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S1. Simplification of the first-layer kernel

In this section, we get explicit control in spectral norm of the difference between the empirical (i.e. finite-size) NTK and the
version in eqn. (22) that arises through the simplification of the first-layer kernel K in eqn. (12). We will use the notation
A;. = (A, ..., Aipn), where A, is defined similarly. Recall from eqns. (8) and (9) that the empirical NTK is given by

. XTX o (F’)T diag(Wg)QF’ n FTF
- no ny ni

K :

+ I )

and from eqn. (22) the simplified kernel is given by

XTX FTF
Kimp 1= C + (' = OI + +1, (52)
no ni
Also, define
!
R:= Cf11T, (S3)
no

where (' := [E..rr0,1)0"(2)] ®. In this section, we show for any ,0 >0
]P’{HK—KSimp—RH > ng€—1/4} <5 (S4)

for sufficiently large ng.

Let E be expectation over W; and Wy conditional on X. We note that with high-probability for any ¢ > 0 that
(XTX/n0)ap = bap + O <n8_1/2) for all a and b, and that || X " X/ng|| < n®, since X is i.i.d. Gaussian. The use
of O hides uniform constants.
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Define
XTXx
ng

Ak =

_ 1 &
o (W)} (FL)TF, M) and A= 3T A, (s5)

where M :=E (F[.)" F}. (which does not depend on k), so EAj, = 0. Then
XTX T

no

_ XTX
K — Kgnp — R = A+{ @(M—M)—R]+( @M—Ksimp>, (S6)

o

where M := (11" + (' — ¢)I. Elementary arguments given in Sec. S1.2 show that, in operator norm, the two rightmost

terms in eqn. (S6) are bounded by O(ny B 1/2) In Sec. S1.1, we bound A by using the fact that, conditional on X, A is a

sum of independent random matrices to apply the matrix Bernstein inequality (Tropp, 2015).

S1.1. Bounding A

We start with a supremum bound on ||A||. For any vector v =), vies, we have

180l < D JonlllAken | < nit supl (Wa) Fi Fiy — M| | X7 X moll Vi, (S7)
k a,

by the Cauchy-Schwarz inequality. Note that by assumption on X, eqn. (S7) is O (ngfm'/?/n;) = O(ngefl/Q).

Now we bound the variance term. Consider the (a, b) entry of EAZ:

% (XTX/n0)ar(X " X/n0)iuE [(W2)i FroFiy — Mat) (Wa)3 Fry Fry — M) |

WMg

ZXTX/TLO X X/no)w (3E [Fyo Fry Fiy Frp) — E [Fry Frp| E [Fr, Fryl)

Hm\ =

which we note is the same for all k. We now calculate these 2- and 4-point expectations to leading order.

Since the entries of W X are multivariate Gaussian conditional on X, we find

EFy Fry, =Ef(Za) ' (Zb), (S8)
where
1 X:ZXMZ X:ZXIb
Ny 140 (ng” 1/2) O (ng~1/? 510
= 0,
(’)(ng 1/2) 1+(’)( e— 1/2)
Taylor expanding in the covariance term, one can show that, for all a,
L (XTX,
Ef (Z)> =7 +R <1(;“ > + 02, (S11)
0
where R :=E [f"(Z)? + f'(Z)f"(Z)], and for all a # b,
" rXTX., XIX XTXx
Ef'(Za)f'(Z) = C+ i ( AT T 2) + (ISR 4 O, (S12)
no no no

where £ :=Ef'(Z) and ¢ := Ef”(Z). Using the same argument, we find

E (F,)? (F)* = () + O(ng= ), (S13)
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E(F,)" = Cy+ OnZ 3, (S14)
for I, a, b distinct,
EF;, Ffy (Fiy)* = ¢ +0 ( o 1/2) ; (S15)
forl # a,
EF], (Fy)® = Cs+ O(ng" %), (S16)
for some constants C's and Cy.
Thus, we may write
ZEAQ = XTX/nO) ® M, +E, (S17)
where
My = (3¢n" — 11T + 30/ (n = Q)1 (S18)
and 1
By = > (X TX/n0)ar(X T X/n0)weab (S19)

l

for some eqy = O(ng" /). We find || -1 (X T X/ng)? © Mal| = O(n§/n1) and

IE| < |E|lr (S20)
1/2
= D 1B (S21)
a,b
1/2
1
= ner(Z(XTX/no)Zl(XTX/nom2;%) (S22)
:\/O o In P m2 (m2ng? + mng ' +mng® + 1) (S23)
=0y ™% (S24)

using the Cauchy-Schwarz inequality and that assumption that all dimensions are on the same order.

Thus finally applying the matrix Bernstein inequality with ¢ = Cnés_l/ * for some sufficiently large constant C', we find for
any 6 > 0

{HAII > Onis™ 1/4} <4 (S25)

for sufficiently large ng. Moreover, eqn. (S25) holds with X random as it is independent of W, and W5, and our assumptions
on X hold for any ¢’ > 0 for sufficiently large ng.

S1.2. Bounding remaining terms

Using eqns. (S11) and (S12), we have

T T " T
XX@(M M) -R= R(XX I>®I+§§X ® (1" +1e’)o (11" 1)
no no 2 mo (S26)
T T
+<’X X X@(llT—I)—R+E,
no no

3e— 3/2)

where E’s diagonal entries are O(ng ') and off-diagonal entries are O(n;, Taking the terms one by one, we first

bound . .
HR (X X i I> @ IH _ sup ’R <X:aX:a _ 1)‘ — O(n€71/2) (527)
no a o
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Next, we bound

1"y T
H%XHOX ®(el"+1e") o (117 - I)H <Oy, (S28)

Eqn. (S28) can be demonstrated by taking the 4th power of the trace as in (El Karoui et al., 2010). This is expected, since
the entries are mean zero and have variance order O(ng 1). Proving the spectral bound is a straightforward calculation using
the independence of the entries of X, but we avoid details here. The final term can also be bounded in this way, yielding,

The inclusion of the matrix R is necessary, due to the nonzero mean of the entries. See (El Karoui et al., 2010) for an
example of this calculation.

XTX  XTX
©
no o

¢

® 11" —1) - RH = O(ng ™). (S29)

Similarly using the assumptions on X, we can bound the remaining diagonal matrix of eqn. (S6) as follows

H <XTX oM K“mp) H = (' = ) |[diag(X " X/no) — |

ng
1
=N X2 -1

= O(n°1?). (S30)

= (o — )sup

Summing our bounds on A and eqns. (S27)-(S30) completes the proof of eqn. (S4).

S2. Gaussian equivalents

In this section we discuss the key arguments for existence of Gaussian equivalents and the linearizations of Sec. 4.2. As all
the main elements of this argument have been established elsewhere, here we just provide the main intuitions and refer to
prior work for the details.

Many of the statistics of random matrices are universal, that is, their limiting behavior as the matrix gets larger is insensitive
to the detailed properties of their entries’ distributions. Considerable work has gone into demonstrating universality for an
increasingly large class of random matrices and a growing number of detailed statistics. In our case, the test loss is a global
measurement of several random matrices. This perspective gives some intuition for why we are able to replace many of the
intractable terms in the expressions we analyze with tractable terms, which only need to match quite superficial properties of
the distributions to ensure the limiting test loss is the same.

In Secs. S3 and S4, we use this replacement strategy in two distinct situations. The first is for terms of the form

ij

for deterministic A and random B. Under assumptions on A and B, standard concentration inequalities can be used to
describe the limiting behavior of sums like eqn. (S31). In our setting, one finds that this behavior only depends on the
the low-order moments of B. By matching these low-order moments with Gaussian random variables, we can replace B
with a Gaussian random matrix with the same limiting behavior. Note, often A is not actually deterministic, we are simply
conditioning on it and only considering the randomness in B. The approach is suitable for determining the average behavior
of eqn. (S31) when we have control over the (weak) correlations in the entries of A and B. Linearizing the matrices A and
B in this setting is just a convenient bookkeeping device for performing these computations.

When one of the matrices in eqn. (S31) is inverted, the situation is more complex, and indeed this is the case for the kernel
matrix K in expressions for the training and test loss. To apply the linear pencil algorithm, we have to replace the NTK
in all expressions with a linearized version (see eqn. (22)), which is a rational expression of the i.i.d. Gaussian matrices,
X, Wy, etc. In Sec. S1, we bounded the difference between the first-layer kernel and its linearization, thus removing the
Hadamard product structure. It remains to linearize the second-layer kernel, i.e. linearize F'. This has been discussed in
previous works, see (Mei & Montanari, 2019; Adlam et al., 2019; Péché et al., 2019; Benigni & Péché, 2019).
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It should be expected that a linearized version of F' will lead to the same asymptotic statistics due to some very general
results on the limiting behavior of expressions of the form,

1
tr (AB—ZI>’ (S32)

1

where A is symmetric and z € C*. The resolvent matrix (B — 2)~! is intimately related to the spectral properties of B.
Recently, isotropic results for quite general A have been developed for matrices with correlated entries, which show that
under certain assumptions the limiting behavior of eqn. (S32) depends only on the low-order moments of B. Specifically,
the limiting behavior of eqn. (S32) is described by the matrix Dyson equation in many cases. For a summary of these
results and related topics see e.g. (Erdos, 2019). While we do not explicitly show the correlation structure of K meets the
conditions known to suffice for the matrix Dyson equation, the assumptions in Sec. 2 imply that the correlations between
entries of K are weak, which is the essential ingredient.

Finding Gaussian equivalents for A and B in expressions like eqns. (S31) and (S32) is relatively simple in our case. We
encounter terms for which the matrix B depends on some other random matrix C' through a coordinate-wise nonlinear
function f(C). For such cases, Taylor expanding the function f is the key tool to finding these equivalents (see e.g. (Adlam
et al., 2019) for more details on this type of approach).

S3. Exact asymptotics for the training loss
S3.1. Decomposition of terms
The model’s predictions on the training set, 3(X ), take a simple form,
§(X) = No(X) + (Y = No(X))K 'K (X, X) (833)
=Y — (Y — No(X))K~!. (S34)

The expected training loss can be written as,

Fuan = B tr (Y = CO)Y = 9(X)T) (535)
_ %E tr (¥ = No(X)T (¥ = No(X))K?) (836)
= T1 + Z/Tg (837)

where v = 0 with centering and v = 1 without it and,
,YQ
Ti=_-E tr(YTYK~2) (S38)
2
T, = %Etr(NO(X)TNO(X)K‘2). ($39)

Note we can suppress the terms linear in Ny since they vanish in expectation owing to the linear dependence on the
mean-zero random variable w. Here K = K (X, X) + ~I,, is the linearized NTK and is given by,

(XX, F'F
1+
no nq

K =opy, [(f = OLn + +~I,,. (S40)

This substitution can be justified using the result of Sec. S1:

2 2 2

v T -2\ _ T =N 2 _ p—2\yT

’m]Etr (YTYEL)) LR (Y TYK™?) ‘mEY (Ko - K2)Y (S41)
< ﬁmyﬂ +l21E||Y||2\|R+K*2 — K72 =o(1) (S42)
— mno 2 m 2 simp =0 .

Eqn. (S39) is similar.
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Note that taking the expectation over W5 in eqn. (S39) and eqn. (S40) yields

XX
iy, No(X) T No(X) = o, K — o, o, (1 = €) ] T — o Rt (843)
since By, No(X) " No(X) = o3y, /m FTF.
Next we recall the substitution (14),
: 1
Y - Y= — QX + €, (544)

A/ NoNrt

which can be used to calculate the expectation over w and (2 to leading order (i.e. with remainder terms o(1)) using the
approach of eqn. (S31). Concretely,

2

2 2 A A 2 1
L Bpaetr(VTYE2) = LE, g tr((Y™) T YiNE2)40(1) = L tr KXTX + o?lm> K‘z} +o(1). (S45)
m m m no

Putting these pieces together, we can write for 71 = 71 () and 72 = 72(7),

Ty = —7*(o27] + 75) (546)
Ty = o,y (11 + (0, (0 — ) + )71 + 03, (75) (S47)
where,
1 1 1
7 =—FEtr(K™'), and 7 = —Etr(—X'XK!). (S48)
m m no

Self-consistent equations for 7y and 7 can be computed using the resolvent method, as was done in (Adlam et al., 2019) for
the case of oy, = 0. In order to pave the way for the analysis of the test error, we instead demonstrate how to compute
these traces using operator-valued free probability.

Remark S1. In the remainder of this section, and in Sec. S4, we assume at times that o is non-linear (so that ' > ¢ and
n > () and/or v > 0 in order that certain denominator factors are non-zero. The linear and/or ridgeless cases can be
obtained by limits of our general results, or through special cases of the pertinent intermediate formulas.

S3.2. Linear pencils

To begin, we construct linear pencils for 71 and 7». Using the linearization eqn. (13), a straightforward block-matrix inversion
confirms that

T1 = Etr([Q}l]l’l) and ETQ = tr([Q;l]gA) 5 (S49)
where,
(X To} —coJ. T
L (v+0fy, (1 = Q) e YXOr X
Op = -X I, 0 0 (S50)
T —Vi = COF e R 0
0 0 VW, VT,
Vnod Voo
The matrix Q is not self-adjoint, but a self-adjoint representation can be obtained from it by doubling the dimensionality.
In particular, letting
5 0 Q?)
= , S51
QT (QT 0 ( )
we have,
n =Etr([Q;'15), and Etr([Qr']2s). (S52)

Observe that Qp is a self-adjoint matrix whose blocks are either constants or proportional to one of
{X, X T, Wy, W",0Fr,0L}; let us denote the constant terms as Z. As such, we can directly utilize the results of (Far et al.,
2006; Mingo & Speicher, 2017) to compute the necessary traces.
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S3.3. Operator-valued Stieltjes transform

The traces can be extracted from the operator-valued Stieltjes transform G : My(C)™ — M,(C)*, which is a solution of
the equation,

ZG =14 +n(G)G, (S53)
where d is the number of blocks, ) : M4(C) — My(C) defined by
(D)) = o(i, k; L, j)orDy (S54)
Kl

where «; is dimensionality of the kth block and o (1, k; 1, k) denotes the covariance between the entries of the blocks 7
block of () and entries of the kI block of Q). Eqn. (S53) may admit many solutions, but there is a unique solution such that
ImG > 0 for ImZ > 0.

The constants Z, the entries of o, and therefore the equations (S54) are manifest by inspection of the block matrix
representation for Q7. Although the matrix representation of the equations is too large to reproduce here, we can
nevertheless extract the equations satisfied by each entry of G.

The equations satisfied by the operator-valued Stieltjes transform G of Q7 induce the following structure on G,

G= (GOE GO12> : (S55)
where,
m 0 0 0
G2 = 8 “ 904 o (S56)
0 g6 0 g5
and the independent entry-wise component functions g;, 7 and 75 satisfy the following system of polynomial equations,
0 = /Cgev — Cgs9av/mo (S57)
0=1/CY(r2 — gsm) (S58)
0=/C(gs — g671) + Vo (S59)
0= —Cgags — g6 (CTi07y, + &) (S60)
0= /Cg5¥ + Vo (¢ — Cgam) (S61)
0=0¢—ga(nv(n— )+ (rat + ¢) (S62)
0=—Cgam2 — g3({rioy, + ) + ¢ (S63)
0= —/Cgsmv — Vnoma (Crioty, + 6) (S64)
0= /no(é — g3 (¢, +¢)) = VCgsi¥) (S65)
0=vmo(1—7(v+ga(n— Q) + oy, (0 + ¢ (95— 1)))) — V/Cgem19) - (S66)

It is straightforward algebra to eliminate g3, g4, g5 and gg from the above equations. A simple set of equations for 7; and 7
follows,

0= ¢ (Crm + ¢(r2 — 1)) + (rimath (yr1 — 1) + (rimeoiy, (C (12 — ) ¥ + Ty’ + ¢) (S67)
0=Crim(n —n) 012/(/2 +lrmm(yn—1) —(—1)é0 (e —71) +n11) . (S68)

Although these equations admit multiple solutions, the general results of (Far et al., 2006; Mingo & Speicher, 2017)
guarantee that the correct root is given by the unique solutions 71, 75 : C* — CT which are analytic in the upper half-plane.

It will prove useful to obtain expressions for 71 () and 75(~y). By differentiating eqns. (S67) and (S68) with respect to v, we
find
L e (07 - ¢7) s
PR (R (R +1)2+ 6(CR + 1) (CR2 (272 + 3) + 1)) + 22 (R + 1)2(973 — 1)
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, (3 (7E(C —n) — (* (R +1)?)

T R R+ 1)+ 0(Ch 1) (2721 3) + 1) + C2 (R + 1)2 (72 — 1) (570
where we have introduced some auxiliary variables to ease the presentation,
Fl=op, (o +¢T and Fo=—1+m/m. (S71)
S4. Exact asymptotics for the test loss
S4.1. Decomposition of terms
As described in Sec. 4.3, the test loss can be written as,
Eiest = E(y — §(x))* = E1 + By + B3 (572)
with
By =Etr(y(x)y(x)") + Etr(No(x)No(x) ") (S73)
By = 2Etr(K] K'Y Ty(x)) — 2B tr(K,] K~ *No(X) " No(x)) (S74)
B3 =Etr(K, K'VTYK'K,) +Etr(K,] K 'No(X) " No(X)K'K,). (S75)

As in Sec. S3, we suppress the terms linear in w as they vanish in expectation. The Neural Tangent Kernels
K = K(X,X)+~I and Kx = K(X, x) are given by,

XX, F'F o 1
K =of, [0 = Olm + ¢ ]+ Ly, and K= TSxTyy ety (S76)
no nq no n

where the substitution for the linearized NTK is justified as in Sec. S3 using the spectral norm bound of Sec. S1.
Using the cyclicity and linearity of the trace, the expectation over x requires the computation of
ExKuKy o Exy(x)Ky, Eq®yx)',  ExNo(x)Ky, and ExNo(x)No(x)'. (S77)

As described in Sec. 4.2, without loss of generality we can consider the case of a linear teacher, so that n; = (; = 1 and
(16) and (15) become

A e 1 1 n_ V¢
— glin = Cr wx + — wh, = wx and — flin — Yo x4+ — (0. (S78
y—y N Vo = Gr Tl = F=1r Nk V1 —¢Of. (S78)

Using these substitutions, the expectations over x are now trivial and we readily find,

T _ o ot A S T 17 ¢ T
B JG K] = 222 XX + W22 (XTWIF+ FTWiX) + 5 F (= WiW, + (- ()1, F
g ”0/ ny ny 1o
(S79)
2
Exy(x)K,] = %mx LY oW F (S80)
ng /M non1y/Mr
1
Eyy(x)y(x)" = wQOQ W’ (S81)
nonr
S 1 ¢ T
ExNo(x) Ky = —2=—W,W1X + 3—/QWQ(—Wlwl + (=), F (S82)
ng /M ny no
E tr(No(x)No(x)") = ohy,M- (S83)

One may interpret the substitutions in eqn. (S78) as a tool to calculate the expectations above to leading order as it leads to
terms like eqn. (S31). Next we recall the substitution (S44),

Yy 5 Ylin= wQX +E. (S84)

v/ onrt
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As above, we consider the leading order behavior with respect to the random variables w, €2, and W5 using eqn. (S31) to find

Euoe[YTY] = Lxrxy o2, (S85)
no
2
Euoew, [V Exy(x)K, | = UW;CXTX + 3\5 X'W{F (S86)
o ng
o2
Ew, [No(X)"No(X)] = "2F'F (S87)
ny
ok <3/2 o2, ¢
ng' Ny 1 0
Using (13),
Forn— Yy o cep (S89)
Vo ’
we can write,
VC T VC oot T QS S T
—F WX+ —-—=X W/ F=F'F+—=>X W, WX —-(n—()0,0Fr. S90
N 1X + N 1 + o 1 Wi (n—C)OrOF (590)
Putting these pieces together, we have
Ey =1+ vojy,n (S91)
Ey = By +vEy (892)
E3 = E31 + E32 +vEs3, (593)
where v = 0 with centering and v = 1 without it,
T, ¢ —1yT 1 —1pT ¢ 1y T - 19T
Ey =-Etr(2——XK X + —FK 'F WXK X'w' - ~——0erK'eL (S94)
ng non1 no NNy
202 2 +3/2
By = ——We g (”W‘ff? KUFTWAX + —— K T W F e Ok 1FTF) (895)
1 ”0/ TNy ni
E3 = o?Etr (K 'S3K 1) (S96)
1
Eyp=—FEtr (XK 'S3K'XT) (S97)
o
o2
By = 2Etr (FK'S3K'FT) (S98)
ni
and,
2 _ o2, (2 o2 _
IS ch XTx+ (2w <+’7 QC)FTF+ ¢ QFTW1W1TF+V‘;72CXTW1TW1X—M®;®F. (S99)
’I’Lo nonq ny nony ngni nonq

S4.2. Linear pencils

Repeated application of the Schur complement formula for block matrix inversion establishes the following representations

for Fy1, Eg, F31, E33, E33.

S4.2.1. Esq
A linear pencil for E5; follows from the representation,
Es1 = Etr(Us, Q31 Var),

where,

0'2 —
Uh = (0 X% g g o @9 o g g o 0

no

(S100)

_In 0) (S101)
ng
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vii=(0 00 ¥ 9 0 000 L, 000 0) (S102)
and,
o0 0
Qu=|( 0 QF Q3 (5103)
0 0 5
with,
XTo,  Vncer xT
Im (’Y + UIQ/VQ (77/ - C)) ng 2 nnf “ \\/[ETMM
11 -X I, 0 0
21 = (S104)
—/n—(Or A 0
O 0 - ]_—r I’ﬂo
¢x o} Vin—CO xT
Im (ry + 0124/2 (77/ - C)) 0 ?W@ ”nf “ \\/f’fCTDnl
_ __ VWi
2 _ or b =g Y ’ 5105
21 = -X 0 I, 0 0 ( )
—Vi = (Or e
0 0 0 Wy Iy,
-0, 0 0 0 0
VWi
0 00 Zdeg O
=10 o0 0 . (S106)
0 0 0 0 0
I,, 00 0 0
/fm—coL (X To? T
V1= COF I (v+0f, (f =) VB T Ve
W,
3 _ 0 —V1= (O L, =¥ 0 |, (5107)
TL1W1T 0 _I/Vl—r 0 Ino
S4.2.2. Eoy
A linear pencil for E5, follows from the representation,
Egy = Etr(UQ3 Vas) , (S108)
where,
UQ]; _ (0 _2\fCIn1‘7W2(";/(277*0+Cn10w2) 0 Q(C*nzlflnlgwg 0 0 O) (S109)
ng' “ni
Vehb=(0 0 0 0 0 —nil, 0) (S110)
and,
Ing 0 -X 0 0 0
W In, 0 0 _‘/\Z/:T:V%;Vz 0 0
TUQ — 5
CXW% 0 Im(vtod,(n=¢)) 0 0 V"nfog Jf%jl
Qoo = 0 0 ~ViI—COF Iny "1‘2%‘/2 0 0 . (S111)
0 —fj%; 0 A 0 0
-l 0 —/n—COr 0 0 TIn, 0
0 0 0 0 0 W I,
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S4.2.3. Es

A linear pencil for E'3; follows from the representation,

T -1
E31 =Etr(Us; Q51 Va1) (S112)
where,
U, =(mo?L, 0 0 0 0 0 0 0), Vif=(0 00 0 0 L, 0 0) (S113)
2
and, for 8 = (no(¢ —n) — ¢(n1ogy,).
¢xTofy, vimcol yexT X Toly vi—ceLs vexTp
1m(7+0’2 (WI*C)) 2 F V< _ 2 0 FP VCX B
Wo no ny Vrony n(2) "0"% n3/2n2
-X Ing 0 0 0 0 0 0
2
VW ¢Vn—COpoiy, 3%
—Vn—COr - w/rol Iny 0 0 - no : 0 ”0”11
cwy o2
Q31 = 0 0 —W I, 0 0 Sz 0 . (S114)
0 0 0 0 Ing -X 0 0
¢x Tofy, 2 [ vi—¢of  yexT
0 0 0 0 T2 In(vtoy, (n'=¢)) — T
0 0 el —/n—Cor I, 0
0 0 0 0 -w Ing

S4.2.4. Esy

A linear pencil for E3, follows from the representation,

T A1
E32 = EtI‘(U32Q32 ‘/32), (5115)
where,
monily,
UL=(0 I, 0000 0 0 0, Vggz(o 0000000 Y ) (S116)
_ 2
and, for 8 = (no(¢ — 1) — (nuody,)
¢xTody, va=ceT T 2xTofy, Vn—coe s
I (vtoi, (n'=¢)) 0 o T %Ll Tz 2 0 noan 0
-X I, 0 0 0 0 0 0 0
T
-X 0 I 0 0 0 0 el 0
2
ew cVa=COpod,
—vn=ter 0 Y3 I, 0 0 BT 0 0
b = <02
Q32 0 0 0 . A 0 0 W (% + nVOVQ) 0
0 0 0 0 0 Ing -X 0 0
cxTody, vi—¢erp xT
0 0 0 0 0 7 In(vtoiy, (n'—¢)) T N
VW
0 0 0 0 0 e —V—COp In, 0
0 0 0 0 0 0 0 -wy I,
(S117)

S4.2.5. Es3

A linear pencil for E33 follows from the representation,
Es3 = Etr(U}Q535 Vas) (S118)
where,

Ul =(0 I,o%, 00000000 0) (S119)
V=(0 0000000 0 —nil, 0) (S120)
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and, for 5 = (Tlo(C —n) — Cnla‘%vz),

¢x T o2 vn—coe L T 2xTot —co L
2 ’_ Wo n—COp JTX _ Wo Vn—CORB
I (y+03,(n"=¢)) 0 0 0 Ermaly. ~ 2 0 on? 0 0
—VT—COr Iny — %1 0 0 0 0 0 0 0 0
-X 0 Ing 0 0 0 0 0 0 0 0
vew, "
'S 0 0 Ing 0 0 0 0 N 0 0
2
Jew Vn=ceped,
—/n—C(OF 0 0 7?01 I, 0 0 7TQ 0 0 0
2
Q33 = T (e, o
0 0 o0 0 AN 0 0 w, (L,I + n02> 0 0
0 0 0 0 0 0 Ing -X 0 0 0
CXT{T%V2 2 ’ V"7<e; \/ZXT
0 0 0 0 0 0 7o I (vt0iy, (1<) 0 nr . Vmont
%%
0 0o 0 0 0 0 - —Vn—COr I, 0 0
0 0 0 0 0 0 —L,‘f“ol —V/1=COp 0 In, 0
0 0 0 0 0 0 0 0 0 -w I,
(S121)

S4.3. Operator-valued Stieltjes transform

Even though the individual error terms Fsq, Fos, E31, F35, E33 can be written as the trace of self-adjoint matrices, the
individual ) matrices are not themselves self-adjoint. However, by enlarging the dimensionality by a factor of two,
equivalent self-adjoint representations can easily be constructed. To do so, we simply utilize the identity,

utQv=0TQv=(uT VvT) <g QOT> (%) . (S122)

Observe that Q21, Q22, Q31, Q32 and Q3 are all self-adjoint block matrices whose blocks are either constants or proportional
toone of {X, X T, Wy, W,",Op, @;}; let us denote the constant terms as Z. As such, we can directly utilize the results
of (Far et al., 2006; Mingo & Speicher, 2017) to compute the error terms in question.

For each linear pencil, the corresponding error term can be extracted from the operator-valued Stieltjes transform G :
M4(C)*t — My(C)™, which is a solution of the equation,

ZG = I, + (GG, (S123)

where d is the number of blocks, i : M;(C) — My(C) defined by

(D)]ij =Y _oli,k;l, j)e D (S124)
kl

where «; is dimensionality of the kth block and (i, k; 1, k) denotes the covariance between the entries of the 45 block of Q
and entries of the k[ block of Q. Eqn. (S123) may admit many solutions, but there is a unique solution such that ImG > 0
for ImZ > 0.

The constants Z, the entries of o, and therefore the equations (S124) are manifest by inspection of the block matrix
representations for ). Although the matrix representations are too large to reproduce here, we can nevertheless extract the
equations satisfied by each entry of G, which we present in the subsequent sections.

S4.3.1. Eyy

The equations satisfied by the operator-valued Stieltjes transform G of Q21 induce the following structure on G,

o 0 G12
G = (GE ) ) , (S125)
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where,
gs O 0 O 0 0 O 0 o 0 0 O 0 0
0 g9 0 g 0 0 O O 0O 0 0O 0 0 0
0O 0 ¢g1 O O O O 0 0o 0 0 O 0 0
0 g2 0 g0 0 0 O 0 0O 0 0 O 0 0
0 0 0 0 g8 0 O 0 o 0 0 O 0 0
0 0 0 0O 0 g 0 g5 0 g4 0O g7 O 0
1o 0 0 0 0 0 g 0 g 0 0 0 0 0
Ge=1 19 0 0o 0 0 0 0 gu 0 g3 0 0 0 0 ' (5126)
0 O 0 0 0 0 giz2 0 g0 0 0 O 0 0
0 0 0 0O 0 0 O 0 0 g 0 O 0 0
0 0 0 O 0 0 O 0 0 0 gs O 0 0
O 0 0 0 0 0 0 0 0 g 0 gu 0 0
O 0 0 0O 0 0 O 0O 0 0 0 0 g9 s
00 0 0 0 0 0 0 0 0 0 0 g g
and the independent entry-wise component functions g; combine to produce the error E»; through the relation,
_ 2 2
E21 _ 94(77 C) + \/696\//”700—”/2 _ Q’ (8127)
no » no
and themselves satisfy the following system of polynomial equations,
0=1-—aq (S128a)
0 = v/Cgogr1v/no — g2t (S128b)
0= v/Cgsgr1vno — grow + (S128¢)
0= gr(n—¢) + VCgsg11v/n0 (S1284)
0= gsgunov/n — ¢ — gsd (v + o, (n' = ¢)) (S128e)
0= —V/Cgsgot — gov/nod (v + o, (n' = ¢)) (S128f)
0= —/Cgsgrat) — (g10 — 1) Vo (v + o, (1 = €)) (S1282)
0= gosv/nod (v + aiv, (n' =€) + 95 (v/Cg10% + (g6v/nooiv,) (S128h)
0= gsgn(n — ¢) — ¢(g95vn — ¢ — VCgegr1v/mo) (o, (C —n') — ) (S128i)
0= (g0 — 1)vnoo (v + o, (0" =€) + gs (v/Cgr2 + Cgov/nooiy, ) (S128j)
0= g1gsn0v/n — ¢ + g3(9s¥(¢ — n) + ¢(v/Cgev/no — 1) (v + o, (0 = ¢))) (S128k)
0 =/ Cg10911v/M00 (i, (C = 1') =) + 9129 (76 + i, (— Cd + o' + (gs)) (S1281)
0= g1 (gs%(¢ =) + (v Cgsv/no — 1) (v + o, (0 = €))) + b(v + o, (' = €)) (S128m)
0 = gi1no(gs¥(n — ¢) + V/Cgov/nod (aiw, (C — 1) = 7)) — 9206 (v + i, (' = €)) (S128n)
0= got (Y0 + v, (6(n" — ¢) + Cgs)) — (v Cgeg11v/m0 + ) (v + o, (' = €)) (S1280)
0=gs(—VCgr29 — vno (v + g11(n — ) + o, (n" + ¢ (90 — 1)))) + vno (v + o, (n' — ¢)) (S128p)
0= /Ca196v/m0d(at, (C—1') =) — g7(¢ — ) (98%(C — 1) + &(v/Cg6v/mo — 1) (v + i, (0" = €))) (S128q)
0= gino (gs1(n — ¢) + V/Cgsv/nod (o, (¢ = 1') = 7)) + 929 (gs8(C — n)
+6(VCgsv/no — 1) (v + oiv, (n' = €))) (S128r)
0=g1(gs%(n = ¢) + vV<gsv/nod (o, (C = ') = 7)) + g5v/n — {(gsvo(n — ¢)
— 6(v/Cgev/no — 1) (v + o, (0" = €))) (S128s)
0 =no( — Cgsgs¥/n — ¢+ ngsgsto/n — ¢+ gstb (¢ — ) (97(¢ —m) — g1)
+/Cg6v/nod(g7(¢ —m) + g1) (v + oty (0 = €))) + 9400 (¢ — m) (v + o, (' = €)) (S128t)

0 = vnov/n — ¢(9195v/nov(n — €) + v/Cg196m00 (v + i, (0 = €)) — V/Cg2960 (v + i, (0 = €)))
+g39(C =) (989 (1 — ) + VCgov/mod (o, (C = ') — 7)) + gavo(=d)(n — O)** (v + o, (' = ¢)) . (S128u)
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After some straightforward algebra, one can eliminate all g; except for gg and gg, which satisfy coupled polynomial
equations. Those equations can be shown to be identical to eqn. (S48) by invoking the change of variables,

96:—\/“%72, and gs= (v+op, (0 —¢))m. (S129)

In terms of these variables, the error Es; is given by,

E21 :2(7'2/7'1—].). (5130)

S4.3.2. E9s

The equations satisfied by the operator-valued Stieltjes transform G of Q25 induce the following structure on G,
. 0 G12
G= <G1T2 0 ) , (S131)

gu 0 0O 0O O 0 g7
0 g5 0 g2 0 go O
0 0 go O 0 O 0
G2 = 0 g5 0 g2 0 g5 O ; (S132)
ga 0 0 0 g1 0 g6
0 0 0 0 0 g 0
gu 0 0 0 0 0 g2

where,

and the independent entry-wise component functions g; combine to produce the error Es through the relation,

_ 2vCgo0iy, (¢(n — ) + oy, )

Eo Nr? +2gs5(n — Q)opy, (5133)
and themselves satisfy the following system of polynomial equations,

0 =/Cg11g13v/no — grav) (S134a)
0= VCgrg13v/no — g1zt + % (S134b)
0= g1 (g3v/no — /Cga) — gsv/nooiy, (S134c)
0=—g1¢ (/g5 + gsv/no) — gsv/nociy, (S134d)
0= g1 (g5v/no — V/Cg2) — V/Cga0iv, (S134e)
0= g1%(v/Cg2 + gav/no) — \/Cgaoiv, (S134f)
0= g1%(g5v/no — V/Cg2) — (95 — 1)v/nooiy, (S134g)
0=—g1%(\/C2 + gav/no) — (94 — 1) v/nooiy, (S134h)
0= g1 (gsv/no — V/Cg1) — V/C(9a — 1) oy, (S134i)
0= g1¢(v/Cgs + gsv/mo) — V(g5 — 1) i, (S134j)
0= —v/Cgr0911% — grv/nod (v + iy, (n' = Q) (S134k)
0= —/Cg10914% — gsv/mod (v + i, (' — ¢)) (S1341)
0= —/Cg10914% — (912 — 1) /0 (v + i, (0 = €)) (S134m)
0=g1(— Cg2 + V(g5 — 9a) Vo + gsno) — v/C(g1 — 1) Voo, (S134n)
0= 911/)(\/599 + 98\/770) + \/6(97913710 - 99)U€V2 + g6g13\/n0t (S1340)
0 = grv/nod (v + aiv, (1" = €)) + g10(v/Co12¢ + Cgrv/nooi, ) (S134p)
0= (911 = 1)vod (v + o, (' =€) + g10(V/Cgrat + Cg11 /oo, ) (S134q)

0 = \/Cg12913v/M00 (03, (C = 1) — ) + gravh(v¢ + i, (— € + dn’ + Cgu0)) (S134r)
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0= g13(g109(¢ — n) + 8(V/Cgrv/no — 1) (v + o, (' = €))) + 6(v + o, (' = €)) (S134s)
0= g6¥(— Cg2 + V(g5 — ga)v/Mo + g3n0) + /<m0, (97(Cgo + /< (95 + g8) /o + gano) — get) (S134t)
0= gu(v¢+ o, (6(n = ¢) + Cg10)) — (V/Cgrgrsv/no + ¥) (v + o, (" = €)) (S134u)
0=gi0( — V<g14¥ — vno (v + g1s(n — €) + o, (0" + C(911 — 1)))) + Vo (v + o, (0" =€) (S134v)
0= g1atp( — Cg2 + V/C(g5 — 94)v/no + gsno) + v/Cv/nooi, (911 (Cgo

+1/C(g5 + g8)v/no + gsno) — grath) (S134w)
0 =/ Cgsg13v/m0d (o, (C—n') —7) — 916(Cgo + V/C (g5 + g8) /o + gano) (v + o, (0 =€)

+ 9149 (v + i, (= (o + ¢n' + Cg10)) (S134x)
0 = 9196 (v/Cgo + gsv/m0) (v + i, (1 = €)) + /1o (o (9109139 (1) — €) + gsd(v + o, (0 — )))

+ g6g1390 (v + o, (0" = ¢))) (S134y)
0 =/ Cgsoiv, (9100(n — ¢) — 6 (v/Cgrv/no — 1) (v + o, (0" = €))) — gsv/n0b (v Cgrv/nooiv, + gotb)

(v + oty (0" = €Q)) + VCaavb (960 (7 + o, (' — €)) + g10(n — )iy, (S1342)
0 =/ Cgoaiv, (9100(n — ¢) — (v/Cgrv/no — 1) (v + o, (0 = €))) = g5v/n0d (v/Cgrv/noot, + gotb)

(v + o, (1" = Q) + V/Ca29 (g6 (v + oty (1" — €)) + g10(n — Qi) (S134aa)

After some straightforward algebra, one can eliminate all g; except for g; and g;¢, which satisfy coupled polynomial
equations. Those equations can be shown to be identical to eqn. (S48) by invoking the change of variables,

VG
Voo

gr = — T2, and gio= (y+ 0‘24/2 (' =¢)m. (S135)

The error E5, is then given by,

20(¢(r2 —71) +1m1)*((r2 — 1) ¢ + (iT20y,)

T2
Eoy=2¢(— -1 S136
2 ¢ ( 1 ) - ¢ 712 T2 ( )
S4.3.3. B33
The equations satisfied by the operator-valued Stieltjes transform G of Q31 induce the following structure on G,
. 0 G12
G = (Gng 0 > , (S137)
where,
g 0 0 0O O g2 O O
0 96 0 g g5 0 0 g
0 0 ¢gs 0 O O giz2 O
| 0 g1 0 g7 g10 0 0 g9
Gz=1 0 "0 0 0 g 0 0 g | (5138)
o 0 0 0 0 g 0 O
o 0 0 0 0 0 g O
6 0 0 0 gn O 0 g7
and the independent entry-wise component functions g; give the error F3; through the relation,
2
g2no0¢
E3 = , (S139)
¢(y+ iy, (1 = ¢))
and themselves satisfy the following system of polynomial equations,
0 = v/Cgsgs/no — gt (S140a)

0= /Cg1gs/no — grp + (S140b)
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0=—/Cgs96% — g1vnod (v + oy, (n' = €)) (S140c)
0= —/Cgsg11% — (97 — 1)v/nod (v + iy, (' = ¢)) (S140d)
0= —(grgs¥ + \ﬁ\/%((wgs + g1912)n0 — (gl,QBU{Q/VZ) — gonot (S140e)
0= g1vnod (v + oty (' = €)) + 95 (V/Crvo + Cg1v/mo0ins, ) (S140f)
0=/ Cgsg12ny* — gs(Cgtp + /o (Cgsaiy, — g3mo)) — gronot) (S140g)
0= (96 — 1)vod (v + o, (n' = €)) + g5 (v/Con + Cgov/nooiv, ) (S140h)
0 = \/Cargsy/mod (0%, (C = 1) =) + g1t (v6 + o, (= Co + 60 + Cas)) (S140i)
0=gs(gs0(¢ —n) + o(v/Corv/no — 1) (v + o, (0" = €))) + (v + o, (0" = C)) (S140j)
0= g6 (v + aiv, (— Co + ¢’ + Cgs)) — (v Cargsv/no + ) (v + o, (0 = €)) (S140K)
0=g5(v/Conv + vno (v + gs(n — €) + o, (0" + C(gs — 1)))) — Vo (v + o, (n” = €)) (S1401)
0 = v/Cs¢ (g6 (¥ (n = €) + (o) — gano) — v/o (v/Cg296v/no¥) + ganod (v + aiv, (' =€)

+Ca1980 (v + o, (0 —€))) (S140m)
0= v/Cgst (911 (¥(n — ¢) + Cotv,) — g10m0) — v/no (V/Cg2911v/no + gonod (v + o, (n' = €))

+Cgrgsd (v + o, (0 = Q))) (S140n)
0 = g5(— v/Cgono + (v/moaiy, (Cg10iv, — gano) + /Car (¥ (n — ¢) + Coiy,))

— 10 (gav/nod (v + o, (0 =€) + 92(V/<grv + Cg1v/nooiv, )) (S1400)
0 = g5( — v/Cgr0m0¥ + (V/nooiv, (Cg60iv, — gsno) + v/Cgrtb(¥(n — ) + Coi, )

—n0(g3v/nod (v + o, (0 =€) + 92 (v Cgnep + Cgsv/nooins, ) (S140p)
0 = g2gsnotb(n — ¢) — g5 (¢ — ) (g8 (C — 1) + grzmo) — Voo (g12 (v/Cgimo — /o)

+/Cgs (gano — CglaxQ/vQ)) (v+ T, (n" =) + Cgrgsvpo(v + T, (n" =9)) (S140q)
0= gano(— v/Cg11v — Vno (v + gs(n — O) + o, (n" + C(g6 — 1)))) + g5 (v/no (gs9(¢ — m)°

+ g120(¢ — ) — V/Cgr0v/now — Cg3nooiy, + C2gaaév2) + \/Egn’l/J(’l/J(?? -+ CO"%VZ)) (S140r)
0 = gsnot (16 + i, (¢(1 =€) +¢g5)) — V/C(gagsmi 6 (v + o, (' = Q)

+ g1v/nod(g12n0 — Cgsaiw, ) (v + o, (' = ¢)) + N e (Cg5atv, — g2m0)) (S140s)
0 = gronot(vé + i, (6 (1 — ) + Cgs)) — /< (grgr2mg > d (v + o, (0 = €))

+ gsv/mod(gono — Cgratv, ) (v + i, (0 — €)) + V/Co11¢a, (Cgsoiv, — g2mo)) (S1401)

After some straightforward algebra, one can eliminate all g; except for g; and g5, which satisfy coupled polynomial
equations. Those equations can be shown to be identical to eqn. (S48) by invoking the change of variables,

VG
\/TT()qb 2,

g1 = and g5 = (7 + o, (1" = )1 (S141)

The error E3; can then be written in terms of 71 and its derivative 7| (S69),
Ey =o2(—/mf—1). (S142)

S4.3.4. Egg

The equations satisfied by the operator-valued Stieltjes transform G of (35 induce the following structure on G,

o 0 G12
G= (G1T2 ) ) , (S143)
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where,
g 0 0 0 0 0 g6 O 0
0 g 93 0 g2 g7 0 0 g
0 0 g0 0 g1 gz 0O 0 g5
0 0 0 go 0 0 0 gig O
Giz2=| 0 0 g5 0 g gu 0 0 g5 |, (S144)
0O 0 0 0 0 gio 0 0 g4
0 0 0 0 0 0 g9 O 0
00 0 0 0 0 0 gia 0
000 0 0 0 g5 0 0 gn
and the independent entry-wise component functions g; give the error Ess through the relation,
By = —gany* /(\/C), (S145)
and themselves satisfy the following system of polynomial equations,
0 = \/Cgr0g12v/n0 — g15 (S146a)
0= VCgagizv/no — guyp + ¢ (S146b)
0= —v<gog10¢ — gav/nod (v + o, (n' = ¢)) (S146¢)
0= —v/Caog15% — (911 — 1) Voo (v + o, (1 = €)) (S146d)
0= —/Cgo¥ — \/Cg3got — gav/nod (v + ot (' — C)) (S146e)
0= —/Cgegro — \/Cgogi3¥ — gsv/nad (v + iy, (' =€) (S146f)
0= —v/Cg0914% — \/Cgeg1s¥ — gsv/nad (v + oty (1 =€) (S146g)
0= v/ Cgsgrano + v/Cga(greno + g12 (G — mp — Coiy,)) + gsv/no(—1)) (S146h)
0 = gav/nod (v + aiv, (0 =€) + g0 (v/Ca11¥ + Cgav/nooiy, ) (S146i)
0 = gsvmod(y + o, (1" = €)) + g0 (v/Cg15% + Cgr0v/nooi, ) (S146j)
0 = /Cgi2913m0 + V/Cg10 (916m0 + g12(CY — myp — CU%VQ)) + g1av/no(—v) (S146k)
0= (g10 = 1)v/nod (v + v, (n' = €)) + 99 (v/Ca15¥ + Cg10v/n00iv,) (S1461)
0=—v/C((91 + 93) 96 + g799) ¥ — 192/10¢ + g2/, + g2v/M0 (=) i, (S146m)
0 = /Cggi2vnod (o, (C—1') =) + 9159 (70 + i, (— Co + 1" + Cgo)) (S146n)
0= g12(go¥(¢ — ) + (V/Cgav/mo — 1) (v + o, (0" = €))) + ¢(v + o, (0" =€) (S1460)
0=g10¥ (70 + oiv, (= Co + o1 +Cg0)) — &(V/Cgagrzv/no +¥) (v + o, (0 = ¢)) (S146p)
0 = go(v/Co15% + V1o (v + g12(n — ) + o3, (0" + ¢(g10 — 1)))) — Vo (v + o, (0 =€) (S146q)
0= —v/Cgag12v/nod (v + o, (n' = C)) + 939 (v + o, (= (P + ¢n' + Cgo)) + Cgovboi, (S146r)

0= g7n0¢('y + 0‘24/2 (77/ - §)) + 96(\ﬁ915\/n701/) + CglonoU‘szz) + 99 (\/2914\/?”701/1 + CU‘Q/VQ (gl3n0 - C9100‘2/V2)) (S146s)
0 = ~vgano¢ + \ﬁgsggx/%ib + 96(\/5911 Vo + 4947100‘2/1/2) — ngn()(ba?% + Cg;,ggnoa?%

+ g2nodn’ oy, — ¢ gageiv, (S1461)
0=gs(— v Carsvnoy — no(y + gr2(n — ¢) + o, (0" + ¢(910 — 1)))) + g0 (g12¢(¢ — m)*

+ gi6m0(C — 1) — V/Cgrav/not — Cgranoomy, + 91000, ) (S146u)
0 =vgsn0¢ + v/Cgsgov/not + v/Cgegiin/noth + Cga(genooiv, + g2 (v + o, (0 = €)) — Cgooiv, )

— Cgsnodaiy, + Cgsganooiy, + gsnodn oy, (S146v)
0 = ~vg13m09 + \/696915\/%@/) + Cg10 (967100€V2 + 912¢(7 + Ugv2 (77/ - C)) — ngaévg)

+ 99 (ﬂgm VoY + CQIS’noo'Kngz) — Cg13m09Tiy, + granodn oiy, (S146w)

0= —/Cg120 (7 + o, (1" — ¢)) (V10 (9810 + 911 (Ctb — b — (o)) — V/Carsep)

+ gunot (Y6 + oy, (— (o + ¢’ + Cgo)) — \/5911916713/%(’7 + i, (0 =€) + Ca15¥aiy, (9610 — Cgooiv, )
(S146x)
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0= go¥(—(¢ — ) (g12%(C — ) + g16m0) — V/Cgav/mod (v + o, (0 — €)) (g16m0 + 912 (¢ — b — o, )

+no(gsgr2(n — ¢) + ¢(g16 — V/Cgsg12v/m0) (v + i, (0 = €))) + Cgr091200 (v + o, (n' — <)) (S146y)
0 = gusnot (70 + oiv, (— Co + 1’ + Cgo)) — v/ Caav/mad (v + o, (0 — €)) + v/Cosgrany 6 (o, (¢ — 1) =)
(g16m0 + g12(C¥ — M — Coiy,)) + Car0¥ (96100, + G120 (Y + o, (1" — €)) — Cgooiv,) (S146z)

0 = —7v/Cgag12n5" %6 + vgrnovsd — V/Cgav/nad (v + o, (1 = €)) (916m0 + g12 (G — 1 — o, ))
+ C93¢(96n00‘2/v2 + gr2 (7 + o, (' — Q) — Cgooiv,) + C3/292912ng/2¢0x2/v2 — Cgotpoiy,
+ no¢n oy, (979 — V/Cg2912v/10) + Cgenotaiy, + Cgrganotbaiy, — Cgrnodoiy, (S146aa)

After some straightforward algebra, one can eliminate all g; except for g4 and g9, which satisfy coupled polynomial
equations. Those equations can be shown to be identical to eqn. (S48) by invoking the change of variables,

g4 = —\/\/%72, and go= (y+op,(n—¢))m. (S147)

In terms of 71, 79, and 7, (S70), the error E3s is given by,

Fsy =1—2m/11 — 15 /78, (S148)

S4.3.5. E33

The equations satisfied by the operator-valued Stieltjes transform G of Q35 induce the following structure on G,

G = ( GOE G012> , (S149)
where,
giz 0 0 O 0 0 0 gs O 0 0
0O o 0 0 g5 0 0 0 gnn g3 O
0 0 o1 94 0 g6 g 0O 0 0 g
0 0 0 ga O g6 g1z O 0 0 g7
0 0 0 0 g 0 O 0 g2 g12 O
G2 = 0 0 0 g9 0 g5 gis 0 0 0 g0 |, (S150)
O 0 0 o0 0 0 giu O 0 0 gs
0 0 0 0 0 0 0 gy 0 0 0
0O 0 0 0 0 0 0 0 g g 0O
0 0 O 0 0 0 0 0 0 g6 O
0 0 0 0 0 0 g19 0 0 0 gis

and the independent entry-wise component functions g; give the error F3o through the relation,

B33 = —g3nooiy, /1, (S151)

and themselves satisfy the following system of polynomial equations,

0 = v/Cgrag16/n0 — gro®) (S152a)
0= v/Cgsg16v/n0 — g15 + (S152b)
0= —/Cg13g14% — gev/nod (v + oy, (n' = C)) (S152¢)
0=—Cgi3g190% — (915 — 1) Vnod (v + o, (0 =€) (S152d)
0= —/Co139% — \/Cg1913% — gs/nod (v + aiv, (1" — ¢)) (S152¢)
0= —\/Cgsgrah — \/Corsgir — grv/nod (v + o, (n' = €)) (S152f)
0= —v/Co1sg1s% — V/Cgsg10¥ — g10v/nod (v + o, (n' =€) (S152¢)

0= g13916%(C — 1) — ¢(95 — V/Cgsg16v/n0) (v + o, (0 = ¢)) (S152h)
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0 = gov/nod (v + o, (1" — €)) + 913 (v/Co15¢ + Cg6v/mooi, ) (S152i)
0 = gavnood (v + o, (0" =€) + g13(V/Cgr0¥ + Cg1av/nociy, ) (S152j)
0= (g14 — 1)vnoo(v + ov, (1" — ¢)) + g13(v/C10% + Cgrav/nooiy, ) (S152k)

0= *\/E((g4 +1)gs + gog13) ¥ — v92v/10¢ + g2y/N0dTiy, + g2y/no(—)0 oy, (S1521)
0= /Cg15916v/nod (0, (C = ') =) + 9109 (v6 + o, (— Cb + o' + (1)) (S152m)
0= g6 (g13%(C — n) + (v Cgsv/no — 1) (v + o, (0 = €))) + b(v + o, (n' — €)) (S152n)
0 = g13(v/Cg100 + Vo (v + g16(n — €) + o, (0" + ¢ (914 — 1)))) = Vo (v + o, (0 =€) (S1520)
0= g14% (Y6 + aiv, (6(1 = €) + Cg1s)) — &(V/Cgs916v/n0 + ) (v + i, (1" = €)) (S152p)

*\/696916\/%¢(7 + o, (" =) +gav(vo + Ty (- C¢> +¢n' 4+ (gi3)) + Cg13¥0iy, (S152q)
0=/ (g7916 + g6 (912 + g20) )10 + g10v/no(—1)) +\f 96 ($(¢ —n) — cﬁvz) + /9596 (C¥ = — Coy, ) (S152r)
0= /<(916917 + g14(g12 + g20) )0 + grsv/no(—) + \/914( — (o) + V/Cgsg1a (C¥ — o — Coty,)  (S1529)

0= g139(¢ = 1) + g5 (g139%(¢ —n) + <Z>(\/96ﬁ —1) (v + o, (n - C))) +VCgevnod (v + o, (n' = ¢)) (S1521)
0 = gonod (v + iv, (1" = €)) + g5 (v/Cgr0v/no + (granociv, ) + g13(v/Cg1sv/not + Coty, (g17n0 — (graciy,))  (S152u)
0 = ~yganod + \/6910913\/%1# + 98 (\ng\/?TM/J + Cg6n00"2/v'2) - Cg2no¢0‘2xvg

+ €grg13n007y, + g2nodn T, — ¢ geg13oiw, (S152v)
0 = gusgie¥(—(C — ) (¥(C — ) — Coi,)

— ¢(y + o, (0 =€) (= Cra916% + V/Cgog16v/n0 (¢ — b — Caiv, ) — g20mo) (S152w)

V(v + aiv, (1 = €)) (96v/n0 (C¥ — 1 = Coivy) = V/Cg1a9) + gaomo (9139 (n — €)

— ¢(VCgovno — 1) (v + i, (n' = €))) + g13%(=(C = m) (¥ (¢ = ) = (o) (8152x)
0= (¢ —n) = ¢otv,) (9139(n = ¢) + V/Cgsv/mod (i, (C — 1) = 7)) + no(g13g200:(n — ¢)

+ (911 = V/Cgs920v/m0) (7 + o, (0 = €))) + C9av (v + i, (0 = €)) (S152y)
0 = vg7n0d + V/Cg10913v/10% + /Cgsgisy/not — (grnodoiy, + (gegsnodiv, + (grgisnociv, + grnodn oiv,

+ €960 (v + o, (0 = €)) + Ca5960 (v + o, (0" = €)) — (P gogr30y, (S1522)
0 =vg17no¢ + \/5913918\/%1/} + \/598919\/77)1/) - Cgl7n0¢0"2xv2 + Cgsgmno(f%vg + C913917n003[/2 + 917n0¢77/0€v2

+ Cgrad (v + aiv, (' =€) + Cgsg1a0 (v + v, (0 = ¢)) = CCgrsgraciv, (S152aa)
0= g5(¥(C —n) — Coiv,) (9139 (n — €) + V/Cg6v/nad (05, (C — 1) — 7)) +n0(8(95 — V/C(96912 + 92916) v/10)

(v+ o, (0 =€) — (9129138 + g8g16) V(¢ — 1)) + Cgagsvod (v + oy, (0" — C)) (S152ab)

0= (¥(¢ = n) = oty ) (9139 (0 — ) + V/Cgav/nod (v, (¢ —1') = 7)) + g5 (938(=(C = m) (¥(¢ = 1) — (o)

— V(v + o, (1 = €)) (96v/n0 (C¥ — b — (o) — V/Cg1aw)) + grinod (v + o, (' =€)

+ Cgahd (v + oty (n' =€) (S152ac)
0= gi2n0 (9139 (n — ¢) — ¢(v/Cgev/no — 1) (v + o, (0 = €))) — g16 (9sn0%(C — ) + /Cgrni > 6 (v + oty (n' = €))

+ Ca139(¢ — n)oiw,) + g5 (9139 (—(C — 1) (¥ (¢ — 1) — Coy)

— V(v + o, (1 = €)) (g96v/n0 (¥ — mp — Coi, ) — V/Cgrat))) (S152ad)
0 =7V Cargreny’ > +vv/Cgegaong > 6 + gsgrenow(C — 1) + Cgragaonoty — ngisgaonot)

+ g12m0 (913%(C — 1) + & (v/Cgev/mo — 1) (v + o, (' = €))) = ¢**grgreny >doiv, — ¢**gsgaony’* by,

+ \[(97916 + 96920)% on' o, + Cgi3g16¥0iy, — (Ng13916YTTy, (S152ae)
0= —vgsno — V/Cgisgisv/not — v/Cgsgion/not + Cgragisno + (gsgieno + Cgisgaono — ng12gisno

— ngsgieno — Ng1sg0no + Cgsnodiy, — CgsgranoTiv, — Cg13g17n00iy, — gsnon o, + ( g139140,

+ 1160ty + 913(C — 0) (V(C —n) — (o, ) + g5913(C — ) (C¥ — b — Co, ) — Cngrsgreoiy, (S152af)
0= 7v/Cgsgrny > ¢ + v/ Cosguing > é + Cgsgsnot + Cgr1g13not — ngsgsnot — ngi1gisnots

+ gsno(g13¥(¢ —n) + ¢(\/696\/7”TO - 1)(v+ Tiv, (n" =¢))) +no(gsv(¢ —n)
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+VCoavnod (v + oty (n' = Q))) = ¢ Pgsgrnd > bot, — ¢*2gegiing *doty, + v/ Casgrny om' o,

+ \[C96911ng/2¢77,‘7‘2/"2 + C295913¢0\2/V2 - C7795913¢0x2/v2 (S152ag)
0= —=/Cg6v/nod(¥(C —n) = Cotv,) (v + vy, (0" = €)) — V/Cgsg6v/nad(¥(¢ — n) — (o) (v + o, (0 =€)

+ gonotp (v + o, (0 (1" — ¢) + Cg13)) + Cgat (9sn00iv, + g5 (v + aiv, (0 = €)) — Cg130mw,)

— V< (92916 + g6 (912 + gzo))ng/2¢(7 + o, (1 =€) + CYoiy, (gsno — Carsoi,)

+ ¢gapp (v + o, (n' = ¢)) (S152ah)
0= —7v/Cgeg12n5/ 6 — v/ Cargrany > & — v/ Cgegaony > ¢ + ygrrnod — /S (v + o, (n' = €))

(96v/0 (Gt — b = (o, ) = V/Cgrav) = V/Cgsd (v + aiv, (' = €)) (96v/mo (C¥ — > — o, ) — V/Cg1ath)

+ ¢ gograny 2 poty, + ¢ grgieny*dot, + 2 gsgaong* bot, — nodn' oiv, (VC(g7g16 + g6 (912 + g20) ) v/mo

— g179) + (gsgranotaiy, + (gi3girnodoiy, — Cgrrnotdoiy, — ¢ g13g149aiy, (S152ai)
0= —7V/Cgr2g15m9"* 6 — v/ Carogiony > ¢ — 7/ Carsga0my’* + vg1snovd — V/Co (v + o, (n' = Q)

(915v/n0 (¢ — i = €, ) — V/Carov) — V/Casd (v + o, (0 = €)) (915v/no (C¥ — b = Coiv,) — Carsmotdoiy,

- \/69191/1) + <3/2912915n3/2¢0‘2/v2 + C3/2910916n3/2¢>0x2zv2 + C3/2915920n3/2¢03i/2 — Cg13g10voiy,

— nodn' i, (V¢ (910916 + 915 (912 + 920) ) Vo — g18%) + Cg1sgisnotaiy, + Cgsgrenotbaoiy, (S152aj)

After some straightforward algebra, one can eliminate all g; except for g and g3, which satisfy coupled polynomial
equations. Those equations can be shown to be identical to eqn. (S48) by invoking the change of variables,

o N
6 \/TTOQSQ’

In terms of 71, 7o, and their derivatives 7 (S69), 75 (S70), the error Es33 is given by,

and 13 = (y+0of, (0 —¢))71 . (S153)

Es3 = ogy, [(11+ (03,0 — Q) + )7 + 0, (75) /71 — ] — Eas. (S154)
S4.4. Total test error
Recall from eqns. (S72, S91-S93) that the total test error can be written as
Ees = 14 Ex1 + Ez1 + Eso + v(n0y, + Eaa + Es3) , (S155)

where v = 0 with centering and v = 1 without it. Combining the results from the previous subsections, we find

EBew=142(ra/m1 — 1)+ 02(r]/m{ — 1) + 1 —2n2/T1 + 13 /7% (S156)
+vaty, (1 + (03, (0 — ) + )7 + o, (m3) /71 (S157)

= 13/7i + 071/ +voiy, [(1 + (o, (0 — ) + )T + oy, Cry) [7i] — o2 (S158)

= (y71) "*Exxain — 07, (S159)

thereby establishing the result of the main theorem (27).
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