Boosting for Control of Dynamical Systems

A. Appendix
A.1. Proof of Theorem 3.3

Proof of Theorem 3.3. Since A’ satisfies inequality 3, we
have that
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Consider the following calculations for A ;:
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(by convexity and S-smoothness of ¢;)

=t — j + 1 for brevity. Define for any i € [N],

By summing A; ; over t € [T], we have that
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(by the weak-controller regret bound 9)
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Choosing 7; = %, then by noticing A; is always upper

bounded by a convex combination of Ag and (R(T) +2T¢)

, we have
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plugging ¢ = N in finishes our proof. O



