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A. Appendices
A.1. Proof of Proposition 1

Proof. It could be shown that a DAG D is a member of
MEC corresponding to G if and only if it has no v-structures
(He et al., 2015). Let v ∈ V be an arbitrary node. For every
DAG in the MEC, the parent set of node v is definitely a
clique, because a v-structure is formed otherwise. If D1 and
D2 be two members of MEC such that paD1(v) = paD2(v)
then D1 ∼{{v}} D2, and therefore D1 and D2 are indis-
tinguishable under the single-node intervention target {v}
(Hauser & Bühlmann, 2014). So every E{{v}}(D) is de-
termined uniquely with paD(v). On the other hand, Every
LexBFS-ordering σ on G, is also a perfect elimination or-
dering and if we orient edges of G according to σ, we get
a DAG without v-structures (Hauser & Bühlmann, 2014).
For an arbitrary clique P ⊆ neG(v) in neighbors of v, if we
orient edge set E according to LexBFS((P, v, ...), E), the
resulting DAG D is a member of MEC and paD(v) = P .
This shows that there is a one-to-one correspondence be-
tween E{{v}}(D)s and cliques P ⊆ neG(v).

A.2. Proof of Theorem 1

Proof. The proofs of four statements is respectively as fol-
lows:

• Every node which is separated from v by P is inside
AR, so for every d ∈ DR there is a path from d to v in
G[V \AR]. Now assume that there is an edge between
two arbitrary nodes a ∈ AR and d ∈ DR. As there
is a path from v to d in G[V \AR], and edge a − d is
also present in G[V \AR], there is a path from v to a
in G[V \AR] and therefore P is not an (a, v)-separator
in G, which could not be true.

• The cycle a → v → b → a is formed otherwise.

• If a ∈ CR and the edge be directed as b → a, the
v-structure v → a ← b will be formed. If a ∈ P , let
v, x1, x2, ..., xk, b be the shortest path between v and b
in G[{v} ∪CR ∪DR]. No two non-consecutive nodes
of this path are connected to each other, because we
will find a shorter path otherwise. It is also obvious
that x1 ∈ CR and therefore v → x1 ∈ R. If x1−x2 be
directed as x1 ← x2 in R, the v-structure v → x1 ←
x2 will be formed, so x1 → x2 ∈ R. With a similar
arguement, we can say xi → xi+1 ∈ R, for 1 ≤ i ≤ k,
where xk+1 = b. Therefore v → x1 → x2 → ... →
xk → b is a directed path in R. If b → a ∈ R, we will
have a cycle in R which is impossible, and therefore
a → b ∈ R.

• None of the edges inside R[AR ∪ P ] are oriented as
a direct result of intervention, so every edge in this

subgraph should be oriented using Meek rules. Let
a → b be the first edge oriented inside R[AR ∪ P ], so
we have a, b ∈ AR ∪ P . In all of the four Meek rules,
there is at least one already oriented edge directed
towards one of the two endpoints of the edge which
is being oriented. This means that there should exist
either an edge x → a ∈ R or and edge x → b ∈ R.
But this is impossible, because we know that there are
no edges directed towards any of the nodes in AR ∪ P
in the graph we get after intervention. This means that
no Meek rules are applicable for orienting edges in
R[AR ∪ P ], and this subgraph is undirected.

A.3. Proof of Lemma 1

We break the lemma into two smaller lemmas and prove
them separately:

Lemma 3. Let G(V,E) be a UCCG and I be an arbitrary
intervention family. Then we have:

|MEC(G)| =
�

R∈IRI(G)

|MEC(R)|.

Proof. Every DAG D in MEC corresponding to G is ex-
actly in one of the I-essential graphs in IR(G), based on
direction of the edges connected to intervention targets in-
side that DAG. Therefore, each DAG is exactly counted
once in the summation.

Lemma 4. Consider I-essential graph EI(D) of a DAG D
and intervention target I. Let C(EI(D)) be the set of all
chain components of EI(D). Then we have:

|MEC(EI(D))| =
�

C∈C(EI(D))

|MEC(C)|.

Proof. (Hauser & Bühlmann, 2014) showed that the direc-
tion of edges inside each chain component of an I-essential
graph is unrelated to the direction of edges in other compo-
nents. Therefore edges inside each chain component could
be oriented independently, and number of valid orientations
of edges in EI(D) (orientations without v-structures) is
equal to multiplication of number of valid orientations in
each chain component. He et al. (2015) proved a similar
lemma for observational cases.

Lemma 3 shows that we can calculate the size of MEC repre-
sented by G via calculating sizes of I-MECs represented by
members of IR{{v}}(G). For counting number of DAGs
in each of these I-MECs, we use Lemma 4, and therefore
the equation in Lemma 1 holds.
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A.4. Proof of Lemma 2

We need these two lemmas for the proof:

Lemma 5. (Ghassami et al., 2018) For any DAG D(V,E)
and sets I1, I2 ⊆ V , we have:

Dir(E{I1∪I2}(D)) = Dir(E{I1}(D)) ∪Dir(E{I2}(D)).

Lemma 6. (Hauser & Bühlmann, 2014) Consider an I-
essential graph of some DAG D, and let C ∈ C(EI(D)) be
one of its chain components. Let I ⊆ V, I /∈ I be another
intervention target. Then we have:

EI∪{I}(D)[C] = E{∅,I∩V �}(D[C])

Now we prove Lemma 2.

Proof. Using Lemma 6 we can say:

E{{v1},{v2},...,{vk}}(D)[C] =

E{{v1}}∪{{v2},...,{vk}}(D)[C] =

E{∅,{{v2},...,{vk}}∩V �}(D[C]) =

E{{{v2},...,{vk}}∩V �}(D[C]) =

E{{vC
1 },...,{vC

m}}(D[C])

Where the equality between third and fourth lines comes
from the fact that we already know the observational es-
sential graph of the chain component, as we are given the
UCCG. Using Lemma 5, we have:

Dir(E{{v1},{v2},...,{vk}}(D))

= Dir(E{{v1}}(D)) ∪Dir(E{{v2},{v3},...,{vk}}(D))

But as we mentioned earlier, direction of edges inside one
chain component gives us no information about direction of
edges in other chain components.

We can say:

Dir(R1)∪Dir(E{{v2},{v3},...,{vk}}(D))

= Dir(R1)
�

C∈C(R1)

Dir(E{{v2},{v3},...,{vk}}(D)[C])

= Dir(R1)
�

C∈C(R1)

Dir(E{{vC
1 },{vC

2 },...,{vi
mC

}}(D)[C]).

A.5. Proof of Proposition 2

Proof. We know that every valid orientation of all undi-
rected edges in all of the chain components gives us a DAG
in the I-MEC E{{v1}}(D). Moreover we know that the
minimum value of |Dir(E{{vC

1 },{vC
2 },...,{vC

mC
}}(D)[C])| is

DP [C][{vC1 , vC2 , ..., vCmC
}] = DP [C][T ∩ C]. As chain

components have distinct edges sets, we have:

���
�

C∈C(E{{v1}}(D))

Dir(E{{vC
1 },{vC

2 },...,{vC
mC

}}(D[C]))
��� =

�

C∈C(E{{v1}}(D))

���Dir(E{{vC
1 },{vC

2 },...,{vC
mC

}}(D[C]))
���.

Lemma 2 implies that for counting number of directed edges
in each I-essential graph, we could consider each compo-
nent independently and therefore the minimum number of
directed edges for each chain component can be found via
DP values. We can iterate over all possible E{{v1}}(D)s
and use DP values to find the minimum number of directed
edges for each case. This means DP [V ][T ] could be calcu-
lated by the recursive formula (4).


