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Abstract
The families of f -divergences (e.g. the Kullback–
Leibler divergence) and Integral Probability Met-
rics (e.g. total variation distance or maximum
mean discrepancies) are commonly used in op-
timization and estimation. In this work, we sys-
tematically study the relationship between these
two families from the perspective of convex dual-
ity. Starting from a tight variational representation
of the f -divergence, we derive a generalization of
the moment generating function, which we show
exactly characterizes the best lower bound of the
f -divergence as a function of a given IPM. Us-
ing this characterization, we obtain new bounds
on IPMs defined by classes of unbounded func-
tions, while also recovering in a unified manner
well-known results for bounded and subgaussian
functions (e.g. Pinsker’s inequality and Hoeffd-
ing’s lemma).

1. Introduction
Quantifying the extent to which two probability distribu-
tions differ from one another is central in most, if not all,
problems and methods in machine learning and statistics.
For example, maximum likelihood estimation is equivalent
to minimizing the Kullback–Leibler divergence between
the empirical distribution—or the ground truth distribution
in the limit of infinitely large sample—and a distribution
chosen from a parametric family.

A natural generalization of the Kullback–Leibler divergence
is provided by the family of ϕ-divergences1 (Csiszár, 1963;
1967) also known in statistics as Ali–Silvey distances (Ali
& Silvey, 1966). Informally, a ϕ-divergence quantifies the
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1In the rest of this paper, we use ϕ-divergence instead of f -
divergence and reserve the letter f for a generic function.

divergence between two distributions µ and ν as an av-
erage cost of the likelihood ratio, that is, Iϕ (µ ∥ ν) :=∫
ϕ(dµ/dν) dν for a convex cost function ϕ : R≥0 → R≥0.

Notable examples of ϕ-divergences include the Hellinger
distance, the α-divergences (a convex transformation of the
Rényi divergences), and the χ2-divergence.

Crucial in applications of ϕ-divergences are their so-called
variational representations. For example, the Donsker–
Varadhan representation (Donsker & Varadhan, 1976,
Theorem 5.2) expresses the Kullback–Leibler divergence
D(µ ∥ ν) between probability distributions µ and ν as

D(µ ∥ ν) = sup
g∈L∞

ν

{∫
g dµ− log

∫
eg dν

}
, (1)

where L∞
ν is the space of functions essentially bounded

with respect to ν. Similar variational representations were
for example used by Nguyen et al. (2008; 2010); Ruderman
et al. (2012); Belghazi et al. (2018) to construct estimates
of ϕ-divergences by restricting the optimization problem
in (1) to a class of functions G ⊆ L∞

ν for which the prob-
lem becomes tractable (for example when G is a RKHS or
representable by a given neural network architecture). In
recent work, Nowozin et al. (2016); Nock et al. (2017) con-
ceptualized an extension of generative adversarial networks
(GANs) in which the problem of minimizing a ϕ-divergence
is expressed via variational representations such as (1) as a
minimax game involving two neural networks, one minimiz-
ing over probability distributions µ, the other maximizing
over g as in (1).

Another important class of distances between probability
distributions is given by Integral Probability Metrics (IPMs)
defined by Müller (1997) and taking the form

dG (µ, ν) = sup
g∈G

{∣∣∣∣∫ g dµ−
∫
g dν

∣∣∣∣} , (2)

where G is a class of functions parametrizing the distance.
Notable examples include the total variation distance (G is
the class of all functions taking value in [−1, 1]), the Wasser-
stein metric (G is a class of Lipschitz functions) and Max-
imum Mean Discrepancies (G is the unit ball of a RKHS).
Being already expressed as a variational problem, IPMs are
amenable to estimation, as was exploited by Sriperumbudur
et al. (2012); Gretton et al. (2012). MMDs have also been
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used in lieu of ϕ-divergences to train GANs as was first
done by Dziugaite et al. (2015).

Rewriting the optimization problem (1) as

sup
g∈L∞

ν

{∫
g dµ−

∫
g dν − log

∫
e(g−

∫
g dν) dν

}
(3)

suggests an important connection between ϕ-divergences
and IPMs. Indeed, (3) expresses the divergence as the so-
lution to a regularized optimization problem in which one
attempts to maximize the mean deviation

∫
g dµ−

∫
g dν,

as in (2), while also penalizing functions g which are too
“complex” as measured by the centered log moment gen-
erating function of g. In this work, we further explore the
connection between ϕ-divergences and IPMs, guided by the
following question:

what is the best lower bound of a given ϕ-divergence as a
function of a given integral probability metric?

Some specific instances of this question are already well
understood. For example, the best lower bound of the
Kullback–Leibler divergence by a quadratic function of
the total variation distance is known as Pinsker’s inequal-
ity. More generally, describing the best lower bound of a
ϕ-divergence as a function of the total variation distance
(without being restricted to being a quadratic), is known as
Vajda’s problem, to which an answer was given by Fedotov
et al. (2003) for the Kullback–Leibler divergence and by
Gilardoni (2006) for an arbitrary ϕ-divergence.

In the case of the total variation distance, this question can
also be seen as a specific instance of the problem of deter-
mining the joint range of values taken by an arbitrary pair
of ϕ-divergences (Harremoës & Vajda, 2011; Guntuboy-
ina et al., 2014). In contrast, in this work, we generalize
the question in different manner by replacing the the total
variation distance by an arbitrary IPM, as opposed to an
arbitrary ϕ-divergence. This is incomparable since the total
variation distance is the only ϕ-divergence which is also an
IPM (Sriperumbudur et al., 2009; 2012).

Beyond the total variation distance—in particular, when the
class G in (2) contains unbounded functions—few results
are known. Using (3), Boucheron et al. (2013, Section
4.9) show that Pinsker’s inequality holds as long as the log
moment generating function grows at most quadratically.
Since this is the case for bounded functions (via Hoeffding’s
lemma), this recovers Pinsker’s inequality and extends it
to the class of so-called sub-Gaussian functions. This was
recently used by Russo & Zou (2020) to control bias in
adaptive data analysis.

In this work, we systematize the convex analytic perspective
underlying many of these results, thereby developing the
necessary tools to resolve the above guiding question. As

an application, we recover in a unified manner the known
bounds between ϕ-divergences and IPMs, and extend them
along several dimensions. Specifically, starting from the
observation of Ruderman et al. (2012) that the variational
representation of ϕ-divergences commonly used in the litera-
ture is not “tight” for probability measures (in a sense which
will be made formal in the paper), we make the following
contributions:

• we derive a tight representation of ϕ-divergences
for probability measures, exactly generalizing the
Donsker–Varadhan representation of the Kullback–
Leibler divergence.

• we define a generalization of the log moment generat-
ing function and show that it exactly characterizes the
best lower bound of a ϕ-divergence by an IPM.

• after proving a generalization of Hoeffding’s lemma,
we obtain as an application a generalization of
Pinsker’s inequality to a large class of ϕ-divergences.

• the answer to Vajda’s problem is re-derived in a princi-
pled manner, providing a new geometric interpretation
on the optimal lower bound of the ϕ-divergence by the
total variation distance.

• finally, we introduce a generalization of sub-Gaussian
functions to arbitrary ϕ-divergences and show that it
exactly characterizes the class of function for which
Pinsker’s type inequalities can be obtained.

The rest of this paper is organized as follows: Section 2
gives a brief overview of concepts and tools used in this
paper, Section 3 presents our general theorem characterizing
the best lower bound, Section 4 focuses, as an application,
on the total variation distance (bounded functions), and
Section 5 explores applications to unbounded functions. In
the full version of this work (Agrawal & Horel, 2020), we
provide additional background, discuss more related work,
and include some extra results and proofs omitted from this
version due to space constraints.

2. Preliminaries
Notations. Unless otherwise noted, all the probability
measures in this paper are defined on a common measur-
able space (Ω,A). We denote by M(Ω,A), Mf (Ω,A),
and M1(Ω,A) the spaces of all (non-negative) measures,
finite measures, and probability measures respectively. For
ν ∈ M(Ω,A), and 1 ≤ p ≤ ∞, Lpν(Ω,A) denotes the
space of measurable functions with finite p-norm. L0(Ω)
denotes the space of all measurable functions from Ω to R.
When there is no ambiguity, we drop the indication (Ω,A).
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For two measures µ and ν, µ ≪ ν denotes that µ is abso-
lutely continuous with respect to ν and in this case we de-
note by dµ

dν : Ω → [0,∞) the Radon–Nikodym derivative of
µ with respect to ν. For a measurable function f : Ω → R,
µ(f) :=

∫
f dµ denotes the integral of f with respect to µ.

Convex analysis. We consider a pair (X,Y ) of topolog-
ical vector spaces and a bilinear form ⟨·, ·⟩ → R such that
(X,Y, ⟨·, ·⟩) form a dual pair (see e.g. Berg et al., 1984).
For a convex function f : R → R, dom f := {x ∈ R :
f(x) <∞} is the effective domain of f and ∂f(·) denotes
its subdifferential. For a set C, δC denotes the characteristic
function of C (δC(x) is 0 if x ∈ C and +∞ elsewhere).
Definition 2.1 (Convex conjugate). The convex conjugate
(also called Fenchel dual or Fenchel–Legendre transform)
of f : X → R is the function f⋆ : Y → R defined by

f⋆(y) := sup
x∈X

{
⟨x, y⟩ − f(x)

}
, y ∈ Y .

ϕ-divergences. In this paper, ϕ : R → R is a convex
lower semicontinuous (lsc) function, finite on an open inter-
val around 1, strictly convex at 1 and such that ϕ(1) = 0.
Definition 2.2 (ϕ-divergence). Let µ and ν be two finite
measures. Decomposing µ = µc + µs with µc ≪ ν and
µs ⊥ ν, the ϕ-divergence Iϕ of µ with respect to ν, is
defined by

Iϕ (µ ∥ ν) :=
∫
ϕ

(
dµc
dν

)
dν + µs(Ω) · lim

x→∞

ϕ(x)

x
,

with the convention 0 · ∞ = 0.
Remark. If µ≪ ν, the definition simplifies to Iϕ (µ ∥ ν) =
ν
(
ϕ ◦ dµ

dν

)
. Furthermore, if limx→∞ ϕ(x)/x = +∞, then

Iϕ (µ ∥ ν) = +∞ whenever µ ̸≪ ν.

If µ ∈ M1, the value of Iϕ (µ ∥ ν) is invariant when replac-
ing ϕ with ϕ̃ : x 7→ ϕ(x)+ c · (x− 1) for c ∈ R. Hence, we
“normalize” ϕ so that 0 ∈ ∂ϕ(1). As a consequence, ϕ is a
non-negative function reaching its minimum at 1. Further-
more, since we are interested only in non-negative measures,
we redefine ϕ(x) = +∞ for x < 0, thereby hard-coding
the non-negativity constraint in the definition of ϕ itself.

Integral Probability Metrics.
Definition 2.3. For G ⊆ L0, the integral probability metric
associated with G is given by

dG (µ, ν) := sup
g∈G

{∣∣∣∣∫ g dµ−
∫
g dν

∣∣∣∣} , (µ, ν) ∈ M2 .

Remark. When the class G is closed under negation, one
can drop the absolute value in the definition.

The total variation distance TV (µ, ν) is obtained when G
is the class of measurable functions taking value in [−1, 1].

3. Dual representations and optimal bounds
In this section, we apply the convex duality framework to
the analysis of ϕ-divergences. Starting from the usual varia-
tional representation for Iϕ, we give an explicit and tighter
representation for its restriction to the set of probability
measures. This new representation lets us identify a natural
generalization of the log moment generating function (a.k.a.
the cumulant generating function) which we then show char-
acterizes the best lower bound of the ϕ-divergence as a
function of an IPM.

We fix a probability measure ν ∈ M1 and consider the
space of finite (signed) measures µ with µ ≪ ν which
is identified with L1

ν by the Radon–Nikodym theorem2.
The topological dual—for the norm topology—of L1

ν is(
L1
ν

)∗
= L∞

ν , the space of functions which are essen-
tially bounded with respect to ν. More generally, we con-
sider a pair of vector spaces Fν ⊆ L1

ν and Gν ⊇ L∞
ν

decomposable in the sense of (Rockafellar, 1976, §3) and
such that

(
Fν ,Gν , ⟨·, ·⟩

)
form a dual pair for the pairing

⟨µ, g⟩ = µ(g), (µ, g) ∈ Fν × Gν . We endow Fν and Gν
with topologies compatible with the pair in the sense that
(Fν)∗ = Gν and (Gν)∗ = Fν . This formalism will be useful
when considering unbounded functions in Section 5, but one
can mentally substitute Fν (resp. Gν) with L1

ν (resp. L∞
ν )

at first reading.

3.1. Variational representation

Consider the functional Iϕ,ν : µ 7→ Iϕ (µ ∥ ν) over3 Fν ,
with convex conjugate

I⋆ϕ,ν(g) := sup
µ∈Fν

{
µ(g)− Iϕ (µ ∥ ν)

}
, g ∈ Gν . (4)

The following proposition, first stated in Rockafellar (1968),
shows that I⋆ϕ,ν can itself be written as the convex integral
functional Iϕ⋆, ν associated with ϕ⋆. In other words, the
integration and conjugacy operations commute. This im-
plies that Iϕ,ν on Fν and Iϕ⋆, ν on Gν are conjugate to each
other, “lifting” the fact that (ϕ, ϕ⋆) form a conjugate pair to
the associated integral functionals. As an immediate con-
sequence, we obtain the usual variational representation of
the ϕ-divergence.

Proposition 3.1. The functionals Iϕ,ν and Iϕ⋆, ν
4 are conju-

2We show in the full version of this work (Agrawal & Horel,
2020) how to remove the requirement µ≪ ν.

3Recall that by definition, ϕ(x) = +∞ for x < 0, so dom Iϕ,ν
is contained in the positive cone Fν ∩Mf of non-negative mea-
sures in Fν . Defining Iϕ,ν as an extended real-valued function on
the entire vector space Fν makes it more amenable to a convex
duality treatment.

4Although the notation Iϕ⋆,ν denotes the partial function µ 7→
Iϕ⋆(µ ∥ ν), we treat it here as a functional defined on the space
of functions Gν by identifying Gν with a subspace of measures
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gate to each other, that is,

I⋆ϕ,ν(g) = Iϕ∗, ν(g) := ν(ϕ⋆ ◦ g) , g ∈ Gν , (5)

Iϕ,ν(µ) = sup
g∈Gν

{
µ(g)− ν(ϕ⋆ ◦ g)

}
, µ ∈ Fν . (6)

Proof. The fact that Iϕ,ν and Iϕ⋆,ν are conjugate to each
other is an application of (Rockafellar, 1968, Corollary to
Theorem 2) since Fν and Gν are decomposable by assump-
tion. (5) explicitates the identity I⋆ϕ,ν(g) = Iϕ⋆, ν(g), and
(6) uses that Iϕ,ν = Iϕ⋆⋆,ν = I⋆ϕ⋆,ν = I⋆⋆ϕ,ν .

Example 3.2. Consider the case of the Kullback–Leibler
divergence, corresponding to the function ϕ : x 7→ x log x−
x+ 1. A simple computation gives ϕ⋆(x) = ex − 1 and (6)
yields as a variational representation,

D(µ∥ν) = sup
g∈Gν

{
1 + µ(g)−

∫
eg dν

}
, (7)

for all measures µ ∈ Fν . Note that this representation
differs from the Donsker–Varadhan representation (1). This
discrepancy will be explained in the next section.

3.2. Restriction to probability measures

The variational representation given by Proposition 3.1—
which holds for an arbitrary finite measure in Fν—is loose
when applied to probability measures as was first observed
in Ruderman et al. (2012). In this section, we derive a
tighter representation by “specializing” the derivation to
probability measures.

Specifically, denote by Ĩϕ,ν the restriction of Iϕ,ν to the
convex set of measures µ ∈ Fν such that µ(Ω) = 1. Since
the effective domain of Iϕ,ν is contained in Mf (cf. foot-
note 3), this is equivalent to restricting Iϕ,ν to the posi-
tive cone M1 ∩ Fν of probability measures in Fν , that is,
Ĩϕ,ν(µ) := Iϕ,ν(µ) + δM1(µ), µ ∈ Fν . Consider now the
convex conjugate Ĩ⋆ϕ,ν of Ĩϕ,ν ,

Ĩ⋆ϕ,ν(g) := sup
µ∈Fν

µ(Ω)=1

{
µ(g)− Iϕ (µ ∥ ν)

}
, g ∈ Gν . (8)

Compared to (4), the supremum is taken over a smaller set
of measures, and hence Ĩ⋆ϕ,ν(g) ≤ I⋆ϕ,ν(g), g ∈ Fν . The
following proposition gives a simpler expression for Ĩ⋆ϕ,ν
showing that it is the solution of a single dimensional convex
optimization problem, efficiently solvable in practice.

Proposition 3.3. The functional Ĩ⋆ϕ,ν can be written

Ĩ⋆ϕ,ν(g) = inf
λ∈R

{∫
ϕ⋆(g + λ) dν − λ

}
, g ∈ Gν .

absolutely continuous with respect to ν by the Radon–Nikodym
theorem.

Furthermore, if Ĩ⋆ϕ,ν(g) < ∞, in particular whenever g ∈
L∞
ν , the infimum is reached.

Proof. Fix g ∈ Gν . From (8), we obtain −Ĩ⋆ϕ,ν(g) =

infµ∈Fν{Iϕ,ν(µ)−µ(g)+δ{1}
(
µ(1)

)
}. We apply Fenchel’s

duality theorem (see e.g. Zălinescu (2002, Theorem 2.8.3))
with X = Fν , Y = R, f : µ 7→ Iϕ,ν(µ) − µ(g),
h = δ{1} and A : µ 7→ µ(1). Observe that f is con-
vex with f⋆(x⋆) = I⋆ϕ,ν(x

⋆ + g), x⋆ ∈ Gν ; h is convex
with h⋆(y⋆) = −y⋆, y⋆ ∈ R, and A is linear and its
adjoint operator A⋆ : R → Gν is given by A⋆(λ) = λ,
λ ∈ R, where we also use λ to denote the constant func-
tion equal to λ everywhere. Hence the dual problem is
− infλ∈R{I⋆ϕ,ν(g + λ)− λ}. We now verify that constraint
qualification holds. Observe that domh = {1}, so it is
sufficient to show that 1 ∈ int(Adom f). By assumption,
there exists ε > 0 such that (1− ε, 1 + ε) ⊆ domϕ. This
implies that the set of measures C = {α · ν : |α− 1| < ε}
is contained in dom Iϕ,ν . Since AC = (1 − ε, 1 + ε), this
implies that 1 ∈ int(A dom f) and strong duality holds. Us-
ing the expression of I⋆ϕ,ν found in Proposition 3.1 gives the
desired expression for Ĩ⋆ϕ,ν and that the infimum is reached
whenever it is not finite as claimed.

It remains to show that when g ∈ L∞
ν that the infi-

mum has a finite upper bound. Since ϕ(x) = ∞ for all
x < 0 and ϕ(x) ≥ 0 for all x ≥ 0, we have for t < 0
that ϕ⋆(t) = supx tx − ϕ(x) = supx≥0 tx − ϕ(x) ≤
supx≥0 tx = 0. In particular, we get that by choos-
ing λ = −M for M the essential supremum of g that
infλ∈R

{∫
ϕ⋆(g + λ) dν − λ

}
≤

∫
ϕ⋆(g −M) dν +M ≤∫

0 dν+M =M <∞ since g−M ≤ 0 ν-a.s. by definition
of essential supremum.

Example 3.4. The squared Hellinger distance is the ϕ-
divergence given by ϕ(x) = (

√
x−1)2, which has ϕ⋆(x) =

2x
2−x for x < 2 and ϕ⋆(x) = ∞ for x ≥ 2. In particular,
any random variable g such that ν({g > 2}) > 0 has
I⋆ϕ,ν(g) = ν(ϕ⋆(g)) = ∞, but because of the additive shift
in Proposition 3.3, any bounded g has Ĩ⋆ϕ,ν(g) <∞.

As a corollary, we obtain a different variational representa-
tion of the ϕ-divergence, valid for probability measures and
containing as a special case the Donsker–Varadhan repre-
sentation of the Kullback–Leibler divergence.

Corollary 3.5. For all probability measure µ ∈ Fν ,

Iϕ (µ ∥ ν) = sup
g∈Gν

{
µ(g)−

(
inf
λ∈R

∫
ϕ⋆(g + λ) dν − λ

)}
.

Proof. Define C :=
{
µ ∈ Fν : µ(Ω) = 1

}
and observe

that C is the preimage of {1} under the map µ 7→
∫
1 dµ.

Since 1 ∈ L∞
ν ⊆ Gν , this map is continuous for any

topology compatible with the dual pair (Fν ,Gν), hence
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C is closed. This implies that δC is lsc., hence so is
Ĩϕ,ν = Iϕ,ν + δC as the sum of two lsc functions. By
the Fenchel–Moreau theorem, we can thus write Ĩϕ,ν as its
biconjugate, which immediately gives the the statement of
the corollary since Iϕ (µ ∥ ν) = Ĩϕ,ν(µ) on M1 ∩ Fν .

Example 3.6. As in Example 3.2, we consider the case of the
Kullback–Leibler divergence, given by ϕ(x) = x log x −
x+ 1. Since ϕ⋆(x) = ex − 1 we get

Ĩ⋆ϕ,ν(g) = inf
λ∈R

∫
eg+λ−1 dν−λ = log

∫
eg dν , g ∈ Gν ,

where the last equality comes from the optimal choice of
λ = − log

∫
eg dν. Writing the divergence as its biconju-

gate then gives for all probability measure µ ∈ Fν

D(µ ∥ ν) = sup
g∈Gν

{
µ(g)− log

∫
eg dν

}
= sup
g∈Gν

{
µ(g)− ν(g)− log

∫
e

(
g−ν(g)

)
dν

}
,

which is the Donsker–Varadhan representation of the
Kullback–Leibler divergence. Using the inequality
log(x) ≤ x − 1, x > 0, we see that the optimand in the
previous supremum is pointwise (for all g) greater than the
optimand in (7).
Example 3.7. For the family of divergences ϕ(x) =
|x − 1|α/α for α ≥ 1, Jiao et al. (2017) used the varia-
tional representation given by Iϕ (µ ∥ ν) = supg µ(g) −
ν(g) − ν( |x|

β

β ) where β ≥ 1 is such that 1
α + 1

β = 1,
whereas the tight representation is Iϕ (µ ∥ ν) = supg µ(g)−

ν(g) − infλ
∫ {

−x− λ− 1/α x+ λ < −1
|x+λ|β
β x+ λ ≥ −1

dν (where

the −x− λ− 1/α ≤ |x+λ|β
β for x < −1 case comes from

the fact that ϕ(x) = ∞ for x < 0). Note that the shift,
in e.g. the case α = 2, reduces the second term from the
raw second moment ν(g2) to something no larger than the
variance ν((g − ν(g))2), which is potentially much smaller.

3.3. Optimal bounds relating ϕ-divergences and IPMs

For a fixed function g, the optimal lower bound of the ϕ-
divergence as a function of the mean deviation µ(g) −
ν(g) is given by the constrained optimization problem
infµ≪ν:µ(g)−ν(g)=ε Iϕ (µ ∥ ν) where the infimum is taken
over µ ∈ M1. Fenchel’s duality theorem then implies that
one should consider functions of the form t · g for a mul-
tiplier (or scaling parameter) t ≥ 0, which motivates the
following definition.

Definition 3.8. For g ∈ Gν , we define the ϕ-cumulant gen-

erating function Kg,ν : R → R by

Kg,ν(t) := inf
λ∈R

∫
ψ⋆(tg + λ) dν (9)

= Ĩ⋆ϕ,ν(tg)− t · ν(g) , (10)

where ψ : R → R is defined by ψ(x) := ϕ(x+ 1).

Proof. Equation (10) follows from the fact that ψ⋆(x) =
ϕ⋆(x)− x and Proposition 3.3.

Example 3.9. For the Kullback–Leibler divergence, we see
by Example 3.6 that Kg,ν(t) = log ν(et(g−ν(g))), which
is the standard (centered) cumulant generating function,
thereby justifying the name.
Remark. We show in the full version of this work (Agrawal
& Horel, 2020) that the ϕ-cumulant generating function
retains many of the standard properties of the true cumulant
generating function.

Using the above definition, we reformulate the strong duality
result obtained in Section 3.2 and show that there is an
exact equivalence between upper-bounding the ϕ-cumulant
generating function of a function g and lower bounding the
ϕ-divergence in terms of the mean deviation µ(g) − ν(g).
Although the proof is simple, this result will be central in
obtaining lower bounds of the divergence in terms of IPMs
in the next sections.

Theorem 3.10. Let B : R → R be a function and let Kg,ν

be as in Definition 3.8 for some g ∈ Gν and ν ∈ M1. Then
the following two properties are equivalent:

1. for all t ∈ R, Kg,ν(t) ≤ B(t).

2. for all µ ∈ M1 ∩ Fν , Iϕ (µ ∥ ν) ≥ B⋆
(
µ(g)− ν(g)

)
.

Proof. We prove the theorem by a sequence of equivalences,
starting from 2., where every line is quantified over all
µ ∈ M1 ∩ Fν and t ∈ R:

Iϕ (µ ∥ ν) ≥ B⋆
(
µ(g)− ν(g)

)
,

⇐⇒ Iϕ (µ ∥ ν) ≥ t
(
µ(g)− ν(g)

)
−B(t) ,

⇐⇒ B(t) ≥ µ(tg)− Iϕ (µ ∥ ν)− t · ν(g) ,
⇐⇒ B(t) ≥ Ĩ⋆ϕ,ν(tg)− t · ν(g) = Kg,ν(t) ,

where the first equivalence is by definition ofB⋆, the second
is by rearranging the terms and the last one is by definition
of Ĩ⋆ϕ,ν (recall that Ĩϕ,ν(µ) = Iϕ (µ ∥ ν) if µ ∈ M1 ∩ Fν
and +∞ otherwise).

Remark. Another way to state the Theorem is that
K⋆
g,ν is the best lower bound on the divergence by a

lsc function of the deviation, and in particular is the
best bound possible except for possibly the (at most
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2) discontinuity points of the best bound. Indeed, the
best bound is L(ε) = infζ≪ν:ζ(g)−ν(g)=ε Iϕ (ζ ∥ ν) =
infζ≪ν Iϕ (ζ ∥ ν)+δ{0}(ζ(g)−ν(g)−ε) which is a convex
function of ε, and since Iϕ (µ ∥ ν) ≥ L(µ(g) − ν(g)) ≥
L⋆⋆(µ(g) − ν(g)) by definition, Theorem 3.10 implies
Kg,ν ≤ L⋆ andK⋆

g,ν ≥ L⋆⋆ by the order-reversing property
of the conjugate. We conclude that K⋆

g,ν = L is the best
possible bound except at the most 2 points where L ̸= L⋆⋆

(which can occur only at the boundary of the domain of L).

Note that in Theorem 3.10, the function B can depend on ν
and g (as just discussed, the best choice among lsc functions
is B = Kg,ν). When the bound B holds uniformly over
a class of functions or measures one obtains the following
useful corollaries, proven in the full version of this paper
(Agrawal & Horel, 2020).

First, keeping ν fixed, the best convex lsc lower bound on
the divergence in terms of an IPM results from taking the
supremum of the functions Kg,ν for g in the class.

Corollary 3.11. Let L : R≥0 → R≥0 be a convex lsc func-
tion with L(0) = 0, ν ∈ M1 be a probability measure, and
G ⊆ Gν be a non-empty set of measurable functions closed
under negation. Then defining KG,ν(t) = supg∈G Kg,ν(t),
the following are equivalent:

1. for all t ∈ R, KG,ν(t) ≤ L⋆(|t|).

2. for all µ ∈ M1 ∩ Fν , Iϕ (µ ∥ ν) ≥ L(dG (µ, ν)).

In particular, Iϕ (µ ∥ ν) ≥ K⋆
G,ν(dG (µ, ν)), and if

Iϕ (µ ∥ ν) ≥ L(dG (µ, ν)) then K⋆
G,ν ≥ L, i.e. K⋆

G,ν is
the best convex lsc lower bound on Iϕ (µ ∥ ν) in terms of
dG (µ, ν).

Remark. Given an arbitrary function L : R≥0 → R, the
function Lfix defined by Lfix(x) = max{0, L(x)} for x >
0 and Lfix(0) = 0 is a lower bound on Iϕ (µ ∥ ν) in terms
of dG (µ, ν) if and only if L is, and furthermore L⋆⋆fix ≤ Lfix

satisfies the conditions of the corollary.

In another common case, where we wish to consider an IPM
consisting of bounded functions with respect to all pairs
of measures, we get a similar result, this time without the
requirement that µ≪ ν.

Corollary 3.12. Let L : R≥0 → R≥0 be a convex lsc func-
tion with L(0) = 0, and let G a non-empty of set of of mea-
surable functions g : Ω → R such that supω∈Ω|g(ω)| <∞.
Then defining KG(t) = supν∈M1

KG,ν(t) using the defini-
tion of KG,ν in Corollary 3.11, the following are equivalent:

1. for all t ∈ R, KG(t) ≤ L⋆(|t|).

2. for all (µ, ν) ∈ M2
1, Iϕ (µ ∥ ν) ≥ L(dG (µ, ν)).

In particular, Iϕ (µ ∥ ν) ≥ K⋆
G(dG (µ, ν)), and if

Iϕ (µ ∥ ν) ≥ L(dG (µ, ν)) then K⋆
G ≥ L, i.e. K⋆

G is the best
convex lsc lower bound on Iϕ (µ ∥ ν) in terms of dG (µ, ν).

4. Bounded functions
In this section, we show how to apply the results of Section 3
to obtain lower bounds of the ϕ-divergence by the total
variation distance. In Section 4.1, we derive quadratic upper
bounds on the ϕ-cumulant generating function, implying
Pinsker’s type inequalities. In Section 4.2, we study Vajda’s
problem: obtaining the best lower bound of the ϕ-divergence
by a function of the total variation distance.

4.1. Pinsker-type inequalities

Corollary 3.12 implies that Pinsker-type inequalities, which
are quadratic lower bounds on the divergence Iϕ (µ ∥ ν)
in terms of the total variation TV (µ, ν), are equivalent to
quadratic upper bounds on the function Kg,ν(t), as in Ho-
effding’s lemma. Under certain mild assumptions on the
function ϕ, one can uniformly bound the second derivate
K ′′
g,ν(t), thereby obtaining these standard results and gener-

alizing them to a broad class of ϕ-divergences.
Proposition 4.1. Let g ∈ L∞

ν and denote by m (resp. M )
the essential infimum (resp. supremum) of g with respect
to ν. Assume that ϕ is strictly convex and continuously
twice differentiable on its domain and that 1/ϕ′′ is concave.
Let ℓ = limx→∞ ϕ(x)/x and let us further assume that
limx→ℓ− ψ

⋆(x) = +∞ (this is true in particular when
ℓ = +∞). Then

Kg,ν(t) ≤
(M −m)2

8 · ϕ′′(1)
t2 , t ∈ R .

Example 4.2. For the KL divergence, we have that ϕ(x) =
x log(x) − x + 1 and ϕ′′(x) = 1/x, so that 1/ϕ′′(x) =
x is concave, and thus the above Proposition implies
log ν(et(g−ν(g))) ≤ t2(M − m)2/8, which is exactly the
standard statement of Hoeffding’s lemma.

The condition that 1/ϕ′′ concave is not satisfied by all com-
mon ϕ-divergences, but we give a similar result (with a
slightly worse constant) when ϕ′′ is monotone.
Proposition 4.3. Let g ∈ L∞

ν and denote by m (resp. M )
the essential infimum (resp. supremum) of g with respect to
ν. Assume that ϕ is twice differentiable on its domain and
that ϕ′′ monotone, then

Kg,ν(t) ≤
(M −m)2

2 · ϕ′′(1)
t2 , t ∈ R .

Corollary 4.4. If ϕ satisfies the conditions of Proposition
4.1, then for every (µ, ν) ∈ M2

1 we have Iϕ (µ ∥ ν) ≥
ϕ′′(1)

2 TV (µ, ν)
2, and if ϕ satisfies the conditions of Propo-

sition 4.3 we have Iϕ (µ ∥ ν) ≥ ϕ′′(1)
8 TV (µ, ν)

2.
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Proof. Recall that the total variation distance is the IPM
associated with the class of bounded functions taking values
in the interval [−1, 1]. For such a function g, the upper
bound on Kg,ν(t) takes the form t2/(2ϕ′′(1)) in Proposi-
tion 4.1 and 2t2/ϕ′′(1) in Proposition 4.3. We conclude by
Corollary 3.12 since the convex conjugate of t 7→ at2 is
t 7→ t2/(4a) for any a > 0.

Example 4.5. Since by Example 4.2 the KL divergence
satisfies the conditions of Proposition 4.1 and ϕ′′(1) = 1,
Corollary 4.4 implies that Iϕ (µ ∥ ν) ≥ 1

2TV (µ, ν)
2, which

is the standard statement of Pinsker’s inequality.
Example 4.6. The α-divergence given by ϕα(x) =
xα−α(x−1)−1

α(α−1) has ϕ′′α(x) = xα−2 which is monotone for
all α and hence Corollary 4.4 implies that Iϕα

(µ ∥ ν) ≥
1
8 · TV (µ, ν)

2 for all α, which appears to be previously
unknown for α > 2. For α ∈ [1, 2], we also have that
1/ϕ′′α(x) = x2−α is concave and Corollary 4.4 then implies
the tighter bound Iϕα (µ ∥ ν) ≥ 1

2 ·TV (µ, ν)
2. This tighter

bound was already observed in Gilardoni (2010) and in fact
shown to hold for any α ∈ [−1, 2]. We recover this more
general result via a different technique in the full version of
this work (Agrawal & Horel, 2020).

4.2. Vajda’s problem

The quadratic Pinsker-type bounds derived in the previous
subsection are easy to understand and apply, but are useful
only in the regime when the divergence Iϕ (µ ∥ ν) is less
than some absolute constant, since 0 ≤ 1

2TV (µ, ν)
2 ≤ 2

always, but TV (µ, ν) → 2 implies D(µ ∥ ν) → ∞. The
Vajda problem (Vajda, 1972) is to quantify the optimal rela-
tionship between the two, that is to compute the function

Lϕ(ε) = inf
µ,ν∈M1

TV(µ,ν)=ε

Iϕ (µ ∥ ν) .

This problem was solved in the case of the KL divergence
by Fedotov et al. (2003), and for the general case of an arbi-
trary ϕ by Gilardoni (2010), but we rederive these bounds
here with a new geometric interpretation to show the appli-
cability of our techniques. In particular, the duality result
of Corollary 3.12 reduces the problem of computing Lϕ to
the problem of computing the best upper bound on Kg,ν for
all probability measures ν and functions g in the set B of all
measurable functions from Ω to [−1, 1].

Lemma 4.7. Let KB(t) = supν∈M1,g∈BKν,g(t). Then
Lϕ(ε) = K⋆

B(ε) for all ε ≥ 0 and L⋆ϕ(t) = KB(t).

Proof. The Vajda function is convex and lower semi-
continuous (Vajda, 1972), so by Corollary 3.12 we get
that Iϕ (µ ∥ ν) ≥ Lϕ(TV (µ, ν)) implies Iϕ (µ ∥ ν) ≥
K⋆

B(TV (µ, ν)) ≥ Lϕ(TV (µ, ν)), so since Lϕ is by defini-
tion the largest function lower bounding Iϕ (µ ∥ ν) we get

Lϕ = K⋆
B as desired. Finally, KB is convex and lsc as the

supremum of convex lsc functions, and so L⋆ϕ = K⋆⋆
B =

KB.

The main result of this section establishes that Lϕ is the
convex conjugate of the following function to which we
associate a natural geometric interpretation below.
Definition 4.8. The height-for-width function hgtψ⋆ :

R≥0 → R̄ associated with ψ⋆ is given by the following
equivalent definitions:

1. hgtψ⋆(t) = infλmax{ψ⋆(λ + t/2), ψ⋆(λ − t/2)}.
Furthermore, if there exists λ(t) such that ψ⋆(λ(t) +
t/2) = ψ⋆(λ(t) − t/2), then hgtψ⋆(t) = ψ⋆(λ(t) +
t/2) = ψ⋆(λ(t)− t/2).

2. hgtψ⋆(t) = inf{y ∈ R : ℓ({x : ψ⋆(x) ≤ y}) ≥ t}
where ℓ([a, b]) = b − a is the length of the interval
{x : ψ⋆(x) ≤ y} (recall that ψ⋆ is convex, coercive,
and lsc so that this set is a compact interval).

Note that the second definition expresses hgtψ⋆(t) as the
(right) inverse of the sublevel set volume function y 7→
ℓ({x : ψ⋆(x) ≤ y}) mapping a level y to the Lebesgue
measure of the associated sublevel set of ψ⋆. Equivalently,
the sublevel set volume function maps a level y to the length
of the longest horizontal segment which can be placed in the
epigraph of ψ⋆ subject to being no higher than y. Hence, its
inverse, the height-for-width function, asks for the minimal
height at which one can place a horizontal segment of length
t in the epigraph of ψ⋆. This is shown to be equivalent to
the first definition in the full version of this work (Agrawal
& Horel, 2020) and Figure 1 illustrates this definition in the
case of the Kullback–Leibler divergence.
Example 4.9. For the case of the KL divergence (e.g.
ψ∗(t) = et − t − 1), one can compute that ψ∗(λ(t) +

t/2) = ψ∗(λ(t) − t/2) for λ(t) = − log et/2−e−t/2

t =

− log 2 sinh(t/2)
t , so that hgtψ∗(t) = −1 + t

2 coth
t
2 +

log 2 sinh(t/2)
t .

We are now ready to state the main result of this section.
Proposition 4.10. KB(t) = hgtψ⋆(2t).

Proof. Our goal is to use a minimax theorem to swap
the supremum and infimum in the definition of KB(t),
since for fixed λ, by convexity of ψ⋆ the supremum
supν∈M1,g∈B

∫
ψ⋆(tg + λ) dν is achieved by taking g to

be either the constant 1 or the constant −1. However, the
set M1 × B is not necessarily compact, which is required
to apply the standard minimax theorem of Sion (1958). But
as we show in the full version of this work (Agrawal &
Horel, 2020), the optimization problem has an euqivalent
formulation over a finite dimensional compact convex set,
so that the minimax theorem can be applied.
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≈ −0.54 ≈ 0.46 λ(t) + t/2λ(t)− t/2 0

hgtψ∗(1) ≈ 0.12

hgtψ∗(t)

hgtψ∗(3) ≈ 1.01

width 1

width t

width 3

Figure 1. Illustration of height-for-width function for ψ⋆(x) = ex − x− 1

Example 4.11. For the KL divergence, using the fact that
Kg,ν(t) = log ν(et(g−ν(g))), Proposition 4.10 and Example
4.9 imply that the optimal bound on the cumulant generating
function of a random variable g with ν(g) = 0 and m ≤
g ≤ M ν-a.s. is log ν(etg) ≤ hgtψ⋆ [(M −m)t] = −1 +
M−m

2 coth M−m
2 + log 2 sinh((M−m)t/2)

t , which strength-
ens the standard quadratic upper bound (Hoeffding’s lemma)
derived in Example 4.2.

Corollary 4.12. Lϕ(ε) = hgt⋆ψ⋆(ε/2). In particu-
lar, if hgtψ⋆ is differentiable then Lϕ(2 hgt

′
ψ⋆(x)) =

x hgt′ψ⋆(x)− hgtψ⋆(x).

Proof. Lϕ(ε) = K⋆
B(ε) and KB(t) = hgtψ⋆(2t), so that

Lϕ(ε) = hgt⋆ψ⋆(ε/2). The supplemental claim follows
from the explicit expression for the convex conjugate.

Example 4.13. For the KL divergence, using Example
4.9, Corollary 4.12 applied to x = 2t gives Lϕ(V (t)) =

log t
sinh t + t coth t−

t2

sinh2 t
for V (t) = 2 coth t− t

sinh2 t
−

1/t, which is exactly the formula derived by Fedotov et al.
(2003).

5. Unbounded functions
We now apply the duality framework of Section 3 to spaces
containing unbounded functions. We start with the case of
a single unbounded function g absolutely integrable with
respect to ν and obtain as a corollary of Theorem 3.10 an
equivalence between lower bounding Iϕ (µ ∥ ν) as a func-
tion of the mean deviation µ(g)−ν(g), and upper bounding
the cumulant function of g.

Corollary 5.1. Let B : R → R be a function and let
g : Ω → R be a (possibly unbounded) function such that
ν(|g|) <∞. Then the following two properties are equiva-
lent:

1. for all t ∈ R, Kg,ν(t) ≤ B(t).

2. for all µ ∈ M1 with µ ≪ ν and µ(|g|) < ∞,
Iϕ (µ ∥ ν) ≥ B⋆

(
µ(g)− ν(g)

)
.

Proof. Writing g = {g ·1A : A ∈ A}, it is easy to see that
Gν := Span(g ∪ L∞

ν ) is the smallest decomposable space
containing g and that L∞

ν ⊂ Gν . Furthermore, defining
Fν = {µ ∈ L1

ν : |µ|(|g|) <∞}, we verify that Fν is also
a decomposable space and that (Fν ,Gν) form a dual pair.
For decomposability, consider µ ∈ L1

ν with |µ|(|g|) < ∞,
A ∈ A and m ∈ L∞

ν . Define ξ ≪ ν whose derivative is
given by dξ/dν = dµ/dν ·1A+m ·1Ω\A, then we want to
show that |ξ|(|g|) <∞. This is immediate since the triangle
inequality gives |ξ|(|g|) ≤ |µ|(|g|)+ ∥m∥ν,∞|ν|(|g|) <∞.
Similarly, the fact that for µ ∈ Fν , h ∈ Gν , µ(h) < ∞
easily follows from the triangle inequality. We can thus
apply Theorem 3.10 to the pair (Fν ,Gν) and obtain the
desired conclusion.

We now turn to the question of obtaining Pinsker-type in-
equalities, that is giving a lower bound of the divergence by
a quadratic function of the mean deviation. Corollary 5.1
implies that a necessary condition is that Kg,ν(t) ≤ c · t2/2
for some c > 0. This motivates the following definition.

Definition 5.2 (ϕ-subgaussian). Let g ∈ L0, we say that g
is (c, ν) ϕ-subgaussian if Kg,ν(t) ≤ c · t2/2, t ∈ R. We
denote by Gc,ν the set of all (c, ν) ϕ-subgaussian functions.

As already seen, for ϕ : x 7→ x log x− (x− 1), Kg,ν is the
log moment generating function, and the previous definition
generalizes the standard definition of subgaussian random
variables. Furthermore, if ϕ satisfies the assumptions of
either Proposition 4.1 or Proposition 4.3, the same propo-
sitions imply that all bounded functions with fixed-length
range are (c, ν)-subgaussian for some constant c.

The following proposition shows that the class of subgaus-
sian functions is the largest class of functions for which
Pinsker’s type inequalities can be obtained.

Proposition 5.3. Let G ⊆ L0(Ω) be a class of measurable
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functions and c ≥ 0, then the following two propositions
are equivalent.

1. G ⊆ Gc,ν .

2. for all µ ∈ M1 ∩ L1
ν , Iϕ (µ ∥ ν) ≥ 1

2c2 · dG (µ, ν)
2.

Proof. We proceed similarly to the proof of Corollary 3.11.
First, assume 1. and consider µ ∈ M1 with µ≪ ν. Either
Iϕ (µ ∥ ν) = +∞ and 2. is trivially true. Otherwise consider
g ∈ G. In the full version of this paper (Agrawal & Horel,
2020), we show that since Kg,ν is defined everywhere we
have that ν(|g|) < ∞ and µ(|g|) < ∞. But then Corol-
lary 5.1 implies Iϕ (µ ∥ ν) ≥ 1

2c2

(
µ(g) − ν(g)

)2
. Taking

the supremum over g ∈ G gives 2. The reverse direction
follows immediately from an application of Corollary 5.1 to
each function g ∈ G.

Example 5.4. The χ2-divergence, corresponding to ϕ(x) =
(x− 1)2 for x ≥ 0, has

ψ⋆(x) =

{
x2/4 x ≥ −2

−1− x x < −2
≤ x2/4 ,

so that Kg,ν(t) ≤ infλ
∫
(tg + λ)2/4 dν = t2 Varν(g)/4,

and in particular the class of “χ2-subgaussian” random vari-
ables includes all those with bounded variance.

Divergences weaker than the KL. One notable feature
of the Kullback–Leibler divergence is that it heavily penal-
izes large likelihood ratios dµ

dν , and in particular, if µ ̸≪ ν
then I (µ ∥ ν) = ∞. If this behavior is undesirable, one
may wish to consider a weaker divergence, specifically one
with limx→∞ ϕ(x)/x < ∞. However, we show in the
proposition below (whose proof is given in the full version
(Agrawal & Horel, 2020)) that for such divergences no un-
bounded function satisfies any nontrivial bound of the form
Iϕ (µ ∥ ν) ≥ L(|µ(g)− ν(g)|) for all µ. In particular, con-
trol on the absolute deviation of any unbounded function in
terms of a ϕ-divergence Iϕ requires limx→∞ ϕ(x)/x = ∞.
Proposition 5.5. Let Iϕ (µ ∥ ν) be the ϕ-divergence associ-
ated to a function ϕ satisfying limx→∞ ϕ(x)/x = ℓ < ∞,
and let g ∈ L1

ν \ L∞
ν be a ν-integrable but unbounded

function. Then for any function L : R≥0 → R̄≥0 such
that Iϕ (µ ∥ ν) ≥ L(|µ(g) − ν(g)|) for all µ ∈ M1 with
µ(|g|) <∞, we have that in fact L(x) = 0 for all x ≥ 0.
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