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A. Appendix
A.1. Proof of Theorem 3.3

Proof of Theorem 3.3. Since Ai satisfies inequality 3, we
have that
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Thus by summing them up we get
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Consider the following calculations for �t,i:

�t,i = `t

✓
0, ui�1

H�+⌘i(Ai
(xH�

)� ui�1

H�), . . . ,

ui�1

t +⌘i(Ai
(xt)� ui�1

t )

◆
� `t(0, u

⇡
H� , ..., u⇡

t )

(by substituting ui
t as in line 7 of Algorithm 2)

 `t(0, u
i�1

H� , ..., u
i�1

t )� `t(0, u
⇡
H� , ..., u⇡

t )+

HX

j=1

✓
⌘ir>

j (Ai
(xt�H+j)� ui�1

t�H+j)

+

⌘2i �

2

kAi
(xt�H+j)� ui�1

t�H+jk
2

◆
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By summing �t,i over t 2 [T ], we have that
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plugging i = N in finishes our proof.


