
Boosting for Control of Dynamical Systems

Naman Agarwal 1 Nataly Brukhim 2 1 Elad Hazan 2 1 Zhou Lu 2

Abstract
We study the question of how to aggregate con-
trollers for dynamical systems in order to improve
their performance. To this end, we propose a
framework of boosting for online control. Our
main result is an efficient boosting algorithm that
combines weak controllers into a provably more
accurate one. Empirical evaluation on a host of
control settings supports our theoretical findings.

1. Introduction
In many learning scenarios it is significantly easier to come
up with a mildly accurate rule of thumb than state of the art
performance. This motivation led to the development of en-
semble methods and boosting (Schapire & Freund, 2012), a
theoretically sound methodology to combine rules of thumb
(often referred to as weak learners) into a substantially more
accurate learner.

The application of boosting has transformed machine learn-
ing across a variety of applications, including supervised
learning: classification (Freund & Schapire, 1997), regres-
sion (Mason et al., 2000), online learning (Beygelzimer
et al., 2015b;a), agnostic learning (Kanade & Kalai, 2009),
recommendation systems (Freund et al., 2003) and many
more.

While the same motivation for boosting exists for dynamical
systems, i.e. it is often easy to come up with a reasonable
predictor or a controller for a dynamical system, the theory
and practice of boosting faces significant challenges in these
settings due to the existence of a state. Formally, a dynam-
ical system is specified by a rule xt+1 = f(xt, ut) + wt.
The problem of optimal control in dynamical systems re-
quires the design of a sequence of controls {ut} so as to
minimize a certain objective (for example making the states
follow a certain trajectory). As can be seen readily, the
decisions made by a controller affects the future trajectory

1Google AI Princeton 2Department of Computer Science,
Princeton University. Correspondence to: <namanagar-
wal@google.com, {nbrukhim,ehazan,zhoul}@princeton.edu>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

of the system, and hence it is often not a-priori clear how to
obtain a meaningful guarantee when switching between or
aggregating different controllers.

In this paper we propose a framework for formalizing boost-
ing in the context of optimal control of dynamical systems.
The first crucial insight comes from the newly emerging
literature on non-stochastic control, which allows a non-
counterfactual description of the dynamics. Then leverag-
ing techniques from online learning with memory (Anava
et al., 2015) and online gradient boosting (Beygelzimer
et al., 2015b), we provide a boosting algorithm for control-
ling systems with state and prove appropriate theoretical
guarantees on its performance.

The notion of boosting in online learning. Notice that
unlike supervised learning, in the case of dynamical systems
it is not immediately clear what metric should be used to
measure the improvement provided by boosting algorithms.
The theory of online gradient boosting (Beygelzimer et al.,
2015b) suggests to boost online learning by improving the
expressivity of the predictors. Given a set of weak online
learners, online boosting guarantees prediction (as measured
by mistake bounds or regret) that is as good as a predictor
in a larger class.

Furthermore, a robust way to study the optimal control
problem is to study it in the online non-stochastic setting
(Agarwal et al., 2019), where both the objective to be mini-
mized and the perturbations to the system get revealed in an
online fashion1.

Motivated by this, we take an online boosting approach to
optimal control. Our boosting algorithm when given access
to (weak) controllers from a certain class, provides a boosted
controller than can provably perform (in terms of regret) as
well as a controller from the larger class of a committee (or
convex combination) of the weak controllers. Furthermore,
we provide an alternate boosting algorithm, which is more
efficient in terms of the number of weak controllers required,
and allows for the utilization of weak controllers designed
for handling only quadratic losses into strong controllers
that can compete against the more general class of smooth
and strongly-convex losses.

1We formally define the notion of non-stochastic control in
Section 2.1.

Boosting for Control of Dynamical Systems

We provide the relevant background and setup in Section
2. We formally describe our algorithms and provide formal
guarantees on their performance in Section 3. We conclude
with experimental evaluation of our methods on a variety of
control and learning tasks in dynamical systems.

Dynamics with bounded memory. For our boosting
techniques to induce bounded regret we require that the
dynamical systems considered have negligible dependence
on history beyond a certain amount of time steps in the
past. We quantify this property as H-bounded memory and
formally define it in Definition 2.1. This assumption is anal-
ogous to a standard assumption in Reinforcement Learning,
called mixability of the underlying Markov Decision Pro-
cess. The so called episodic setting in RL is also often used
to circumvent long-term dependencies.

In control theory, the bounded memory assumption man-
ifests in two forms. The stronger notion called stability,
posits that the system remains bounded over any sequence
of actions. This is often considered to be a very strong
assumption. A weaker assumption commonly used is sta-
blizability or controllability, which posits the existence of a
controller or a policy which generates stable actions. Upon
action with such a controller, the system de-facto exhibits
a bounded memory. In this paper, we assume that all pol-
icy classes we work with induce a bounded memory on
the dynamical system (or analogously are fast-mixing or
stabilizing).

Boosting vs. overparametrization of deep controllers.
As opposed to supervised learning, in control there are many
situations in which there is limited availability of training
data, if at all. While deep neural networks have proven
extremely successful for large data regimes in supervised
learning, we experimentally find that for control, boosting
small network controllers results in superior performance to
training of a large network controller.

2. Background and Setup
Our treatment of boosting applies only to certain dynam-
ical systems and control methods. The main requirement
we place is a memory bound on the effect of past actions.
This section formally describes the dynamics setting and
underlying assumptions for our algorithms to apply.

2.1. Non-stochastic Control

A general framework of robust optimal control has emerged
recently which rests on analyzing optimal control in an
online non-stochastic setting (Agarwal et al., 2019; Hazan
et al., 2019; Simchowitz et al., 2020). In this framework, at
each round t ∈ [T] the controller observes the state of the
system xt ∈ Rk, and outputs an action ut ∈ U ⊂ Rd, where

U is a convex bounded set. The adversary then reveals a
convex cost function and the loss ct(xt, ut) is incurred by
the controller. The system then transitions to a new state
xt+1 according to the following law with f representing the
dynamics of the system,

xt+1 = f(xt, ut) + wt, (1)

where wt ∈ Rk is an adversarially chosen perturbation to
the dynamics that the system suffers at each time step. The
costs and the perturbations are not known to the controller
in advance and are assumed to be revealed to the controller
after it has committed to the action ut. The task of the
controller is to minimize regret defined in the following way

Regret =
∑
t

ct(xt, ut)−min
π∈Π

∑
t

ct(xt(w1:t, π), uπt)

Here Π represents a class of policies that we wish to com-
pare to. Furthermore xt(w1:t, π) is the state that the system
would have reached when executing π on the perturbed dy-
namics with the same perturbations {w1 . . . wt}. Observe
that this is a counterfactual notion of regret, since the actions
performed by the comparator affect the future cost suffered
by the comparator.

Note that the assumption of observable perturbation is with-
out loss of generality when the underlying system f is
known to the controller and the state is fully observable.
We do not make these assumptions in the paper but rather
work with the setting of the complete observation of w as in
(Agarwal et al., 2019). Furthermore, we make no distribu-
tional assumptions on wt and only assume ‖wt‖2 ≤W , for
some W > 0.

Perturbation Based Policies The reference class of poli-
cies Π we consider in this paper is comprised of policies π
that map a sequence of perturbations w1 . . . wt−1 to an ac-
tion ut. Note that this class of policies is only more general
than the standard notion of policies which map the current
xt to an action ut. In particular, it captures linear policies
for linear dynamical systems (Section 5). A crucial prop-
erty of such policies is that the decisions depend directly on
the underlying dynamics and do not depend directly on the
control feedback, but only implicitly via the perturbations.

Another important limitation we place on policies and dy-
namics in this paper is memory boundedness, as we now
define.

Definition 2.1 ((H, ε)-Bounded Memory). Given a dynam-
ical system as given in Equation 1, for a sequence of actions
u1, . . . , uT and any time t, let x̂t be the state reached by the
system if we artificially set xt−H+1 = 0 and simulate the
system with the actions ut−H+1, . . . , ut.

Boosting for Control of Dynamical Systems

The sequence of actions {u1 . . . uT } is considered to be of
(H, ε)-bounded memory if for all t,

|ct(x̂t, ut)− ct(xt, ut)| ≤ ε.

Assumption 2.2 (Bounded Memory of Convex Combina-
tions). For a given dynamical system the class of (H, ε)-
memory bounded sequences is closed under convex combi-
nation.

Note that the notion of bounded memory is a slightly
stronger notion than that of controllability in the sense that
it is applicable to changing policies as well. This notion
is also referred to as sequential strong stability in the work
of (Cohen et al., 2018). The key point is that the effect of
the distant past (beyond H most recent actions and distur-
bances) on the current state is negligible. Multiple previous
works exhibit policy classes which produce bounded mem-
ory actions (Cohen et al., 2018; Agarwal et al., 2019; Cohen
et al., 2019). Concretely, in Section 5 we describe the GPC
controller from (Agarwal et al., 2019) which is shown to be
memory bounded as well as satisfy Assumption 2.2.

Reduction to Bounded Memory Functions For a se-
quence of actions, we now define a proxy function which
only penalizes the last H actions 2:

`t(0, ut−H+1, . . . , ut) := ct(x̂t, ut) (2)

(H, ε)-bounded memory of actions now ensures that min-
imizing regret over the proxy costs `t, which have finite
memory, is sufficient to minimize overall regret. Having
reduced the control of dynamical systems to minimizing
regret over functions with memory, we are now ready to
discuss the technique of Online Boosting, which we will
apply on the proxy cost function.

2.2. Online Boosting

The presence of state in non-stochastic control makes online
boosting more challenging. We first give a brief background
on online boosting for the regression setting (Beygelzimer
et al., 2015a), and in Section 3 discuss a reduction that
enables the use of a similar technique for non-stochastic
control.

Informally, online boosting refers to a meta-learning algo-
rithm which is given black-box oracle access to an online
(weak) learning algorithm A for a function class Π and lin-
ear losses, with regret R, and is given a bound N on the
total number of calls made in each iteration to copies of A.
The algorithm then obtains an online learning algorithm A′
for a richer function class Π′ = conv(Π) (i.e. the convex

2Each `t naturally depends on the sequence of {wt : wt−H}
chosen by the adversary. We suppress this dependence for nota-
tional convenience.

hull of Π), and any convex losses, with a (possibly larger)
regret R′.

The online booster maintains N instances of the weak learn-
ing algorithm, denoted A1, ...,AN . In each round t ∈ [T],
an adversary selects an example xt from a compact feature
space X , and a loss function `t : X → Rk, and presents xt
to the learner. The policy regret R(T) of each weak learner
Ai is assumed to be bounded as

T∑
t=1

`t(Ai(xt))−min
π∈Π

T∑
t=1

`t(π(xt)) ≤ R(T),

with the regretR(T) being a non-decreasing sub-linear func-
tion of T . Note the slight abuse of notation here;Ai(·) is not
a function but rather the output of the online learning algo-
rithm Ai computed on the given example using its internal
state. In each round t. the online booster takes some con-
vex combination of all the predictions made by the learners,
and outputs the boosted prediction. To update A1, ...,AN
at every iteration t ∈ [T], the booster passes a carefully
chosen loss function to each of the weak learners. Specif-
ically, each learner Ai is fed with a residual loss function
`it(y) = ∇(yi−1

t) · y, where yi−1
t is a convex combination

of previous weak learner predictions, A1(xt), ...,Ai−1(xt).

The work of (Beygelzimer et al., 2015a) proves that this
technique results in a regret bound of

T∑
t=1

`t(yt)− min
π∈conv(Π)

T∑
t=1

`t(π(xt)) ≤ R(T) +O

(
T

N

)
.

where y1, ..., yT are the predictions outputted by the booster.
Note that although the regret of the boosting algorithm is
larger by O(T/N) than the regret of the weak learners, it is
now achieved against the best predictor available in a richer
class. This is especially meaningful when the class of pre-
dictors Π is e.g., neural networks, a highly non-convex class.
Thus, by boosting such predictors, the resulting algorithm is
guaranteed to have low regret with respect to the convex hull
of Π. Our method is based on the online boosting technique,
as detailed next.

3. Algorithms and Main Results
This section describes our algorithms for boosting in dynam-
ical systems. The main idea of our methods is to leverage the
memory boundedness and reduce online control of dynami-
cal systems to online learning with finite memory (Anava
et al., 2015). We achieve this by constructing a proxy cost
function which only takes into account the H most recent
rounds of the system (see Equation 2). We then extend the
online boosting methodology (discussed in Subsection 2.2)
to apply to these losses with memory. Bounded memory
ensures that minimizing regret over our constructed proxy
costs is sufficient to minimize overall regret.

Boosting for Control of Dynamical Systems

Algorithm Class Loss Regret
DBoost 1 conv(Π) linear R+ T/N
DBoost 2 Π quadratic R+ T (1− α

β)N

Table 1. Main results summary. Boosting uses N weak con-
trollers which have low regret R = o(T), against a reference class
of predictors Π. The DynaBoost1 algorithm allows to compete
with the best committee (convex combination) of weak controllers
conv(Π). DynaBoost2, which is more efficient (requires smaller
N), suited for losses that are α-strongly convex and β-smooth.
DynaBoost1 and DynaBoost2 assume weak controller guarantees
hold w.r.t. linear and quadratic losses, respectively.

We propose two algorithms (1, 2) for boosting online control,
given access to weak controllers (see definitions below)
which obtain low regret against a policy class Π and class
of losses L. For the first algorithm we assume L to be the
class of linear losses as detailed in Subsection 3.1. For the
second algorithm we assume L to be the class of quadratic
losses as detailed in Subsection 3.1.

Although the second method requires stronger assumptions,
its advantage is that it is more efficient in terms of the
number of copies N of weak controllers required to achieve
low regret.

3.1. DynaBoost1: Boosting Online Control

Consider the non-stochastic control setting described in Sub-
section 2.1, for a dynamical system as defined in Equation
1. DynaBoost1 is presented as Algorithm 1 and assumes
an oracle access to a weak controller, which is defined as
follows:

Definition 3.1. Let Ai be an online learning algorithm for
a dynamical system as defined in Equation 1 and a reference
policy class Π. The learner Ai is a weak controller with
respect to a class of loss functions L if

1. The sequence of actions produced by Ai is of (H, ε)-
bounded memory (see Definition 2.1).

2. When run with losses `it chosen from the class of
loss functions L, it produces a sequence of actions
u1, ..., uT s.t.,

T∑
t=1

`it(u1, ..., ut)−min
π∈Π

T∑
t=1

`it(u
π
1 , ..., u

π
t) ≤ R(T).

where action uπt is obtained by applying π ∈ Π the
best policy in hindsight, and the regret R(T) is a non-
decreasing sub-linear function of the horizon T .

We can now construct the proxy linear cost functions
`it(ut−H+1, . . . , ut) which only consider the H most re-
cent rounds (see line 11 of Algorithm 1), thus obtaining the

Algorithm 1 DynaBoost 1
1: Maintain N weak learners A1,...,AN .
2: Set step length ηi = 2

i+1 for i ∈ [N].
3: for t = 1, . . . , T do
4: Receive the state xt.
5: Define u0

t = 0.
6: for i = 1 to N do
7: Define uit = (1− ηi)ui−1

t + ηiAi(xt).
8: end for
9: Output action ut = uNt .

10: Receive loss `t, suffer `t(u1, . . . , ut).
11: Define linear loss function:

`it(u1...uH) ,
H∑
j=1

∇>j,iuj

where,∇j,i := ∇t−H+j`t(0, u
i−1
t−H+1, ..., u

i−1
t).

12: Pass loss function `it(·) to weak controller Ai.
13: end for

following regret guarantee,

T∑
t=1

`it(ut−H+1, ..., ut)−min
π∈Π

T∑
t=1

`it(u
π
t−H+1, ..., u

π
t)

≤ R(T) + 2Tε. (3)

Before stating our main theorem, we need the following
definition. We say that a loss function ` is β-smooth if for
all u1, . . . , uH and ũ1, . . . , ũH , it holds that,

`(u1, . . . , uH)− `(ũ1, . . . , ũH) (4)

≤
H∑
j=1

∇j,i`(ũ1, . . . , ũH)>(uj − ũj) +
β

2

∑
j

‖uj − ũj‖22

Under these assumptions we can now give our main theorem,
providing a regret bound for Algorithm 1.

Theorem 3.2. LetL′ be the class of β-smooth loss functions.
Assume oracle access to N copies of a weak controller A
(see Definition 3.1) satisfying Equation 3. Let DU be the
diameter of the action set U . Then, there exists a boosting
algorithm (Algorithm 1) which produces a sequence of ac-
tions ut for which the following regret bound holds with
respect to the reference class conv(Π),

T∑
t=1

`t(u1, ..., ut)− min
π∈conv(Π)

T∑
t=1

`t(u
π
1 , ..., u

π
t)

≤ 2βD2
UHT

N
+R(T) + 4Tε.

The proof is given in Section 4.

Boosting for Control of Dynamical Systems

3.2. DynaBoost2: Fast-Boosting Online Control

We now present our results for the case when the loss func-
tions we compete with are strongly convex. In this case we
prove that the excess regret of boosting goes down exponen-
tially in the number of weak learners. The weak learners
required for this result are stronger in the sense that they
are able to have low regret against quadratic functions as
opposed to linear functions in the previous part. Due to this,
the boosted algorithm does not compete with an expanded
class of predictors but rather just with the original class of
predictors Π.

In addition to assumptions in the previous subsection we
will need the following additional assumptions. We say a
loss function ` is α-strongly convex when for all u1, . . . , uH
and ũ1, . . . , ũH ,

`(u1, . . . , uH)− `(ũ1, . . . , ũH) (5)

≥
H∑
j=1

∇j,i`(ũ1, . . . , ũH)>(uj − ũj) +
α

2

∑
j

‖uj − ũj‖22

Furthermore we say ` is G-bounded if for all u1, . . . , uH ∈
U we have that |`(u1, . . . , uH)| ≤ G.

Under these assumptions we can now give our main
theorem, providing a regret bound for Algorithm 2.

Theorem 3.3. Let L′ be the class of α strongly convex
and G-bounded loss functions. Assume oracle access to N
copies of a weak controller A (see Definition 3.1) satisfying
Equation 3 with respect to the class L of α-strongly convex
quadratic functions. Then, there exists a boosting algorithm
(Algorithm 2) which produces a sequence of actions ut for
which the following regret bound holds with respect to the
reference class Π,

T∑
t=1

`t(u1, ..., ut)−min
π∈Π

T∑
t=1

`t(u
f
1 , ..., u

f
t)

≤ (1− α

β
)N2GT +R(T) + 4Tε.

We provide the proof of Theorem 3.2 next. The proof of
Theorem 3.3 which follows a similar argument is deferred
to the Appendix.

4. Proof of Theorem 3.2
Proof. First, note that for any i = 1, 2 . . . N , since `it ∈
L, the loss function encountered by the weak controller

Algorithm 2 DynaBoost 2
1: Maintain N weak learners A1,...,AN .
2: Set step length ηi = α

β for i ∈ [N].
3: for t = 1, . . . , T do
4: Receive the state xt.
5: Define u0

t = 0.
6: for i = 1 to N do
7: Define uit = (1− ηi)ui−1

t + ηiAi(xt).
8: end for
9: Output action ut = uNt .

10: Receive loss `t, suffer `t(u1, . . . , ut).
11: Define quadratic loss function

`it(u1...uH) ,
H∑
j=1

ηiβ

2
‖uj−ui−1

t−H+j‖
2 +

H∑
j=1

(
∇>j,i(uj − ui−1

t−H+j)
)
.

12: where, ∇j,i := ∇t−H+j`t(0, u
i−1
t−H+1, ..., u

i−1
t).

13: Pass loss function `it(·) to weak controller Ai.
14: end for

(defined in Line 11 of 1), is a linear function, we have that:

min
π∈conv(Π)

T∑
t=1

`it(u
π
t−H+1, ..., u

π
t)

= min
π∈Π

T∑
t=1

`it(u
π
t−H+1, ..., u

π
t)

Now let π be any function in conv(Π). Observe that by the
equality above and the regret bound of the weak controller
(Equation 3), we get,

T∑
t=1

(
`it(ut−H+1, ..., ut)−`it(uπt−H+1, ..., u

π
t)

)
≤ R(T) + 2Tε. (6)

Denote j− = t− j + 1 for brevity. Define for any i ∈ [N],
t ∈ [T], and any `t ∈ L′ loss function encountered by the
booster,

∆t,i , `t(0, u
i
H− , ..., u

i
t)− `t(0, uπH− , ..., u

π
t).

Consider the following calculations for ∆t,i:

Boosting for Control of Dynamical Systems

∆t,i = `t

(
0, ui−1

H−+ηi(Ai(xH−)− ui−1
H−), . . . ,

ui−1
t +ηi(Ai(xt)− ui−1

t)

)
− `t(0, uπH− , ..., u

π
t)

(by substituting uit as in line 7 of Algorithm 1)

≤ `t(0, ui−1
H− , ..., u

i−1
t)− `t(0, uπH− , ..., u

π
t)+

H∑
j=1

(
ηi∇>j,i(Ai(xt−H+j)− ui−1

t−H+j)+

η2
i β

2
‖Ai(xt−H+j)− ui−1

t−H+j‖
2

)
(by convexity and β-smoothness of `t,

and definition of∇j,i (line 11, Algorithm 1))

Denote ∆i =
∑
t ∆t,i. Then, by summing over t ∈ [T],

and applying the weak-controller regret bound (Equation 6),
we have,

∆i ≤
T∑
t=1

((
`t(0, u

i−1
H− , ..., u

i−1
t)− `t(0, uπH− , ..., u

π
t)
)

+

ηi

H∑
j=1

∇>j,i(uπt−H+j−ui−1
t−H+j)

)
+

ηi(R(T)+2Tε)+
η2
i βD

2
UHT

2

≤ (1− ηi)∆i−1 + ηi(R(T)+2Tε)+
η2
i βD

2
UHT

2

where we used the bound ‖Ai(xt−H+j) − ui−1
t−H+j‖2 ≤

2DU . For i = 1, since η1 = 1, the above bound implies
that ∆1 ≤ βD2

UHT
2 + (R(T) + 2Tε). Starting from this

base case, by induction on i ≥ 1 it follows that ∆i ≤
2βD2

UHT
i + (R(T) + 2Tε). Applying the above bound for

i = N yields the desired result for truncated memory losses.
Lastly, using Assumption 2.2 completes the proof.

5. Case Studies
For the sake of clarity, we precisely spell out the application
of our boosting algorithms with two choices of weak learn-
ing methods to illustrate the general technique of applying
our boosting algorithm.

5.1. Boosting Deep Controllers

Consider a controller based on a Recursive Neural Net-
work(RNN) for the non-stochastic control problem with
dynamics (1). As motivated earlier we explicitly enforce the
H-memory bounded property via the choice of the sequence

length of the RNN. Formally, the weak learners in this set-
ting are deep neural networks RNNθ that map a sequence
of H past perturbations wt:t−H = wt, ..., wt−H to control:

ut+1 = RNNθ(wt−H:t).

Here by θ we denote the internal weights of the network.

When used inside Algorithm 1, each weak leaner RNNθ =
Ai is an instance of neural net that is initialized arbitrarily.
Iteratively, the network RNNθ receiveswt and predicts uit+1

using a sequential feed forward computation over wt−H:t.
It then receives the residual loss function `it(·). It then
applies the back-propagation algorithm to update its internal
weights.

5.2. Boosting for Linear Dynamical Systems

A linear dynamical system is governed by the dynamics
equation

xt+1 = Axt +But + wt, (7)

The system is assumed to be known and strongly stable(See
Definition 3.3 in (Agarwal et al., 2019)). We use the con-
troller presented in (Agarwal et al., 2019)(referred to as
Gradient Perturbation Controller (GPC)) as the weak learn-
ers. The GPC controller parameterizes the control actions
ut via the following equation:

ut = −Kxt +

H∑
i=1

M iwt−i (8)

where K is a fixed pre-computed matrix (depending only on
A,B) and M = (M1, . . .MH) are parameters governing
the controller over which the controller learns. As shown in
(Agarwal et al., 2019),K can be selected such that the strong
stability property of the system implies that the actions ut
are (O (log(T/ε)) , ε)-bounded memory (see Theorem 5.3
in (Agarwal et al., 2019)). Furthermore it can be easily
checked that the actions also satisfy Assumption 2.2.

Having setup the weak controller thus we feed it inside Al-
gorithm 1. Similar to the setting with the deep networks,
iteratively, the controller recieves wt and predicts uit+1 us-
ing the GPC prediction. Furthermore, it then receives the
residual loss function `it(·) and the internal parameters are
updated according to the GPC update.

6. Experiments
We have tested our framework of online boosting given in
Algorithm 1 in various control settings, as detailed below.

The first weak-controller we have tested is the Gradient Per-
turbation Controller (GPC) discussed above (see Subsection
5.2), presented in Figure 1. In addition, we also give results
for a RNN-based controller (see Subsection 5.1), presented

Boosting for Control of Dynamical Systems

(a) LDS of dimension d = 1 (b) LDS of dimension d = 10 (c) LDS of dimension d = 100

(d) Gaussian random walk (e) Sinusoidal Perturbations (f) Inverted Pendulum

(a) Gaussian random walk (b) Sinusoidal Perturbations

1

Figure 1. Online Boosting Control with GPC weak-controllers

(a) LDS of dimension d = 1 (b) LDS of dimension d = 10 (c) LDS of dimension d = 100

(d) Gaussian random walk (e) Sinusoidal Perturbations (f) Inverted Pendulum

(a) Gaussian random walk (b) Sinusoidal Perturbations

1

Figure 2. Online Boosting Control with RNN weak-controllers

in Figure 2. The weak-controller baselines, and the weak
controllers fed to the boosting method, are the exact same
controllers, with identical configuration per setting. Note
that in all settings, weak-controllers performance (plotted in
red) can be improved by applying boosting (plotted in blue).

We begin with experiments on a Linear Dynamical System
(as in Equation 7) where the matrices A,B are generated
randomly. We then present experiments for a non-linear
dynamics as well (Inverted Pendulum setting). The cost
function used in all settings is c(x, u) = ‖x‖22 + ‖u‖22. The
GPC weak-controller is designed as in Equation 8, following
(Agarwal et al., 2019), with the pre-fixed matrix K set to
0. The RNN weak-controller, using an LSTM architecture,
with 5 hidden units. In all figures, we plot the averaged
results for a fixed system, which differs per setting, over
20 experiment runs with different stochasticity. Confidence
intervals of .95 are plotted in each setting as well.

Sanity check experiments. To demonstrate the effective-
ness of the system in terms of both (i) its ability to reach
close to a known optimal controller, and (ii) its performance
in different dimensions, we present the results of this setting,
shown in the first row of Figure 1. For the system used in
each dimension d ∈ {1, 10, 100} (with d = k in all set-
tings), each noise term wt is normally i.i.d. distributed with
zero mean, and 0.12 variance. We set the memory length
to H = 5, and use N = 5 weak-learners in all the experi-
ments. The Linear Quadratic Regulator (LQR) is known to
be optimal in this setting and therefore this experiment only
serves as a sanity check.

Correlated disturbances experiments. We now con-
sider more challenging LDS settings in which the distur-
bances wt are correlated across time. In the ”Gaussian
random walk” setting, each noise term is distributed nor-
mally, with the previous noise term as its mean (specifically,

Boosting for Control of Dynamical Systems

wt+1 ∼ N (wt, 0.3
2)), and is clipped to the range [−1, 1].

In the ”Sinusoidal Perturbations” setting, the sine function
is applied to the time index, such that, wt = sin(t)/2π.

Note that in these settings the LQR method is no longer
optimal due to perturbations being correlated across time.
The RNN-based controllers perform better than GPC-based
controllers in the ”Gaussian random walk” setting, whereas
in the ”Sinusoidal Perturbations” setting, GPC outperforms
RNNs. However, in both cases, Boosting improves upon its
corresponding weak-controller.

Boosting vs. Over-Parameterization In Figure 2, the
”Over-parametrized RNN” baseline refers to a baseline con-
troller of the same architecture and hyper-parameters as
the RNN-weak controller, but with a larger hidden layer.
We demonstrate that by using a larger network with overall
same number of parameters as the boosted RNN controller,
boosting achieves superior performance. Notice that enlarg-
ing the size of the network might result in a controller that is
outperformed even by the smaller RNN controller, as in Fig-
ure 2(a). Overall, this experiment implies that the strength
of our method does not stem from using more parameters,
but rather from the way in which the weak-controllers are
maintained by the boosting framework.

Inverted Pendulum experiment. The inverted pendu-
lum, a highly nonlinear unstable system, is a commonly
used benchmark for control methods. The objective of the
control system is to balance the inverted pendulum by ap-
plying torque that will stabilize it in a vertically upright po-
sition. Here we follow the dynamics that was implemented
in (Brockman et al., 2016). The LQR baseline solution is
obtained from the linear approximation of the system dy-
namics, whereas our baseline and boosted controllers are
not restricted to that approximation. We add correlated dis-
turbances obtained from a Gaussian random walk, as above,
such that wt ∼ N (wt−1, 5e-3), where the noise values are
then clipped to the range [−0.5, 0.5].

7. Conclusions
We have described a framework for boosting of algorithms
that have state information, and two efficient algorithms that
provably enhance weak learnability in different ways. These
can be applied to a host of control problems in dynamical
systems. Preliminary experiments in simulated control look
promising, of boosting for both linear and deep controllers.

References
Agarwal, N., Bullins, B., Hazan, E., Kakade, S. M., and

Singh, K. Online control with adversarial disturbances.
arXiv preprint arXiv:1902.08721, 2019.

Anava, O., Hazan, E., and Mannor, S. Online learning
for adversaries with memory: price of past mistakes. In
Advances in Neural Information Processing Systems, pp.
784–792, 2015.

Beygelzimer, A., Hazan, E., Kale, S., and Luo, H. Online
gradient boosting. In Advances in neural information
processing systems, pp. 2458–2466, 2015a.

Beygelzimer, A., Kale, S., and Luo, H. Optimal and adaptive
algorithms for online boosting. In International Confer-
ence on Machine Learning, pp. 2323–2331, 2015b.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym.
arXiv preprint arXiv:1606.01540, 2016.

Cohen, A., Hasidim, A., Koren, T., Lazic, N., Mansour,
Y., and Talwar, K. Online linear quadratic control. In
Proceedings of the 35th International Conference on Ma-
chine Learning, pp. 1029–1038. PMLR, 2018.

Cohen, A., Koren, T., and Mansour, Y. Learning linear-
quadratic regulators efficiently with only

√
T regret. In

Chaudhuri, K. and Salakhutdinov, R. (eds.), Proceed-
ings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learn-
ing Research, pp. 1300–1309, Long Beach, California,
USA, 09–15 Jun 2019. PMLR.

Freund, Y. and Schapire, R. E. A decision-theoretic general-
ization of on-line learning and an application to boosting.
J. Comput. Syst. Sci., 55(1):119–139, August 1997. ISSN
0022-0000. doi: 10.1006/jcss.1997.1504. URL http:
//dx.doi.org/10.1006/jcss.1997.1504.

Freund, Y., Iyer, R., Schapire, R. E., and Singer, Y.
An efficient boosting algorithm for combining prefer-
ences. J. Mach. Learn. Res., 4:933–969, December
2003. ISSN 1532-4435. URL http://dl.acm.org/
citation.cfm?id=945365.964285.

Hazan, E., Kakade, S. M., and Singh, K. The nonstochastic
control problem. arXiv preprint arXiv:1911.12178, 2019.

Kanade, V. and Kalai, A. Potential-based agnostic boosting.
In Advances in neural information processing systems,
pp. 880–888, 2009.

Mason, L., Baxter, J., Bartlett, P. L., and Frean, M. R. Boost-
ing algorithms as gradient descent. In Advances in neural
information processing systems, pp. 512–518, 2000.

Schapire, R. E. and Freund, Y. Boosting: Foundations and
algorithms. MIT press, 2012.

Simchowitz, M., Singh, K., and Hazan, E. Improper learning
for non-stochastic control, 2020.

http://dx.doi.org/10.1006/jcss.1997.1504
http://dx.doi.org/10.1006/jcss.1997.1504
http://dl.acm.org/citation.cfm?id=945365.964285
http://dl.acm.org/citation.cfm?id=945365.964285

