then
8: best ← T
9: end if

10: end if
11: end for
12: return best

—————————————————————-
13: function Calculate(S, T )
14: if DP [S][T ] is not NULL then
15: return DP [S][T ]
16: end if
17: DP [S][T ] ← ∞
18: v ← an arbitrary member of T
19: L ← LazyIter(G, v)
20: for R ∈ L do
21: num ← |Dir(R)|
22: for C(S�, E�) ∈ C(R) do
23: num ← num+ Calculate(S�, T ∩ S�)
24: end for
25: DP [S][T ] ← min(DP [S][T ], num)
26: end for
27: return DP [S][T ]

This proposition suggests that we could select an arbitrary
intervention target, iterate over all I-essential graphs in its
intervention result space, and find number of directed edge
in each case using already-calculated DP values. After
finding all DP [V ][T ] values, we can choose the one which
has a cost less than our budget and maximizes number of
directed edges. For optimization with respect to objective
function (1), we can define DP [S][T ] as the maximum size
of I-MEC obtained from G[S] after intervening on nodes
in T . With the similar arguments, we can show that if we
substitute |Dir(R)| with |MEC(R)| in equation (4), the
resulting equation holds for this new DP array.

The number of DP elements is 3n, as each node is either
in T , or in S\T , or in V \S. For calculation of each DP
value, LazyIter is called once and then two for-loops are
executed, iterating for 2Δ and n steps respectively. Hence,
Algorithm 5.2 finds the best passive intervention target with
respect to objective function (2) in O(3n2Δ(nΔ + Δ3))
operations.
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Figure 2. (a) Comparison between execution times of LazyIter and algorithm in Hauser & Bühlmann (2014) versus number of edges for
graphs with 30 nodes. (b) Comparison between execution times of LazyCount and MemoMAO (Talvitie & Koivisto, 2019) versus number
of edges for graphs with 30 nodes. Comparison between edge discovery ratio versus (c) graph order for b = 2 and r = 0.4, (d) edge
density for n = 35 and b = 3, (e) budget for n = 40 and r = 0.3

6. Experimental Results
We compared LazyIter and LazyCount against previous
work. The performance of our active learning algorithms de-
pend on these two routines. Our DP-based passive learning
algorithm is the first exact algorithm for worst-case experi-
ment design, so we compared it with Random and MaxDe-
gree heuristics. The only related previous work Ghassami
et al. (2019) is an approximation designed for the average-
case passive learning. Their algorithm has a time complex-
ity of O(kNn(Δ+1)) (where N is the number of sampled
DAGs and k is the budget), and is considerably more com-
putationally expensive than our algorithm. However, the
results are not comparable as their algorithm does not solve
the problem in the worst-case setting. For each test, we gen-
erated 100 graphs using the method presented in He et al.
(2015) and calculated the average test results on them. As
we can see in Figure 2 (a), LazyIter outperforms (Hauser

& Bühlmann, 2014) in all cases, especially when the graph
is dense. We also tested LazyCount against MemoMAO,
which is the state-of-the-art MEC size calculation algorithm
(Talvitie & Koivisto, 2019). Even though the difference in
execution times is not considerable for sparse graphs, our
algorithm performs much better for dense graphs, as seen in
Figure 2 (b). The main reason for this is that LazyCount
requires fewer DP values in its execution. Figures 2 (c),
(d), and (e) present the discovered edge ratio (the number
of edges whose orientations are inferred from experiments
to the number of edges in the graph) of the passive learning
algorithm versus different graph orders, edge densities (ratio
of the number of edges to the maximum possible number of
edges), and budgets (number of interevetions), respectively.
As the graph order increases, finding the optimal target
becomes harder, and therefore the difference between our
algorithm and the heuristics becomes more considerable.
The implementations of the algorithms described in this
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paper is available at https://github.com/teshnizi/LazyIter.

7. Conclusion
We proposed a new method to iterate efficiently over possi-
ble I-essential graphs and utilized it to design algorithms for
computing MEC size and experiment design for active and
passive learning settings. Experimental results showed that
the proposed algorithms outperform other related works in
terms of time complexity. As a direction of future research,
it would be interesting to extend to the proposed algorithms
for other objective functions in designing experiments, such
as average number of oriented edges. Moreover, one can
work on designing algorithms in the passive learning set-
ting where we can intervene on multiple variables in each
experiment.
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