
Efficient Intervention Design for Causal Discovery with Latents

Raghavendra Addanki 1 Shiva Prasad Kasiviswanathan 2 Andrew McGregor 1 Cameron Musco 1

Abstract
We consider recovering a causal graph in presence
of latent variables, where we seek to minimize the
cost of interventions used in the recovery process.
We consider two intervention cost models: (1) a
linear cost model where the cost of an interven-
tion on a subset of variables has a linear form,
and (2) an identity cost model where the cost of
an intervention is the same, regardless of what
variables it is on, i.e., the goal is just to minimize
the number of interventions. Under the linear cost
model, we give an algorithm to identify the an-
cestral relations of the underlying causal graph,
achieving within a 2-factor of the optimal inter-
vention cost. This approximation factor can be
improved to 1 + ε for any ε > 0 under some mild
restrictions. Under the identity cost model, we
bound the number of interventions needed to re-
cover the entire causal graph, including the latent
variables, using a parameterization of the causal
graph through a special type of colliders. In par-
ticular, we introduce the notion of p-colliders, that
are colliders between pair of nodes arising from a
specific type of conditioning in the causal graph,
and provide an upper bound on the number of
interventions as a function of the maximum num-
ber of p-colliders between any two nodes in the
causal graph.

1. Introduction
Causality has long been a key tool in studying and analyz-
ing various behaviors in fields such as genetics, psychology,
and economics [Pearl, 2009]. Causality also plays a pivotal
role in helping us build systems that can understand the
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world around us, and in turn, in helping us understand the
behavior of machine learning systems deployed in the real
world. Although the theory of causality has been around for
more than three decades, for these reasons it has received
increasing attention in recent years. In this paper, we study
one of the fundamental problems of causality: causal dis-
covery. In causal discovery, we want to learn all the causal
relations existing between variables (nodes of the causal
graph) of our system. It has been shown that, under certain
assumptions, observational data alone only lets us recover
the existence of a causal relationship between two variables,
but not the direction of all relationships. To recover the
directions of causal edges, we use the notion of an inter-
vention described in the Structural Causal Models (SCM)
framework introduced by Pearl [2009].

An intervention requires us to fix a subset of variables to a
set of values, inducing a new distribution on the free vari-
ables. Such a system manipulation is generally expensive
and thus there has been significant interest in trying to min-
imize the number of interventions and their cost in causal
discovery. In a general cost model, intervening on any sub-
set of variables has a cost associated with it, and the goal is
to identify all causal relationships and their directions while
minimizing the total cost of interventions applied. This cap-
tures the fact that some interventions are more expensive
than others. For example, in a medical study, intervening
on certain variables might be impractical or unethical. In
this work, we study two simplifications of this general cost
model. In the linear cost model, each variable has an inter-
vention cost, and the cost of an intervention on a subset of
variables is the sum of costs for each variable in the set [Ko-
caoglu et al., 2017a; Lindgren et al., 2018]. In the identity
cost model, every intervention has the same cost, regardless
of what variables it contains and therefore minimizing the
intervention cost is the same as minimizing the number of
interventions [Kocaoglu et al., 2017b].

As is standard in the causality literature, we assume that
our causal relationship graph satisfies the causal Markov
condition and faithfulness [Spirtes et al., 2000b]. We as-
sume that faithfulness holds both in the observational and
interventional distributions following [Hauser & Bühlmann,
2014]. As is common, we also assume that we are given
access to an oracle that can check if two variables are inde-
pendent, conditioned on a subset of variables. We discuss
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this assumption in more detail in Section 2. Unlike much
prior work, we do not make the causal sufficiency assump-
tion: that there are no unobserved (or latent) variables in
the system. Our algorithms apply to the causal discovery
problem with the existence of latent variables.
Results. Our contributions are as follows. Let G be a causal
graph on both observable variables V and latent variables L.
A directed edge (u, v) in G indicates a causal relationship
from u to v. Let G be the induced subgraph of G on the n
observable variables (referred to as observable graph). See
Section 2 for a more formal description.

Linear Cost Model: In the linear cost model, we give an
algorithm that given m = Ω(log n), outputs a set of m in-
terventions that can be used to recover all ancestral relations
of the observable graph G.1 We show that cost of interven-
tions generated by the algorithm is at most twice the cost
of the optimum set of interventions for this task. Our result
is based on a characterization that shows that generating a
set of interventions sufficient to recover ancestral relations
is equivalent to designing a strongly separating set system
(Def. 2.2). We show how to design such a set system with at
most twice the optimum cost based on a greedy algorithm
that constructs intervention sets which includes a variable
with high cost in the least number of sets possible.

In the special case when each variable has unit intervention
cost [Hyttinen et al., 2013a] gives an exact algorithm to re-
cover ancestral relations in G with minimal total cost. Their
algorithm is based on the Kruskal-Katona theorem in com-
binatorics [Kruskal, 1963; Katona, 1966]. We show that a
modification of this approach yields a (1+ε)-approximation
algorithm in the general linear cost model for any 0 < ε ≤ 1,
under mild assumptions on m and the maximum interven-
tion cost on any one variable.

The linear cost model was first considered in [Kocaoglu
et al., 2017a] and studied under the causal sufficiency (no
latents) assumption. Lindgren et al. [2018] showed that
under this assumption, which translates to the undirected
component of the Essential graph of G being chordal, the
problem of recovering G with optimal cost under the linear
cost model is NP-hard. To the best of our knowledge, our
result is the first to minimize intervention cost under the
popular linear cost model in the presence of latents, and
without the assumption of unit intervention cost on each
variable.

We note that, while we give a 2-approximation for recov-
ering ancestral relations in G, under the linear cost model,
there seems to be no known characterization of the optimal
intervention sets needed to recover the entire causal graph G,
making it hard to design a good approximation here. Tack-

1As noted in Section 3, m ≥ logn is a lower bound for any
solution.

ling this problem in the linear cost model is an interesting
direction for future work.

Identity Cost Model: In the identity cost model, where we
seek to just minimize the number of interventions, recov-
ering ancestral relations in G with minimum cost becomes
trivial (see Section 4). Thus, in this case, we focus on al-
gorithms that recover the causal graph G completely. We
start with the notion of colliders in causal graphs [Pearl,
2009]. Our idea is to parameterize the causal graph in terms
of a specific type of colliders that we refer to as p-colliders
(Def. 4.2). Intuitively, a node vk is p-collider for a pair
of nodes (vi, vj) if a) it is a collider on a path between
vi and Vj and b) at least one of the parents vi, vj is a de-
scendant of vk. If the graph G has at most τ p-colliders
between every pair of nodes, then our algorithm uses at
most O(nτ log n+ n log n) interventions. We also present
causal graph instances where any non-adaptive algorithm
requires Ω(n) interventions.

The only previous bound on recovering G in this setting uti-
lized O(min{d log2 n, `}+ d2 log n) interventions where d
is the maximum (undirected) node degree and ` is the length
of the longest directed path of the causal graph [Kocaoglu
et al., 2017b]. Since we use a different parameterization
of the causal graph, a direct comparison with this result
is not always possible. We argue that a parameterization
in terms of p-colliders is inherently more “natural” as it
takes the directions of edges in G into account whereas the
maximum degree does not. The presence of a single high-
degree node can make the number of interventions required
by existing work extremely high, even if the overall causal
graph is sparse. In this case, the notion of p-colliders is a
more global characterization of a causal graph. See Sec-
tion 5 for a more detailed discussion of different parameter
regimes under which our scheme provides a better bound.
We also experimentally show that our scheme achieves a
better bound over [Kocaoglu et al., 2017b] in some popular
random graph models.

1.1. Other Related Work

Broadly, the problem of causal discovery has been stud-
ied under two different settings. In the first, one assumes
causal sufficiency, i.e., that there are no unmeasured (la-
tent) variables. Most work in this setting focuses on re-
covering causal relationships based on just observational
data. Examples include algorithms like IC [Pearl, 2009]
and PC [Spirtes et al., 2000a]. Much work has focused on
understanding the limitations and assumptions underlying
these algorithms [Hauser & Bühlmann, 2014; Hoyer et al.,
2009; Heinze-Deml et al., 2018; Loh & Bühlmann, 2014;
Hoyer et al., 2009; Shimizu et al., 2006]. It is well-known,
that to disambiguate a causal graph from its equivalence
class, interventional, rather than just observational data is
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required [Hauser & Bühlmann, 2012; Eberhardt & Scheines,
2007; Eberhardt, 2007]. In particular, letting χ(G) be the
chromatic number of G, Θ(logχ(G)) interventions are nec-
essary and sufficient for recovery under the causal suffi-
ciency assumption [Hauser & Bühlmann, 2014]. Surprising
connections have been found [Hyttinen et al., 2013a; Katona,
1966; Mao-Cheng, 1984] between combinatorial structures
and causality. Using these connections, much recent work
has been devoted to minimizing the intervention cost while
imposing constraints such as sparsity or different costs for
different sets of nodes [Shanmugam et al., 2015; Kocaoglu
et al., 2017a; Lindgren et al., 2018].

In many cases, causal sufficiency is too strong an assump-
tion: it is often contested if the behavior of systems we
observe can truly be attributed to measured variables [Pearl,
2000; Bareinboim & Pearl, 2016]. In light of this, many
algorithms avoiding the causal sufficiency assumption, such
as IC∗ [Verma & Pearl, 1992] and FCI [Spirtes et al., 2000b],
have been developed. The above algorithms only use ob-
servational data. However, there is a growing interest in
optimal intervention design in this setting [Silva et al., 2006;
Hyttinen et al., 2013b; Parviainen & Koivisto, 2011]. We
contribute to this line of work, focusing on minimizing the
intervention cost required to recover the full intervention
graph, or its ancestral graph, without causal sufficiency, i.e.,
in the presence of latents.

2. Preliminaries
Notation. Following the SCM framework introduced by
Pearl [2009], we represent the set of random variables of
interest by V ∪L where V represents the set of endogenous
(observed) variables that can be measured and L represents
the set of exogenous (latent) variables that cannot be mea-
sured. We define a directed graph on these variables where
an edge corresponds to a causal relation between the cor-
responding variables. The edges are directed with an edge
(vi, vj) meaning that vi → vj . As is common, we assume
that all causal relations that exist between random variables
in V ∪L belong to one of the two categories : (i)E ⊆ V ×V
containing causal relations between the observed variables
and (ii) EL ⊆ L×V containing relations of the form l→ v
where l ∈ L, v ∈ V . Thus, the full edge set of our causal
graph is denoted by E = E ∪ EL. We also assume that
every latent l ∈ L influences exactly two observed variables
i.e., (l, u), (l, v) ∈ EL and no other edges are incident on l.
This assumption, also known as the semi-Markovian causal
model, is well studied in many previous works [Shpitser &
Pearl, 2006; Tian & Pearl, 2002; Kocaoglu et al., 2017b].
We let G = G(V ∪ L, E) denote the entire causal graph
and refer to G = G(V,E) as the observable graph. Let
V = {v1, . . . , vn} and |V | = n.

Unless otherwise specified a path between two nodes is a

undirected path. For every observable v ∈ V , let the parents
of v be defined as Pa(v) = {w | w ∈ V and (w, v) ∈
E}. For a set of nodes S ⊆ V , Pa(S) = ∪v∈SPa(v).
If vi, vj ∈ V , we say vj is a descendant of vi (and vi is
an ancestor of vj) if there is a directed path from vi to vj .
Anc(v) = {w | w ∈ V and v is a descendant of w}. We
let Anc(G) denote the ancestral graph2 of G where an edge
(vi, vj) ∈ Anc(G) if and only if there is a directed path from
vi to vj in G. One of our primary interests is in recovering
Anc(G) using a minimal cost set of interventions.

Using Pearl’s do-notation, we represent an intervention on
a set of variables S ⊆ V as do(S = s) for a value s in
the domain of S and the joint probability distribution on
V ∪L conditioned on this intervention by Pr[· | do(S)]. We
assume that there exists an oracle that answers queries such
as “Is vi independent of vj given Z in the interventional
distribution Pr[· | do(S = s)]?”

Assumption 2.1 (Conditional Independence (CI)-Oracle).
Given any vi, vj ∈ V and Z, S ⊆ V we have an oracle that
tests whether vi |= vj | Z,do(S = s).

Such conditional independence tests have been widely in-
vestigated with sublinear (in domain size) bounds on the
sample size needed for implementing this oracle [Canonne
et al., 2018; Zhang et al., 2011].

Intervention Cost Models. We study the causal discov-
ery problem under two cost models:

Linear Cost Model. In this model, each node v ∈ V has a
different cost c(v) ∈ R+ and the cost of intervention on a
set S ⊂ V is defined as

∑
v∈S c(v) (akin to [Lindgren et al.,

2018]). That is, interventions that involve a larger number of,
or more costly nodes, are more expensive. Our goal is to find
an intervention set S minimizing

∑
S∈S

∑
v∈S c(v). We

constrain the number of interventions to be upper bounded
by some budget m. Without such a bound, we can observe
that for ancestral graph recovery, the optimal intervention
set is S = {{v1}, {v2}, . . . , {vn}} with cost

∑
v∈V c(v) as

intervention on every variable is necessary, as we need to ac-
count for the possibility of latent variables (See Lemma 3.1
for more details). The optimality of S here follows from a
characterization of any feasible set system we establish in
Lemma 3.1.

Identity Cost Model. As an intervention on a set of variables
requires controlling the variables, and generating a new
distribution, we want to use as few interventions as possible.
In this cost model, an intervention on any set of observed
variables has unit cost (no matter how many variables are
in the set). We assume that for any intervention, querying
the CI-oracle comes free of cost. This model is akin to the

2We note that the term ancestral graph has also been previously
used in a different context, see e.g., [Richardson et al., 2002].
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model studied in [Kocaoglu et al., 2017b].
Causal Discovery Goals. We will study two variations of
the causal discovery problem. In the first, we aim to recover
the ancestral graph Anc(G), which contains all the causal
ancestral relationships between the observable variables V .
In the second, our goal is to recover all the causal relations
in E , i.e., learn the entire causal graph G(V ∪ L, E). We
aim to perform both tasks using a set of intervention sets
S = {S1, . . . , Sm} (each Si ⊆ V ) with minimal cost, with
our cost models defined above.

For ancestral graph recovery, we will leverage a sim-
ple characterization of when a set of interventions S =
{S1, . . . , Sm} is sufficient to recover Anc(G). In particular,
S is sufficient if it is a strongly separating set system [Ko-
caoglu et al., 2017b].

Definition 2.2 (Strongly Separating Set System). A collec-
tion of subsets S = {S1, · · · , Sm} of the ground set V is a
strongly separating set system if for every distinct u, v ∈ V
there exists Si and Sj such that u ∈ Si \Sj and v ∈ Sj \Si.

Ancestral graph recovery using a strongly separating set sys-
tem is simple: we intervene on each of the sets S1, . . . , Sm.
Using CI-tests we can identify for every pair of vi and vj , if
there is a path from vi to vj or not in G using the interven-
tion corresponding to S ∈ S with vi ∈ S and vj /∈ S. We
add an edge to Anc(G) if the test returns dependence. Fi-
nally, we take the transitive closure and output the resulting
graph as Anc(G). In Lemma 3.1, we show that in fact being
strongly separating is necessary for any set of interventions
to be used to identify Anc(G).

3. Linear Cost Model
We begin with our results on recovering the ancestral graph
Anc(G) in the linear cost model. Recall that, given a budget
of m interventions, our objective is to find a set of inter-
ventions S = {S1, S2, · · ·Sm} that can be used to identify
Anc(G) while minimizing

∑
S∈S

∑
v∈S c(v).

As detailed in Section 2, a strongly separating set system
is sufficient to recover the ancestral graph. We show that it
is also necessary: a set of interventions to discover Anc(G)
must be a strongly separating set system (Definition 2.2).
See proof in Appendix A.

Lemma 3.1. Suppose S = {S1, S2, · · · , Sm} is a collec-
tion of subsets of V . If S is not a strongly separating system,
then there exists a causal graph G, for which Anc(G) is not
identifiable using CI-tests under the interventions on S.

Given this characterization, the problem of constructing the
ancestral graph Anc(G) with minimum linear cost reduces
to that of constructing a strongly separating set system with
minimum cost. In developing our algorithm for finding
such a set system, it will be useful to represent a set system

by a binary matrix, with rows corresponding to observable
variables V and columns corresponding to interventions
(sets S1, . . . , Sm).

Definition 3.2 (Strongly Separating Matrix). Matrix U ∈
{0, 1}n×m is a strongly separating matrix if ∀i, j ∈ [n]
there exists k, k′ ∈ [m] such that U(i, k) = 1, U(j, k) = 0
and U(i, k′) = 0, U(j, k′) = 1.

Note that given a strongly separating set system S, if we
let U be the matrix where U(i, k) = 1 if vi ∈ Sk and
0 otherwise, U will be a strongly separating matrix. The
other direction is also true. Let U(j) denote the jth row
of U . Using Definition 3.2 and above connection between
recovering Anc(G) and strongly separating set system, we
can reformulate the problem at hand as:

minU
n∑
j=1

c(vj) · ‖U(j)‖1 (1)

s.t. U ∈ {0, 1}n×m is a strongly separating matrix.

We can thus view our problem as finding an assignment
of vectors in {0, 1}m (i.e., rows of U ) to nodes in V that
minimizes (1). Throughout, we will call ‖U(j)‖1 the weight
of row U(j), i.e., the number of 1s in that row. It is easy to
see that m ≥ log n is necessary for a feasible solution to
exist as each row must be distinct.

We start by giving a 2-approximation algorithm for (1). In
Section 3.2, we show how to obtain an improved approxi-
mation under certain assumptions.

3.1. 2-approximation Algorithm

In this section, we present an algorithm (Algo-
rithm SSMATRIX) that constructs a strongly separating
matrix (and a corresponding intervention set) which min-
imizes (1) to within a 2-factor of the optimum. Missing
details from section are collected in Appendix A.1.
Outline. Let UOPT denote a strongly separating matrix
minimizing (1). Let cOPT =

∑n
j=1 c(vj)‖UOPT(j)‖1 de-

note the objective value achieved by this optimum UOPT.
We start by relaxing the constraint on U so that it does not
need to be strongly separating, but just must have unique
rows, where none of the rows is all zero. In this case, we
can optimize (1) very easily. We simply take the rows of U
to be the n unique binary vectors in {0, 1}m \ {0m} with
lowest weights. That is, m rows will have weight 1,

(
m
2

)
will have weight 2, etc. We then assign the rows to the
nodes in V in descending order of their costs. So the m
nodes with the highest costs will be assigned the weight 1
rows, the next

(
m
2

)
assigned weight 2 rows, etc. The cost of

this assignment is only lower than cOPT, as we have only
relaxed the constraint in (1).

We next convert this relaxed solution into a valid strongly
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separating matrix. Given m + log n columns, we can do
this easily. Since there are n nodes, in the above assign-
ment, all rows will have weight of at most log n. Let
Ū ∈ {0, 1}m+logn have its firstm columns equal to those of
U . Additionally, use the last log n columns as ‘row weight
indicators’: if ‖U(j)‖1 = k then set Ū(j,m+ k) = 1. We
can see that Ū is a strongly separating matrix. If two rows
have different weights k, k′ in Ū , then the last log n columns
ensure that they satisfy the strongly separating condition. If
they have the same weight in Ū , then they already satisfy
the condition, as to be unique in U they must have at least 2
entries on which they differ.

To turn the above idea into a valid approximation algorithm
that outputs Ū with just m (not m + log n) columns, we
argue that we can ‘reserve’ the last log n columns of Ū to
serve as weight indicator columns. We are then left with
just m − log n columns to work with. Thus we can only
assign m− log n weight 1 rows,

(
m−logn

2

)
weight 2 rows,

etc. Nevertheless, if m ≥ γ log n (for a constant γ > 1),
this does not affect the assignment much: for any i we
can still ‘cover’ the

(
m
i

)
weight i rows in U with rows of

weight≤ 2i. Thus, after accounting for the weight indicator
columns, each weight k row in U has weight≤ 2k+ 1 in Ū .
Overall, this gives us a 3-approximation algorithm: when k
is 1 the weight of a row may become as large as 3.

To improve the approximation to a 2-approximation we
guess the number of weight 1 vectors a1 in the optimum
solution UOPT and assign the a1 highest cost variables to
weight 1 vectors, achieving optimal cost for these variables.
There are O(m) possible values for a1 and so trying all
guesses is still efficient. We then apply our approximation
algorithm to the remaining m− a1 available columns of U
and n−a1 variables. Since no variables are assigned weight
1 in this set, we achieve a tighter 2-approximation using our
approach. The resulting matrix has the form:

U =


Ia1 0 0
0 C1 M1

0 C2 M2

...
...

...


where Ia1 is the a1 × a1 identity matrix, the rows of Cw
are all weight w binary vectors of length m − log n − a1,
and the rows of Mw are length log n binary vectors with
1’s in the wth column. The entire approach is presented in
Algorithm SSMATRIX and a proof of the approximation
bound in Theorem 3.3 is present in Appendix A.1.
Theorem 3.3. Let m ≥ γ log n for constant γ > 1 and U
be the strongly separating matrix returned by SSMATRIX.3

Let cU =
∑n
j=1 c(vj) ‖U(j)‖1. Then, cU ≤ 2·cOPT, where

cOPT is the objective value associated with optimum set of
interventions corresponding to UOPT.

3In our proof, γ = 66 but this can likely be decreased.

Algorithm 1 SSMATRIX (V,m)

1: cUmin ←∞
2: for a1 ∈ {0, 1, · · · , 2m/3} do
3: U ∈ {0, 1}n×m be initialized with all zeros
4: Assign the highest cost a1 nodes with unit weight vectors

such that U(i, i) = 1 for i ≤ a1
5: Set m′ ← m− a1
6: Mark all vectors of weight at least 1 in {0, 1}m

′−logn as
available

7: for unassigned vi ∈ V (in decreasing order of cost) do
8: Set U(i, (a1 + 1) : m − logn) to smallest available

weight vector in {0, 1}m
′−logn and make this vector

unavailable. Let the weight of the assigned vector be k
9: Set ‘row weight indicator’ U(i,m′ − logn+ k) = 1

10: end for
11: Compute cost of objective for U be cU
12: if cU < cUmin then
13: cUmin ← cU , Umin ← U
14: end if
15: end for
16: Return Umin

Using the interventions from the matrix U returned by Al-
gorithm SSMATRIX, we obtain a cost within twice the opti-
mum for recovering Anc(G).

3.2. (1 + ε)-approximation Algorithm

In [Hyttinen et al., 2013a], the authors show how to con-
struct a collection A of m strongly separating intervention
sets with minimum average set size, i.e.,

∑
A∈A |A|/m.

This is equivalent to minimizing the objective (1) in the
linear cost model when the cost of intervening on any node
equals 1. In this section, we analyze an adaptation of their
algorithm to the general linear cost model, and obtain a
(1 + ε)-approximation for any given 0 < ε ≤ 1, an improve-
ment over the 2-approximation of Section 3.1. Our analysis
requires mild restrictions on the number of interventions
and an upper bound on the maximum cost. The algorithm
will not depend on ε but these bounds will. Missing details
from this section are collected in Appendix A.2.
Algorithm ε-SSMATRIX Outline. The famous Kruskal-
Katona theorem in combinatorics forms the basis of the
scheme presented in [Hyttinen et al., 2013a] for minimiz-
ing the average size of the intervention sets. To deal with
with varying costs of node interventions, we augment this
approach with a greedy strategy. Let A denote a set of m
intervention sets over the nodes {v1, v2 · · · , vn} obtained
using the scheme from [Hyttinen et al., 2013a]. Construct
a strongly separating matrix Ũ from A with Ũ(i, j) = 1 iff
vi ∈ Aj for Aj ∈ A. Let ζ denote the ordering of rows
of Ũ in the increasing order of weight. Our Algorithm ε-
SSMATRIX outputs the strongly separating matrix U where,
for every i ∈ [n], U(i) = Ũ(ζ(i)) and the ith row of U
corresponds to the node with ith largest cost.
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Let cmax = maxvi∈V c(vi)/minvi∈V c(vi) be the ratio of
maximum cost to minimum cost of nodes in V . For ease of
analysis, we assume that the cost of any node is least 1.
Theorem 3.4. Let U be the strongly separating matrix re-
turned by ε-SSMATRIX. If cmax ≤ εn

3(mt )
for 0 < ε ≤ 1

where
(
m
k−1

)
< n ≤

(
m
k

)
and t = bk − εk/3c, then,

cU :=

n∑
j=1

c(vj) ‖U(j)‖1 ≤ (1 + ε) · cOPT ,

where cOPT is the objective value associated with optimum
set of interventions corresponding to UOPT.

Proof. Suppose the optimal solution UOPT includes a∗q vec-
tors of weight q. Let S be the a∗1 + a∗2 + . . . + a∗t nodes
with highest cost in UOPT. Since a∗q ≤

(
m
q

)
, it immedi-

ately follows that |S| ≤
∑t
i=q

(
m
q

)
. However, a slightly

tighter analysis (see Lemma A.10) implies |S| ≤
(
m
t

)
. Let

cOPT(S) be the total contribution of the nodes in S to cOPT.
Let cU (S) denote the sum of contribution of the nodes in S
to cU for the matrix U returned by ε-SSMATRIX. Let k̄|S|
and k̄n be the average of the smallest |S| and n respectively
of the vector weights assigned by the algorithm. It is easy
to observe that k̄|S| ≤ k̄n.

cU (S) =
∑
vi∈S

c(vi) ‖U(i)‖1 ≤ cmax
∑
vi∈S
‖U(i)‖1

= cmaxk̄|S||S| ≤ cmaxk̄|S|
(
m

t

)
≤ εk̄|S|n/3.

As every node in V \S receives weight at least t = k−εk/3
in UOPT and at most k in U returned by ε-SSMATRIX,
we have cU (V \ S) ≤ cOPT(V \S)

1−ε/3 . Now, we give a lower
bound on the cost of the optimum solution cOPT(V ). We
know that when costs of all the nodes are 1, then ε-
SSMATRIX achieves optimum cost denoted by c′OPT(V )
(see Appendix A.2 for more details). As all the nodes of V
have costs more than 1, we have:

cOPT(V ) ≥ c′OPT(V ) = k̄n · n ≥ k̄|S| · n.

Hence,

cU (V )

cOPT(V )
≤ cU (S)

k̄|S|n
+

cU (V \ S)

cOPT(V \ S)
≤ ε

3
+

1

1− ε/3
≤ 1+ε.

This completes the proof.

By bounding the binomial coefficients in Thm. 3.4, we
obtain the following somewhat easier to interpret corollary:
Corollary 3.5. If cmax ≤ (ε/6)nΩ(ε) and either a) nε/6 ≥
m ≥ (2 log2 n)c1 for some constant c1 > 1 or b) 4 log2 n ≤
m ≤ c2 log2 n for some constant c2 then the Algorithm ε-
SSMATRIX returns an (1 + ε)-approximation.

4. Identity Cost Model
In this section, we consider the identity cost model, where
the cost of intervention for any subset of variables is the
same. Our goal is to construct the entire causal graph G,
while minimizing the number of interventions. Our algo-
rithm is based on parameterizing the causal graph based on
a specific type of collider structure. Before describing our
algorithms, we recall the notion of d-separation and intro-
duce this specific type of colliders that we rely on. Missing
details from section are collected in Appendix B.
Colliders. Given a causal graph G(V ∪L, E), let vi, vj ∈ V
and a set of nodes Z ⊆ V . We say vi and vj are d-separated
by Z if and only if every undirected path π between vi and
vj is blocked by Z. A path π between vi and vj is blocked
by Z if at least one of the following holds.

Rule 1: π contains a node vk ∈ Z such that the path π =
vi · · · → vk → · · · vj or vi · · · ← vk ← · · · vj .

Rule 2: π = vi · · · → vk ← · · · vj contains a node vk and
both vk /∈ Z and no descendant of vk is in Z.

Lemma 4.1. [Pearl, 2009] If vi and vj are d-separated by
Z, then vi |= vj | Z.

For the path π = vi · · · → vk ← · · · vj between vi and
vj , vk is called a collider as there are two arrows pointing
towards it. We say that vk is a collider for the pair vi and
vj , if there exists a path between vi and vj for which vk is a
collider. As shown by Rule 2, colliders play an important
role in d-separation. We give a more restrictive definition
for colliders that we will rely on henceforth.

Definition 4.2 (p-colliders). Given a causal graph G(V ∪
L,E ∪ EL). Consider vi, vj ∈ V and vk ∈ V . We say vk
is a p-collider for the pair vi and vj , if there exists a path
vi · · · → vk ← · · · vj in G and either vk ∈ Pa(vi)∪Pa(vj)
or has at least one descendant in Pa(vi) ∪ Pa(vj). Let
Pij ⊂ V denote all the p-colliders between vi and vj .

Intervening on p-colliders essentially breaks down all the
primitive inducing paths. Primitive inducing paths are those
whose endpoints cannot be separated by any condition-
ing [Richardson et al., 2002]. Now, between every pair
of observable variables, we can define a set of p-colliders
as above. Computing Pij for the pair of variables vi and vj
explicitly requires the knowledge of G, however as we show
below we can use randomization to overcome this issue.

The following parameterization of a causal graph will be
useful in our discussions.

Definition 4.3 (τ -causal graph). A causal graph G(V ∪L, E)
is a τ -causal graph if for every pair of nodes in V the
number of p-colliders is at most τ , i.e., vi, vj ∈ V (i 6= j),
we have |Pij | ≤ τ .



Efficient Intervention Design for Causal Discovery with Latents

Figure 1. vk is a p-collider for vi, vj as it has a path to vp, a parent
of vj .

Note that every causal graph is at most n − 2-causal. In
practice, we expect τ to be significantly smaller. Given a
causal graph G, it is easy to determine the minimum values
of τ for which it is τ -causal, as checking for p-colliders is
easy. Our algorithm recovers G with number of interventions
that grow as a function of τ and n.
Outline of our Approach. Let G be a τ -causal graph. As
in [Kocaoglu et al., 2017b], we break our approach into
multiple steps. Firstly, we construct the ancestral graph
Anc(G) using the strongly separating set system (Defini-
tion 2.2) idea detailed in Section 2. For example, a strongly
separating set system can be constructed with m = 2 log n
interventions by using the binary encoding of the numbers
1, · · · , n [Kocaoglu et al., 2017b]. After that the algorithm
has two steps. In the first step, we recover the observable
graph G from Anc(G). In the next step, after obtaining
the observable graph, we identify all the latents L between
the variables in V to construct G. In both these steps, an
underlying idea is to construct intervention sets with the
aim of making sure that all the p-colliders between every
pair of nodes is included in at least one of the intervention
sets. As we do not know the graph G, we devise randomized
strategies to hit all the p-colliders, whilst ensuring that we
do not create a lot of interventions.

A point to note is that, we design the algorithms to achieve
an overall success probability of 1−O(1/n2), however, the
success probability can be boosted to any 1−O(1/nc) for
any constant c, by just adjusting the constant factors (see
for example the proof of Lemma B.2). Also for simplicity
of discussion, we assume that we know τ . However as
we discuss in Appendix B this assumption can be easily
removed with an additional O(log τ) factor.

4.1. Recovering the Observable Graph

Anc(G) encodes all the ancestral relations on observable
variables V of the causal graph G. To recover G from
Anc(G), we want to differentiate whether vi → vj repre-
sents an edge in G or a directed path going through other
nodes in G. We use the following observation, if vi is a
parent of vj , the path vi → vj is never blocked by any con-
ditioning set Z ⊆ V \ {vi}. If vi 6∈ Pa(vj), then we show
that we can provide a conditioning set Z in some interven-
tional distribution S such that vi |= vj | Z,do(S). For every

pair of variables that have an edge in Anc(G), we design
conditioning sets in Algorithm 2 that blocks all the paths
between them.

Let vi ∈ Anc(vj) \ Pa(vj). We argue that conditioning on
Anc(vj) \ {vi} in do(vi ∪ Pij) blocks all the paths from vi
to vj . The first simple observation, from d-separation is that
if we take a path that has no p-colliders between vi to vj (a
p-collider free path) then it is blocked by conditioning on
Anc(vj) \ {vi} i.e., vi |= vj | Anc(vj) \ {vi}.

The idea then will be to intervene on colliders Pij to remove
these dependencies between vi and vj as shown by the
following lemma.
Lemma 4.4. Let vi ∈ Anc(vj). vi |= vj | do(vi ∪
Pij),Anc(vj) \ {vi} iff vi 6∈ Pa(vj).

From Lemma 4.4, we can recover the edges of the observ-
able graph G provided we know the p-colliders between
every pair of nodes. However, since the set of p-colliders is
unknown without the knowledge of G, we construct multiple
intervention sets by independently sampling every variable
with some probability. This ensures that there exists an in-
tervention set S such that {vi} ∪ Pij ⊆ S and vj 6∈ S with
high probability.

Formally, let At ⊆ V for t ∈ {1, 2, · · · , 72τ ′ log n} be
constructed by including every variable vi ∈ V with prob-
ability 1 − 1/τ ′ where τ ′ = max{τ, 2}. Let Aτ =
{A1, · · · , A72τ ′ logn} be the collection of the set At’s. Al-
gorithm 2 uses the interventions in Aτ .

Algorithm 2 RECOVERG (Anc(G),Aτ )

1: E = φ
2: for vi → vj in Anc(G) do
3: Let Aij = {A | A ∈ Aτ such that vi ∈ A, vj 6∈ A}
4: if ∀A ∈ Aij ,vi 6⊥⊥ vj | Anc(vj)\{vi},do(A) then
5: E = E ∪ {(vi, vj)}
6: end if
7: end for
8: return E

Proposition 4.5. Let G(V ∪L,E∪EL) be a τ -causal graph
with observable graph G(V,E). There exists a procedure
to recover the observable graph using O(τ log n + log n)
many interventions with probability at least 1− 1/n2.

Lower Bound. Complementing the above result, the fol-
lowing proposition gives a lower bound on the number of
interventions by providing an instance of a O(n)-causal
graph such that any non-adaptive algorithm requires Ω(n)
interventions for recovering it. The lower bound comes
because of the fact that the algorithm cannot rule out the
possibility of latent.
Proposition 4.6. There exists a causal graph G(V ∪L,E∪
EL) such that every non-adaptive algorithm requires Ω(n)
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Algorithm 3 LatentsWEdges(G(V ∪ L,E ∪ EL),Bτ )

1: Consider the edge vi → vj ∈ E.
2: Let Bij = {B \ {vi} | B ∈ Bτ s.t. vi ∈ B, vj 6∈ B}
3: if ∀B ∈ Bij ,Pr[vj | vi,Pa(vj),do(Pa(vi) ∪ B)] 6=

Pr[vj | Pa(vj),do({vi} ∪ Pa(vi) ∪B)] then
4: L← L ∪ lij , EL ← EL ∪ {(lij , vi), (lij , vj)}
5: end if
6: return G(V ∪ L,E ∪ EL)

many interventions to recover even the observable graph
G(V,E) of G.

4.2. Detecting the Latents

We now describe algorithms to identify latents that affect
the observable variables V to learn the entire causal graph
G(V ∪ L,E ∪ EL). We start from the observable graph
G(V,E) constructed in the previous section. Our goal will
be to use the fact that G is a τ -causal graph, which means
that |Pij | ≤ τ for every pair vi, vj . Since we assumed that
each latent variable (in L) effects at most two observable
variables (in V ), we can split the analysis into two cases: a)
pairs of nodes in G without an edge (non-adjacent nodes)
and b) pairs of nodes in G with a direct edge (adjacent). In
Algorithm LATENTSNEDGES (Appendix B), we describe
the algorithm for identifying the latents effecting pairs of
non-adjacent nodes. The idea is to block the paths by con-
ditioning on parents and intervening on p-colliders. We
use the observation that for any non-adjacent pair vi, vj an
intervention on the set Pij and conditioning on the parents
of vi and vj will make vi and vj independent, unless there
is a latent between them.

Proposition 4.7. Let G(V ∪ L,E ∪ EL) be a τ -
causal graph with observable graph G(V,E). Algo-
rithm LATENTSNEDGES with O(τ2 log n + log n) inter-
ventions recovers all latents effecting pairs of non-adjacent
nodes in the observable graph G with probability at least
1− 1/n2.

Latents Affecting Adjacent Nodes inG. Suppose we have
an edge vi → vj in G(V,E) and we want to detect whether
there exists a latent lij that effects both of them. Here, we
cannot block the edge path vi → vj by conditioning on any
Z ⊆ V in any given interventional distribution do(S) where
S does not contain vj . However, intervening on vj also
disconnects vj from its latent parent. Therefore, CI-tests
are not helpful. Hence, we make use of another test called
do-see test [Kocaoglu et al., 2017b], that compares two
probability distributions. We assume there exists an oracle
that answers whether two distributions are the same or not.
This is a well-studied problem with sublinear (in domain
size) bound on the sample size needed for implementing
this oracle [Chan et al., 2014].

Assumption 4.8 (Distribution Testing (DT)-Oracle). Given
any vi, vj ∈ V and Z, S ⊆ V tests whether two distribu-
tions Pr[vj | vi, Z,do(S)] and Pr[vj | Z,do(S∪{vi})] are
identical or not.

The intuition of the do-see test is as follows: if vi
and vj are the only two nodes in the graph G with
vi → vj , then, Pr[vj | vi] = Pr[vj | do(vi)]
iff there exists no latent that effects both of them. This fol-

lows from the conditional invariance principle [Bareinboim
et al., 2012] (or page 24, property 2 in [Pearl, 2009]). There-
fore, the presence or absence of latents can be established
by invoking a DT-oracle.

As we seek to minimize the number of interventions, our
goal is to create intervention sets that contain p-colliders
between every pair of variables that share an edge in G.
However, in Lemmas 4.9, 4.10 we argue that it is not suf-
ficient to consider interventions with only p-colliders. We
must also intervene on Pa(vi) to detect a latent between
vi → vj . The main idea behind LATENTSWEDGES is cap-
tured by the following two lemmas.

Lemma 4.9 (No Latent Case). Suppose vi → vj ∈
G and vi, vj 6∈ B, and Pij ⊆ B then, Pr[vj |
vi,Pa(vj),do(Pa(vi) ∪ B)] = Pr[vj | Pa(vj),do({vi} ∪
Pa(vi) ∪B)] if there is no latent lij with vi ← lij → vj .

Lemma 4.10 (Latent Case). Suppose vi → vj ∈
G and vi, vj 6∈ B, and Pij ⊆ B, then, Pr[vj |
vi,Pa(vj),do(Pa(vi) ∪ B)] 6= Pr[vj | Pa(vj),do({vi} ∪
Pa(vi) ∪B)] if there is a latent lij with vi ← lij → vj .

From Lemmas 4.9, 4.10, we know that to identify a la-
tent lij between vi → vj , we must intervene on all the
p-colliders between them with Pa(vi) ∪ {vi}. To do this,
we again construct random intervention sets. Let Bt ⊆ V
for t ∈ {1, 2, · · · , 72τ ′ log n} be constructed by including
every variable vi ∈ V with probability 1 − 1/τ ′ where
τ ′ = max{τ, 2}. Let Bτ = {B1, · · · , B72τ ′ logn} be the
collection of the sets. Consider a pair vi → vj . To obtain
the interventions given by the above lemmas, we iterate over
all sets in Bτ and identify all the sets containing vi, but not
vj . From these sets, we remove vi to obtain Bij . These
new interventions are then used in LATENTSWEDGES to
perform the required distribution tests using a DT-oracle on
the interventions B ∪ Pa(vi) and B ∪ Pa(vi) ∪ {vi} for
every B ∈ Bij . We can show:

Proposition 4.11. Let G(V ∪ L,E ∪ EL) be a τ -causal
graph with observable graph G(V,E). LATENTSWEDGES
withO(nτ log n+n log n) interventions recovers all latents
effecting pairs of adjacent nodes in the observable graph G
with probability at least 1− 1/n2.

Putting it all Together. Using Propositions 4.5, 4.7,
and 4.11, we get the following result. Note that τ ≤ n− 2.
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Theorem 4.12. Given access to a τ -causal graph
G = G(V ∪ L,E ∪ EL) through Conditional In-
dependence (CI) and Distribution Testing (DT) or-
acles, Algorithms RECOVERG, LATENTSNEDGES,
and LATENTSWEDGES put together recovers G with
O(nτ log n + n log n) interventions, with probability at
least 1−O(1/n2) (where |V | = n).

5. Experiments
In this section, we compare the total number of interven-
tions required to recover causal graph G parameterized by
p-colliders (See Section 4) vs. maximum degree utilized
by [Kocaoglu et al., 2017b].

Since the parameterization of these two results are different,
a direct comparison between them is not always possible.
If τ = o(d2/n), we use fewer interventions than Kocaoglu
et al. [2017b] for recovering the causal graph. Roughly,
for any 0 ≤ ε ≤ 1, (a) when τ < nε, d > n(1+ε)/2, our
bound is better, (b) when τ > nε, τ < d < n(1+ε)/2, then
we can identify latents using the algorithms of Kocaoglu
et al. [2017b] after using our algorithm for observable graph
recovery, and (c) when τ > d > nε, d < n(1+ε)/2, the
bound in Kocaoglu et al. [2017b] is better.

In this section, our main motivation is to show that p-
colliders can be a useful measure of complexity of a graph.
As discussed in Section 1, even few nodes of high degree
could make d2 quite large.

Setup. We demonstrate our results by considering sparse
random graphs generated from the families of: (i) Erdös-
Rényi random graphs G(n, c/n) for constant c, (ii) Random
bipartite graphs generated usingG(n1, n2, c/n) model, with
partitionsL,R and edges directed fromL toR, (iii) Random
directed trees with degrees of nodes generated from power
law distribution. In each of the graphs that we consider, we
include latent variables by sampling 5% of

(
n
2

)
pairs and

adding a latent between them.

Finding p-colliders. Let G contain observable variables
and the latents. To find p-colliders between every pair of
observable nodes of G, we enumerate all paths between them
and check if any of the observable nodes on a path can be
a possible p-collider. As this became practically infeasible
for larger values of n, we devised an algorithm that runs in
polynomial time (in the size of the graph) by constructing
an appropriate flow network and finding maximum flow in
this network. Please refer to Appendix C for more details.

Results. In our plots (Figure 2), we compare the maxi-
mum undirected degree (d) with the maximum number of
p-colliders between any pair of nodes (which defines τ ). We
ran each experiment 10 times and plot the mean value along
with one standard deviation error bars.
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Figure 2. Comparison of τ vs. maximum degree in sparse random
bi-partite graphs.

For random bipartite graphs, that can be used to model
causal relations over time, we use equal partition sizes n1 =
n2 = n/2 and plot the results for G(n/2, n/2, c/n) for
constant c = 5. We observe that the behaviour is uniform
for small constant values of c. In Figure 2, we observe that
the maximum number of p-colliders(τ ) is close to zero for
all values of nwhile the values of d2/n using the mean value
of d, is significantly higher. So, in the range considered our
algorithms use fewer interventions. We show similar results
for other random graphs in Appendix C.

Therefore, we believe that minimizing the number of inter-
ventions based on the notion of p-colliders is a reasonable
direction to consider.

6. Concluding Remarks
We have studied how to recover a causal graph in presence
of latents while minimizing the intervention cost. In the
linear cost setting, we give a 2-approximation algorithm for
ancestral graph recovery. This approximation factor can
be improved to (1 + ε) under some additional assumptions.
Removing these assumptions would be an interesting direc-
tion for future work. In the identity cost setting, we give
a randomized algorithm to recover the full causal graph,
through a novel characterization based on p-colliders. In
this setting, understanding the optimal intervention cost is
open, and an important direction for research.

While we focus on non-adaptive settings, where all the inter-
ventions are constructed at once in the beginning, an adap-
tive (sequential) setting has received recent attention [He &
Geng, 2008; Shanmugam et al., 2015], and is an interesting
direction in both our cost models.
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Supplementary Material for “Efficient Intervention Design for Causal
Discovery with Latents”

A. Missing Details from Section 3
Lemma A.1 (Lemma 3.1 Restated). Suppose S = {S1, S2, · · · , Sm} is a collection of subsets of V . If S is not a strongly
separating system, then there exists a causal graph G, for which Anc(G) is not identifiable using CI-tests under the
interventions on S.

Proof. Suppose S is not a strongly separating set system. If there exists a pair of nodes (vi, vj) such that every set Sk ∈ S
contains none of them, then, we cannot recover the edge between these two nodes as we are not intervening on either
vi or vj and the results of an independence test vi |= vj might not be correct due to the presence of a latent variable lij
between them. Now, consider the case when only one of them is present in the set system. Let (vi, vj) be such that
∀Sk : Sk ∩ {vi, vj} = {vi} ⇒ vi ∈ Sk, vj 6∈ Sk. We choose our graph Gij to have two components {vi, vj} and
V \ {vi, vj}; and include the edge vj → vi in it. Our algorithm will conclude from CI-test vi |= vj | do(Sk) that vi and vj
are independent. However, it is possible that vi 6⊥⊥ vj because of a latent lij between vi and vj , but vi |= vj | do(Sk) as
intervening on vi disconnects the lij → vi edge. Therefore, our algorithm cannot distinguish the two cases vj → vi and
vi ← lij → vj without intervening on vj . For every S that is not a strongly separating set system, we can provide a Gij
such that by intervening on sets in S, we cannot recover Anc(Gij) correctly.

A.1. Missing Details from Section 3.1

In Figure 3, we present an example of matrix U ∈ {0, 1}n×m returned by Algorithm SSMATRIX.

Figure 3. An example “U” returned by Alg. SSMATRIX

We first argue that the matrix returned by Algorithm SSMATRIX is indeed a strongly separating matrix.

Lemma A.2. The matrix U returned by Algorithm SSMATRIX is a strongly separating matrix.

Proof. Consider any two nodes vi, vj with corresponding row vectors U(i) and U(j). Suppose ‖U(i)‖1 = ‖U(j)‖1. By
construction, U(i) 6= U(j) they will differ in at least one coordinate. However, they have equal weights, so, there must
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exist one more coordinate such that the strongly separating condition holds. If U(i) and U(j) have weights ri 6= rj , then,
U(i,m′− log n+ ri) = U(j,m′− log n+ rj) = 1 and U(i,m′− log n+ rj) = U(j,m′− log n+ ri) = 0 by construction
outlined in the Algorithm SSMATRIX. This proves that the matrix U returned is a strongly separating matrix.

The following inequalities about Algorithm SSMATRIX will be useful in analyzing its performance.

Lemma A.3. . For m ≥ 66 log n and m′ as defined in Algorithm SSMATRIX, we have the following :

(a)
∑logn
t=1

(
m′−logn

t

)
≥ n (i.e., there are enough vectors of weight ≤ log n only using m′ − log n columns to assign a

unique vector to each variable).

(b) Let i∗ be the smallest integer s.t.
∑i∗

t=1

(
m′

t

)
≥ n. Then,

∑2i−1
t=1

(
m′−logn

t

)
≥
∑i
t=1

(
m′

t

)
for all i ∈ {2, . . . , i∗}.

Proof. Let m ≥ 66 log n. From Algorithm SSMATRIX, we have m′ = m− a1 for all guesses 1 ≤ a1 ≤ 2m
3 . By reserving

the last “ log n” columns in Algorithm SSMATRIX, we want to make sure that m′ − log n can fully cover n nodes with
weight at most log n. We have :

m′ = m− a1 ≥
m

3
≥ 22 log n and

logn∑
t=1

(
m′ − log n

t

)
≥
(
m′ − log n

log n

)
≥
(

21 log n

log n

)logn

> n.

Moving onto Part (b). Let i∗ be the minimum value of i such that
∑i∗

t=1

(
m′

t

)
≥ n. Consider i such that 2 ≤ i ≤ i∗:

2i−1∑
t=1

(
m′ − log n

t

)
≥
(
m′ − log n

2i− 1

)
.

Consider now the right hand side:

i∑
t=1

(
m′

t

)
≤

i∑
t=0

(
m′

t

)
≤

i∑
t=0

m′t

t!
≤

i∑
t=0

it

t!

(
m′

i

)t
≤ ei

(
m′

i

)i
.

We inductively show that for all i ≥ 2 (
em′

i

)i
(
m′−logn

2i−1

) ≤ 1.

Let i = 2. For m ≥ m′

3 ≥ 50
(

22
21

)3
we have

(em′/2)2(
m′−logn

3

) ≤ (em′/2)2

(m
′−logn

3 )3
≤ 50

(
22

21

)3
m′2

m′3
≤ 1.

Assume the inequality is correct for some i > 2. Now, we show that it must also hold for i+ 1.(
em′

i+1

)i+1

(
m′−logn

2i+1

) =

(
em′

i+1

)i
em′

i+1

(
m′−logn

2i−1

)(
m′−logn

2i−1

)(
m′−logn

2i+1

) ≤
(
em′

i

)i
em′

i+1

(
m′−logn

2i−1

)(
m′−logn

2i−1

)(
m′−logn

2i+1

) ≤ em′

i+1

(
m′−logn

2i−1

)(
m′−logn

2i+1

) .

For ease of notation, denote a = m′ − log n ≥ m′(1− 1
22 ) ≥ 21 log n.

Consider the binary entropy function H(x) = −x log x− (1− x) log(1− x). For x ∈ [ 2i−1
a , 2i+1

a ], H(x) is an increasing
function. For some value of x in the range we have :

H( 2i+1
a )−H( 2i−1

a )
2i+1
a − 2i−1

a

= H ′(x) = log

(
1

x
− 1

)
≥ log

(
a

2i− 1
− 1

)
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=⇒ H

(
2i+ 1

a

)
−H

(
2i− 1

a

)
≥ 2

a
log

(
a

2i− 1
− 1

)
.

Now, consider the fraction (
a

2i− 1

)
/

(
a

2i+ 1

)
.

Using the bound from ([MacWilliams & Sloane, 1977], Page 309)√
a

8b(a− b)
2mH(b/a) ≤

(
a

b

)
≤
√

a

2πb(a− b)
2mH(b/a),

(
a

2i− 1

)
/

(
a

2i+ 1

)
≤
√

8(2i+ 1)(a− 2i− 1)/2π(2i− 1)(a− 2i+ 1)/2aH( 2i+1
a )−H( 2i−1

a )

≤
√

20/3π/2aH( 2i+1
a )−H( 2i−1

a )

≤
√

20/3π/22 log( a
2i−1−1)

=

√
20/3π(
a

2i−1 − 1
)2 .

Combining the above, we have :(
em′

i+1

)i+1

(
m′−logn

2i+1

) ≤ m′

i+1

√
20e2/3π(

a
2i−1 − 1

)2

≤
4m′i

√
20e2/3π

(a− 2i)
2

≤
4m′ log n

√
20e2/3π

m′2 (1− 3/22)
2 =

4 log n
√

20e2/3π

m′ (1− 3/22)
2 ≤ 21.2 log n

m′
≤ 1.

Therefore, we have for all i ≥ 2 (
em′

i

)i
/

(
m′ − log n

2i− 1

)
≤ 1

=⇒
i∑
t=1

(
m′

t

)
≤
(
em′

i

)i
≤
(
m′ − log n

2i− 1

)
≤

2i−1∑
t=1

(
m′ − log n

t

)
.

Let cU =
∑n
j=1 c(vj)‖U(j)‖1 be value of objective for the matrix U returned by Algorithm SSMATRIX.

Consider UOPT, and let V (1)
OPT represent all nodes that are assigned weight 1 in it (nodes which have only one 1 in their

row). Let c(1)
OPT denote the sum of cost of the nodes in V (1)

OPT. In our Algorithm SSMATRIX, we maintain a guess for the
size of V (1)

OPT as a1. We want to guess the exact value of |V (1)
OPT | ≤ m. However, we only guess a1 until 2m

3 , so that the
remaining columns can be used to obtain a valid separating matrix (for each of our guesses) as observed in Lemma A.3. We
show that the cost contribution of nodes in V (1)

OPT (by allowing this slack in our guesses) due to Algorithm SSMATRIX is not
far away from c

(1)
OPT.

First, we show that for any weight i ≥ 2 node in UOPT, the output U of Algorithm SSMATRIX assigns vectors with weight
at most 2i and for a weight 1 node, we show that the weight assigned by U is at most 3.

Lemma A.4. Algorithm SSMATRIX assigns a weight of
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(a) at most 3 for a weight 1 node in UOPT.

(b) at most 2i for a node of weight i in UOPT for i ≥ 2.

Proof. (a) Let V denote sorted (in the decreasing order of cost) order of nodes. Suppose we assign unique length-m vectors
starting from weight 1 to the nodes in the order V . Let the assignment of vectors be denoted by Ũ . It is easy to observe that
this described assignment Ũ is not a strongly separating matrix. However, any strongly separating matrix U is such that
the vector assigned to any node vi in U has weight at least that in Ũ i.e., ‖U(i)‖1 ≥ ‖Ũ(i)‖1. As U can be any strongly
separating matrix, it also holds for UOPT giving us ‖UOPT(i)‖1 ≥ ‖Ũ(i)‖1.

The number of weight 1 nodes possible in the assignment Ũ is
(
m
1

)
and therefore, |V (1)

OPT| ≤ m. Consider all
the nodes of weight≤ 3 in U assigned by Algorithm SSMATRIX. After discarding the first m′ = m−a1 columns assuming
our guess a1 in the current iteration, U starts assigning vectors with weight 1 in the remaining m′ − log n while setting a
‘row weight indicator bit’ in the last log n columns. In order to obtain nodes of weight ≤ 3, in U , we include vectors of
weight ≤ 2 in the m′ − log n columns. Therefore, total number of such nodes is a1 +

(
m′−logn

1

)
+
(
m′−logn

2

)
.

a1 +

(
m′ − log n

1

)
+

(
m′ − log n

2

)
≥
(
m′ − log n

1

)
+

(
m′ − log n

2

)
≥ m′ − log n+

(
m′ − log n

2

)2

(using
(
m′

k

)
≥
(
m′

k

)k
)

≥ m ≥ |V (1)
OPT|. (using m′ ≥ m

3
and m ≥ 66 log n)

Therefore, every weight 1 node in UOPT is covered by a vector in U with weight ≤ 3.

(b) First we argue that using an appropriate m′, we can give a construction of Ũ ∈ {0, 1}n×m′ (similar to case (a)) such that
weight of node vj in Ũ is at most the weight in UOPT for all nodes of weight more than 2 in UOPT. Let m′ = m− 2m

3 . In
other words, we are considering the guess a1 = 2m

3 . As our algorithm U considers all the guesses and returns U with the
lowest cost, arguing that our lemma holds for this guess is sufficient. For this value of m′, let Ũ be constructed using vectors
from {0, 1}m′ in the increasing order of weight, starting with weight 1.

When m′ = m
3 , it is possible that a node in UOPT can be assigned a vector of weight 1 from {0, 1}m′ (this can happen

when |V (1)
OPT| ≥

2m
3 ). As Ũ assigns weights in the increasing order occupying the entire m′ columns, it will not result in a

strongly separating matrix. Therefore, any node vj with weight i ≥ 2 in UOPT, will be assigned a weight of at most i in Ũ .

We know that the number of vectors of weight at most i in Ũ is equal to
∑i
t=1

(
m′

t

)
and number of vectors with weight

at most 2i− 1 using m′ − log n columns of U is equal to
∑2i−1
t=1

(
m′−logn

t

)
. As Lemma A.3 holds for all guesses of a1,

we have
∑i
t=1

(
m′

t

)
≤
∑2i−1
t=1

(
m′−logn

t

)
for all i ≥ 2. Using induction, we can observe that vj is assigned a vector in

{0, 1}m′−logn with weight at most 2i− 1. As U obtained from Algorithm SSMATRIX mimics the construction used in Ũ
over m′ − log n columns, we have that weight of node vj in U using m′ − log n columns is at most 2i− 1. Combining it
with the ‘row weight indicator’ bit we set to 1 in the last log n columns gives us the lemma.

In our next lemma shows that the sum of contribution of the nodes in V (1)
OPT to cU is at most twice that of c(1)

OPT. Combining
this with Lemma A.4, we show that U achieves a 2-approximation.

Lemma A.5. Let c(1)
U =

∑
vi∈V (1)

OPT

c(vi)‖U(i)‖1 for the matrix U returned by Algorithm SSMATRIX, then c(1)
U ≤ 2c

(1)
OPT .

Proof. Suppose a1 represents our guess for the number of weight 1 vectors and a∗1 represent the number of weight 1 vectors in
UOPT i.e, |V (1)

OPT| = a∗1. In Algorithm SSMATRIX, we use the following bounds for our guess 0 ≤ a1 ≤ 2m/3. If a∗1 ≤ 2m
3 ,

then it would have been one of our guesses. As we take minimum among all the guesses, we have c(1)
U = c

(1)
OPT in such a case.

Consider the case when a∗1 > 2m
3 . Let V (1)

OPT = {v1, v2, · · · va∗1} represent an ordering of nodes in the decreas-
ing ordering of cost that are assigned weight 1 in UOPT. Consider the contribution of only weight 1 nodes to cOPT. We
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have

c
(1)
OPT =

a∗1∑
k=1

c(vk) ≥
2m/3∑
k=1

2m

3
c(vk) ≥ 2m

3
c(v2m/3).

We will look at the case when our guess a1 reaches a1 = 2m
3 and argue about the cost for this particular value of a1. As we

are taking minimum over all the guesses, we are only going to do better and our approximation ratio will only be better.
Among the nodes {v1, v2, · · · va∗1} first 2m

3 nodes would be assigned weight 1 by U . From Lemma A.4, we have that for the
remaining a∗1 − 2m

3 nodes, Algorithm SSMATRIX might assign a weight 2 or weight 3 vector in U .

c
(1)
U ≤

2m/3∑
i=1

c(vi) + 3

a∗1∑
j=2m/3+1

c(vj) =

a∗1∑
i=1

c(vi) + 2

a∗1∑
j=2m/3+1

c(vj)

≤
a∗1∑
i=1

c(vi) + 2

(
a∗1 −

2m

3

)
c(v2m/3+1)

≤ c(1)
OPT + 2

(
a∗1 −

2m

3

)
c(v2m/3) (since c(v2m/3) ≥ c(v2m/3+1) )

≤ c(1)
OPT +

2m

3
c(v2m/3) (since a∗1 ≤ m )

≤ 2c
(1)
OPT .

This completes the proof of the lemma.

Theorem A.6 (Theorem 3.3 Restated). Let m ≥ 66 log n and U be the strongly separating matrix returned by Algo-
rithm SSMATRIX. Let cU =

∑n
j=1 c(vj) ‖U(j)‖1. Then,

cU ≤ 2 · cOPT,

where cOPT is the objective value associated with optimum set of interventions corresponding to UOPT.

Proof. From Lemma A.2, we know that matrix returned by Algorithm SSMATRIX given by U with cost cU is a strongly
separating matrix. Consider a strongly separating matrix UOPT that achieves optimum objective value cOPT. Let V (1)

OPT

represent all nodes that are assigned weight 1 in UOPT. Let c(1)
U denote the cost of nodes in V (1)

OPT using U returned by
Algorithm SSMATRIX and c(1)

OPT represents that of UOPT. We have cOPT = c
(1)
OPT +

∑
j:‖UOPT(j)‖1≥2 c(vj) ‖UOPT(j)‖1.

cU = c
(1)
U +

∑
j:‖UOPT(j)‖1≥2

c(vj) ‖U(j)‖1

≤ c(1)
U +

∑
j:‖UOPT(j)‖1≥2

c(vj) 2‖UOPT(j)‖1 (from Lemma A.4)

≤ 2c
(1)
OPT + 2

∑
j:‖UOPT(j)‖1≥2

c(vj) ‖UOPT(j)‖1 (from Lemma A.5)

≤ 2cOPT.

This completes the proof of the theorem.

A.2. Missing Details from Section 3.2

In this section, we present our algorithm that achieves an improved 1+ε-approximation in the linear cost model setting under
mild assumptions on the cost of the nodes and the number of interventions. The algorithm is adapted from that proposed
by Hyttinen et al. [2013a] whose work drew connections between causality and known separating system constructions
in combinatorics. In particular, [Hyttinen et al., 2013a] considered a setting where given n variables and m, the goal is to
construct k sets that are strongly separating with the objective of minimizing the average size of the intervention sets. Stated
differently this provides an algorithm for solving 1 when c(v) = 1 for all nodes v ∈ V .
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In Section A.4, we adapt the algorithm from [Hyttinen et al., 2013a] to deal with the case where each node could have a
different cost value. Our main contribution is to show that this adaptation constructs a set of interventions which achieves an
objective value in the linear cost model that is within a factor 1 + ε times of the optimum under some mild restrictions. In
Section A.3, we start with some definitions and statements from the combinatorics that will prove useful for stating and
analyzing the algorithm.

A.3. Combinatorics Preliminaries

Definition A.7. (antichain). Consider a collection S of subsets of {v1, v2, · · · vn} such that for any two sets Si, Sj ∈ S , we
have Si 6⊂ Sj and Sj 6⊂ Si. Then, such a collection S is called an antichain.

We provide a lemma that shows that an antichain can also be represented as a strongly separating matrix.

Lemma A.8. Let T = {T1, T2, · · ·Tn} be an antichain defined on {1, 2, · · ·m}. Construct a matrix U ∈ {0, 1}n×m where
U(i, j) = 1 iff Ti contains j. Then U is a strongly separating matrix.

Proof. From the definition of antichain, for any two sets Ti, Tj ∈ T , there exists k and k′ such that k ∈ Ti \ Tj and
k′ ∈ Tj \ Ti. So, we have U(i, k) = U(j, k′) = 1 and U(i, k′) = U(j, k) = 0. It follows that U is a strongly separating
matrix from the definition.

In the previous lemma, we gave a construction of a strongly separating matrix that corresponds to an antichain. In the next
lemma, we show that given a strongly separating system, we can also obtain a corresponding antichain.

Lemma A.9. Let S = {S1, S2, · · ·Sm} be a strongly separating set system defined on {v1, v2, · · · vn}. Construct a strongly
separating matrix U ∈ {0, 1}n×m where U(i, j) = 1 iff Sj contains vi. Define a collection of sets T = {T1, T2, · · ·Tn}
defined over the column indices of U i.e., {1, 2, · · ·m} such that j ∈ Ti iff U(i, j) = 1. Then, T is an antichain.

Proof. From the definition of strongly separating system, we have for every two nodes vi, vj ∈ S, there exists Sk and Sk′
such that vi ∈ Sk \ Sk′ and vj ∈ Sk′ \ Sk. This implies k ∈ Ti \ Tj and k′ ∈ Tj \ Ti as U(i, k) = U(j, k′) = 1 and
U(i, k′) = U(j, k) = 0. Therefore, for every two sets Ti and Tj in T , we have Ti 6⊂ Tj and Tj 6⊂ Ti. Hence, T is an
antichain.

Lemma A.10. LYM inequality [Jukna, 2011]. Suppose S represent an antichain defined over the elements {1, 2, · · ·m}.
Let ak = |{T | T ∈ S where |T | = k}| defined for all k ∈ [m], then,

m∑
k=0

ak(
m
k

) ≤ 1.

Definition A.11. [Jukna, 2011]. A neighbor of a binary vector v is a vector which can be obtained from v by flipping one
of its 1-entries to 0. A shadow of a set A ⊆ {0, 1}m of vectors is the set of all its neighbors and denoted by ∂(A).

Suppose A ⊆ {0, 1}m consists of weight k vectors i.e., for all v ∈ A, ‖v‖1 = k . Then, there is an interesting representation
for |A| i.e., size of A called the k-cascade form,

|A| =
(
ak
k

)
+

(
ak−1

k − 1

)
+

(
ak−2

k − 2

)
+ · · ·+

(
as
s

)
where ak > ak−1 > · · · as ≥ s ≥ 1.

Moreover, this representation is unique and for every |A| ≥ 1, there exists a k-cascade form. Given a set A of such vectors,
we can make the following observation.

Observation A.12. Let B ⊆ {0, 1}m be a collection of vectors with weight exactly k − 1. If A ∪B is an antichain, then,
B ∩ ∂(A) = φ.

The above observation implies that if we want to maximize the number of weight k − 1 vectors to get a collection of weight
k and k − 1 vectors that form an antichain, then, we have to choose weight k vectors that has a small shadow. Now, we
describe the statement of the famous Kruskal-Katona theorem that gives a lower bound on the size of shadow of A.
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Theorem A.13 (Kruskal-Katona Theorem [Jukna, 2011]). Consider a set A ⊆ {0, 1}m of vectors such that for all
v ∈ A, ‖v‖1 = k and the k-cascade form is

|A| =
(
ak
k

)
+

(
ak−1

k − 1

)
+

(
ak−2

k − 2

)
+ · · ·+

(
as
s

)
.

Then,

|∂(A)| ≥
(

ak
k − 1

)
+

(
ak−1

k − 2

)
+

(
ak−2

k − 2

)
+ · · ·+

(
as
s− 1

)
.

Definition A.14. (Colexicographic Ordering) Let u and v be two distinct vectors from {0, 1}m. In the colexicographic
ordering u appears before v if for some i, u(i) = 0, v(i) = 1 and u(j) = v(j) for all j > i.

We now state a result that the colexicographic ordering (or colex order) of all vectors of {0, 1}m achieves the Kruskal-Katona
theorem lower bound. Therefore, we can generate a sequence of any number of vectors with weight k that has the smallest
possible shadow.
Lemma A.15. Proposition 10.17 from [Jukna, 2011]. Using the first T of weight k vectors in the colex ordering of {0, 1}m,
we can obtain a collection A ⊆ {0, 1}m such that |∂(A)| =

(
ak
k−1

)
+
(
ak−1

k−2

)
+
(
ak−2

k−2

)
+ · · ·+

(
as
s−1

)
where the k-cascade

form of T = |A| =
(
ak
k

)
+
(
ak−1

k−1

)
+
(
ak−2

k−2

)
+ · · ·+

(
as
s

)
.

We state the Flat Antichain theorem, that will be useful later.
Theorem A.16 (Flat Antichain Theorem). [Kisvölcsey, 2006] If A is an antichain, then, there exists another antichain B
defined over same elements, such that |A| = |B|,

∑
A∈A |A| =

∑
B∈B |B| and for every B ∈ B, we have |B| ∈ {d− 1, d}

for some positive integer d.

A.4. (1 + ε)-approximation Algorithm

Algorithm ε-SSMATRIX is an adaptation of Algorithm 4 of [Hyttinen et al., 2013a] for the linear cost model setting. From
Lemma A.9 and A.8, it is clear that constructing a strongly separating set system is equivalent to constructing an antichain.
A consequence of Flat Antichain theorem [Kisvölcsey, 2006] is that for every antichain A there is another antichain B of
same size such that

∑
A∈A |A| =

∑
B∈B |B| and B has sets of cardinality either d or d − 1 for some positive integer d.

Therefore, the problem of finding a separating set system reduces to finding an appropriate antichain with weights d and
d− 1 that minimizes the objective (assuming all nodes have cost equal to 1).
Corollary A.17. [Hyttinen et al., 2013a] Flat Antichain theorem implies Algorithm 4 achieves optimal cost assuming all
nodes have unit costs.

Algorithm 4 of [Hyttinen et al., 2013a] is a consequence of Kruskal-Katona theorem; using colexicographic ordering we can
maximize the d− 1 weight vectors in an antichain of size n consisting of weight d and d− 1 vectors. Therefore, choosing
d = k where

(
m
k−1

)
< n ≤

(
m
k

)
, they consider all possible number of vectors of weight k and find the one with the minimum

number of weight k vectors. However, unlike [Hyttinen et al., 2013a], we have to deal with different costs of intervention
for each node. We adopt a greedy strategy, where we assign the vectors (obtained using the previous algorithm) in the
increasing order of weight to the nodes in the decreasing order of their costs. Observe that our Algorithm ε-SSMATRIX
assigns vectors of weight k − 1 or k that are relatively high to the nodes with large costs. Surprisingly, we show that when
the costs are bounded by ≈ εnε, and number of interventions m ≤ nε, it achieves a 1 + ε-approximation.
Lemma A.18. Let U represent the output of Algorithm ε-SSMATRIX. Then, U is a strongly separating matrix.

Proof. From Observation A.12, we have that our set of weight k vectors At and set of weight k − 1 vectors given by
Bt = At \ ∂(At) satisfy Bt ∩ ∂(At) = φ. So, the collection At ∪Bt is an antichain. In Algorithm ε-SSMATRIX, U and Ũ
contain the same collection of vectors, only differing in the ordering ζ. From Lemma A.8, we have U constructed from
At ∪Bt is a strongly separating matrix.

The following lemma follows from LYM inequality in Lemma A.10.
Lemma A.19. Let UOPT represent the optimum solution with a∗q representing the number of rows of U with weight q. Then,
for any t ≤ n :

t∑
q=1

a∗q ≤
(
m

t

)
.
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Algorithm 4 ε-SSMATRIX (V,m)

1: Let Ũ ∈ {0, 1}n×m be initialized with all zeros
2: Find k satisfying

(
m
k−1

)
< n ≤

(
m
k

)
3: for t = 0 to n do
4: Let At denote the first t vectors in the colex ordering of {0, 1}m with weight k. Calculate |∂(At)| using Lemma A.15.
5: if t− |∂(At)|+

(
m
k−1

)
≥ n then

6: For the rows Ũ(j) with n− t+ 1 ≤ j ≤ n assign the vectors of weight k using At
7: For the rows Ũ(j) with j ≤ n− t, assign vectors of weight k − 1 from {0, 1}m that are not contained in ∂(At)
8: break;
9: end if

10: end for
11: Let ζ denote the ordering of rows of Ũ in the increasing order of weight.
12: For every i ∈ [n] assign U(i) = Ũ(ζ(i)) where ith row of U corresponds to the node with ith largest cost.
13: Return U

Proof. From Lemma A.18 and Corollary A.17, we know that the matrix UOPT is a strongly separating matrix. Therefore,
using Lemma A.9, we can construct a collection T defined over {1, 2, · · · ,m} such that T is an antichain. Ti ∈ T
corresponds to a row of UOPT and |Ti| = ‖UOPT(i)‖1 represents the weight of ith row of U . Applying LYM inequality
from Lemma A.10 gives us:

t∑
q=1

a∗q(
m
t

) ≤ t∑
q=1

a∗q(
m
q

) ≤ m∑
q=0

a∗q(
m
q

) ≤ 1

and so
∑t
q=1 a

∗
q ≤

(
m
t

)
.

The next lemma gives an upper bound for
(
m
t

)
that can be used to simplify the statement of the Theorem 3.4.

Lemma A.20. If 6/k ≤ ε ≤ 1/2 and m ≥ 2 log2 n:(
m

t

)
≤ 2n · 2−(εk/6) log2(m/(2k)).

Proof. By the definition of k, (
m

t

)
=

(
m

k − 1

)(
m

t

)
/

(
m

k − 1

)
< n

(
m

t

)
/

(
m

k − 1

)
.

Let H(x) denote the binary entropy function. Note that t = bk − εk/3c. Therefore,

(k − 1)− t ≥ k − 1− k + εk/3 = εk/3− 1 ≥ εk/6,

and that for all x ∈ [t/m, (k − 1)/m],

H ′(x) ≥ H ′
(
k − 1

m

)
= log2

(
m

k − 1
− 1

)
≥ log2

(m
2k

)
,

where we used the assumption t/m ≤ (k − 1)/m ≤ 1/2. Hence,

|H((k − 1)/m)−H(t/m)| ≥ εk/6

m
log2

(m
2k

)
.

Using the bound from ([MacWilliams & Sloane, 1977], Page 309)√
a

8b(a− b)
2mH(b/a) ≤

(
a

b

)
≤
√

a

2πb(a− b)
2mH(b/a),

we get that (
m

t

)
/

(
m

k − 1

)
≤ 2m(H(t/m)−H((k−1)/m)

√
8(k − 1)(m− k + 1)

2πt(m− t)
≤ 2 · 2−(εk/6) log2(m/(2k))
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where the last inequality used ε ≤ 1.

Corollary A.21. (Corollary 3.5 Restated). Algorithm ε-SSMATRIX is a (1+ ε)-approximation if the maximum cost satisfies

cmax ≤ ε/6 · 2(εk/6) log2(m/(2k))

assuming nε/6 ≥ m ≥ 2 log2 n. If a) m ≥ (2 log2 n)c1 for some constant c1 > 1 or b) 4 log2 n ≤ m ≤ c2 log2 n for some
constant c2 then the RHS bound is at least ε/6 · nΩ(ε).

Proof. First note that k ≥ logm n since

mk ≥
(
m

k

)
≥ n.

When 2 log n ≤ m ≤ nε, we have k ≥ logm n ≥ 6
ε . From the previous lemma A.20,

cmax ≤ ε/6 · 2(εk/6) log2(m/(2k)) ≤ εn/3
(
m

t

)
Using Theorem 3.4, we have that Algorithm ε-SSMATRIX is a (1 + ε)-approximation.

We next consider the simplification in Part (a). If m ≥ (2 log2 n)c1 for some c1 > 1 then k ≤ log2 n as
(
m

logn

)
≥ n. So

2k ≤ 2 log2 n ≤ m1/c1 . Hence,
log2(m/(2k)) ≥ (1− 1/c1) log2m

and so
2(εk/6) log2(m/(2k)) ≥ 2(εk(1−1/c1)(log2m)/6) ≥ n

ε(1−1/c1)
6 .

where the last inequality follows since k ≥ logm n.

We next consider the simplification in Part (b). Now suppose m ≤ c2 log2 n for some constant c2 ≥ 2 then, k ≥ logec2 n
since

(c2e)
k ≥ (me/k)k ≥

(
m

k

)
≥ n .

Note that for m ≥ 4 log n,
log2(m/(2k)) ≥ log2(4 log n/(2 log2 n)) ≥ 1

and so

2(εk/6) log2(m/(2k)) ≥ 2(εk/6) ≥ n
ε

6 logec2
2 .

B. Missing Details from Section 4
Removing Dependence on τ in Algorithms RECOVERG, LATENTSNEDGES and LATENTSWEDGES. Let G be a τ -
causal graph. Algorithms RECOVERG, LATENTSNEDGES, and LATENTSWEDGES assume that we know τ , however this
assumption can be easily removed. For a fixed τ , let Gτ be graph returned after going through all these above algorithms.
Given Gτ , checking whether vk is a p-collider for some pair vi, vj is simple, iterate over all paths between vi and vj that
include vk. Let Π = {π1, . . . , πr} be these paths. For each πw ∈ Π, remove the edges in πw from Gτ see if vk has a
descendant in Pa(vi) ∪ Pa(vj) in this modified graph. If this holds for any path πw ∈ Π, then vk is a p-collider for the pair
vi, vj . We describe an efficient algorithm for finding p-colliders in section C.

The idea is as follows, we invoke Algorithms RECOVERG, LATENTSNEDGES and LATENTSWEDGES for τ = 1, 2, 4, ..,
until we find the first τ̂ and 2τ̂ such that Gτ̂ = G2τ̂ . We now check whether the observable nodes in Gτ̂ has at most τ̂
p-colliders, if so we are output Gτ̂ (and τ̂ ). Otherwise, we continue by doubling τ , i.e., by considering 2τ̂ and 4τ̂ . By
increasing τ by a constant factor, it is easy to see that process will stop in at most log(2τ) steps and when it stops it produces
the correct observable graph G and also that τ̂ ≤ 2τ . Overall, this will increase the number of interventions in Theorem 4.12
by a factor of O(log τ) (to O(τ2 log n log τ + nτ log n log τ) interventions). Through a union bound, the same success
probability of 1−O(1/n2) can be ensured by adjusting the constants.
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Lemma B.1 (Lemma 4.4 Restated). Let vi ∈ Anc(vj). vi |= vj | do(vi ∪ Pij),Anc(vj) \ {vi} iff vi 6∈ Pa(vj).

Proof. Suppose vi ∈ Anc(vj) \ Pa(vj). Consider the interventional distribution do(vi ∪ Pij) where Pij is the set of
p-colliders between vi and vj . We intervene on vi to block the path (if present) given by vi ← l̃→ vj where l̃ ∈ L. Consider
all the remaining undirected paths between vi and vj denoted by Πij . We divide Πij into three cases. Let π ∈ Πij be a path
from vi to vj .

1. π contains no colliders, then, π is blocked by Anc(vj)\{vi}. As π contains no colliders, we can write π = vi · · · vk →
vj where vk ∈ Anc(vj). As we are conditioning on Anc(vj) \ {vi} ⊇ {vk}, π is blocked by vk.

2. π contains colliders but not a p-collider. We argue that there are no collider nodes in π that are also in Anc(vj) \ {vi}.
As there are no p-colliders, it means that all the colliders have no descendants in the conditioning set Anc(vj) \ {vi}.
Because if a collider vc have a descendant in Anc(vj) \ {vi}, then there is a path from vc to Pa(vj) through
Anc(vj) \ {vi}. This means that vc is a p-collider, contradicting our assumption. Therefore, from Rule-2 of d-
separation, π is blocked.

3. π contains at least one p-collider. We are intervening on Pij containing all the p-colliders. In the intervened mutilated
graph, all the p-colliders no longer have an incoming arrow and therefore are not colliders. So π is blocked.

If vi 6∈ Pa(vj), we can conclude that vi |= vj | do({vi} ∪ Pij),Anc(vj) \ {vi}. Suppose vi ∈ Pa(vj). In the interventional
distribution do({vi} ∪Pij), we still have vi ∈ Pa(vj) and any conditioning will not block the path π = vi → vj . Therefore,
vi 6⊥⊥ vj | (do({vi} ∪ Pij),Anc(vj) \ {vi} if vi ∈ Pa(vj).

Lemma B.2. Let G(V ∪ L,E ∪ EL) be a τ -causal graph with observable graph G(V,E). Given an ancestral graph
Anc(G), Algorithm RECOVERG correctly recovers all edges in the observable graph with probability at least 1− 1/n2.

Proof. Let τ ′ = max{τ, 2}. From Lemma 4.4, we can recover the edges of G provided we know the p-colliders between
every pair of nodes. As we do not know the graph G, we devise a randomized strategy to hit all the p-colliders, whilst
ensuring that we don’t create a lot of interventions. Suppose max(vi,vj)∈V×V |Pij | ≤ τ . We show that with high probability,
∀vi ∈ Anc(vj), ∃At such that {vi} ∪ Pij ⊆ At and vj 6∈ At. We can then use the CI-test described in Lemma 4.4 to verify
whether vi is a parent of vj . In Algorithm RECOVERG, we repeat this procedure on every edge of Anc(G) and output G.

Suppose vi ∈ Anc(vj). Let Γt denote the event that At ∈ Aτ such that {vi} ∪ Pij ⊆ At and vj 6∈ At for a fixed
t ∈ {1, . . . , 72τ ′ log n}. Let T = 72τ ′ log n. As we include a vertex vi ∈ At with probability 1− 1/τ ′, we obtain

Pr[Γt] =

(
1− 1

τ ′

)|Pij |+1
1

τ ′
≥
(

1− 1

τ ′

)τ ′+1
1

τ ′
.

Using the inequality (1 + x
n )n ≥ ex(1− x2

n ) for |x| ≤ n, and since τ ′ ≥ 2 we have:

Pr[Γt] ≥ 1
eτ′+1/τ′ (1−

(τ ′+1)2

τ ′2(τ ′+1) ) 1
τ ′ ≥

1
18τ ′

⇒ Pr[Γ̄t] ≤ 1− 1
18τ ′ and Pr[∃t ∈ [T ] : Γt] ≥ 1−

(
1− 1

18τ ′

)72τ ′ logn
.

Using the inequality (1 + x
n )n ≤ ex for |x| ≤ n we have:

Pr[∃t ∈ [T ] : Γt] ≥ 1− 1

n4
.

So the probability that there exists at least one set At for the given pair vi, vj for which vi ∪Pij ⊆ At and vj 6∈ At is at least
1− 1

n4 .4 To ensure this probability of success for every pair of variables, we use a union bound over the n2 node pairs.

Proposition B.3 (Proposition 4.5 Restated). Let G(V ∪ L,E ∪ EL) be a τ -causal graph with observable graph G(V,E).
There exists a procedure to recover the observable graph using O(τ log n+ log n) many interventions with probability at
least 1− 1/n2.

4Note by adjusting the constant 72, we could have pushed this probability to any 1/nc for constant c.
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Algorithm 5 LATENTSNEDGES (G(V,E),Dτ )

1: L← φ,EL ← φ
2: for (vi, vj) 6∈ E do
3: Let Dij = {D | D ∈ Dτ and vi, vj 6∈ D}
4: if vi 6⊥⊥ vj | do(D) ∪ Pa(vi) ∪ Pa(vj) for every D ∈ Dij then
5: L← L ∪ lij , EL ← EL ∪ {(lij , vi), (lij , vj)}
6: end if
7: end for
8: return G(V ∪ L,E ∪ EL)

Proof. As is well-known, e.g. [Kocaoglu et al., 2017b], a strongly separating set system can be constructed withm = 2 log n
interventions by using the binary encoding of the numbers 1, . . . , n. Two intervention sets are constructed for every bit
location k ∈ [log n], one with any node vi if the number i has kth bit set to 1, and other with any node vi if the number i
has kth bit set to 0. Therefore, we require 2 log n interventions to obtain ancestral graph Anc(G) of the observable graph.
From Lemma B.2, we require O(τ log n) interventions to recover all the edges of observable graph of G from Anc(G) with
probability 1− 1

n2 . Therefore, using O(τ log n) interventions, Algorithm RECOVERG can recover the observable graph
G(V,E) with high probability.

It is well established that log(χ(G)) interventions are necessary and sufficient in the causally sufficient systems (where
there are no latents) where χ(G) is the chromatic number of G. Generalized over all graphs this becomes log(n). Our
following lower bound shows that, even if there are no latent variables in the underlying system, if the algorithm cannot
rule latents out, and needs to consider latents as a possibility to compute the graph skeleton, then Ω(n) interventions are
necessary. Shanmugam et al. [2015] provide a lower bound in a different setting, when the intervention sets are required to
have only limited number of variables.

Proposition B.4 (Proposition 4.6 Restated). There exists a graph causal G(V ∪ L,E ∪ EL) such that every non-adaptive
algorithm requires Ω(n) many interventions to recover even the observable graph G(V,E) of G.

Proof. Consider an ordering of observable variables given by v1, v2, · · · , vn. Let G be a graph with all directed edges
(va, vb) for all b > a. Suppose the set of interventions generated by the non-adaptive algorithm is given byH. Now consider
vi for some fixed i ≥ n

4 .

We claim that if every intervention H ∈ H is such that for some j ∈ {3, · · · , i − 1}, vj 6∈ H , then there exists a graph
Gi such that G and Gi are both indistinguishable under all the interventions inH irrespective of other conditioning. Now
consider any set Hj ⊆ ({v1, v2, · · · , vi−1} \ {vj})

⋃
{vi+1, · · · , vn}. Let Gi be such that it contains all the directed edges

(va, vb) for all b > a but does not contain the directed edge (v1, vi). To distinguish between G and Gi one needs to
determine whether v1 → vi. Note that any intervention we use to determine the edge should contain v1 to rule out the
possibility of the influence of latent v1 ← l1i → vi on the CI-tests we perform. Now, under do(Hj), there are only two
CI-tests possible to determine whether v1 → vi : v1 |= vi | vj ,do(Hj) and v1 |= vi | do(Hj). However, for both graphs G
and Gi, both these independence tests will always turn out negative. In the former case, it is because vj will be a collider on
the path vi, vj , vj−1, vi, and in the latter case there is a path v1, vj , vi that is not blocked. In other words, the CI-tests will
provide no information to distinguish between G and Gi, unlessH contains the set {v1, v3, . . . , vi−1}.

One can similarly construct these Gi’s for all i ≥ n
4 , therebyH needs to contain the intervention sets {v1, v3, . . . , vi−1} for

all n/4 ≤ i ≤ n to separate G from all the Gi’s. This proves the claim.

B.1. Latents Affecting Non-adjacent Nodes in G

Let Ē = {(vi, vj) | (vi, vj) 6∈ E} be the set of non-edges in G. The entire procedure for finding latents between non-
adjacent nodes in G is described in Algorithm LATENTSNEDGES. Similar to Algorithm RECOVERG, we block the paths by
conditioning on parents and intervening on p-colliders. The idea is based on the observation that for any non-adjacent pair
vi, vj an intervention on the set Pij and conditioning on the parents of vi and vj will make vi and vj independent, unless
there is a latent between then. The following lemma formalizes this idea.

Lemma B.5. Suppose (vi, vj) ∈ Ē. Then, vi |= vj | do(Pij),Pa(vi) ∪ Pa(vj) iff vi and vj has no latent between them.
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Proof. Suppose there is no latent between vi and vj . We follow the proof similar to the Lemma 4.4. Consider the pair of
variables vi and vj and all the paths between them Πij . Let π ∈ Πij .

1. Let π be a path not containing any colliders. Using Rule-1 of d-separation, we can block π by conditioning on either
Pa(vi) or Pa(vj).

2. If π contains colliders and no p-colliders, then, using Rule-2 of d-separation, π is blocked as the colliders have no
descendants in Pa(vi) ∪ Pa(vj).

3. We block the paths π containing p-colliders by intervening on Pij

As all the paths in Πij are blocked, we have vi |= vj | do(Pij),Pa(vi) ∪ Pa(vj). If there is a latent lij then the path
vi ← lij → vj is not blocked and therefore vi 6⊥⊥ vj | (do(Pij),Pa(vi) ∪ Pa(vj)).

Formally, let Dt ⊆ V for t ∈ {1, 2, · · · , 24τ ′2 log n} be constructed by including every variable vi ∈ V with probability
1− 1

τ ′ where τ ′ = max{τ, 2}. Let Dτ = {D1, · · · , D24τ ′2 logn} be the collection of the set Dt’s. Using these interventions
Dτ , we argue that we can recover all the latents between non-edges of G correctly with high probability.

Proposition B.6 (Proposition 4.7 Restated). Let G(V ∪ L,E ∪ EL) be a τ -causal graph with observable graph G(V,E).
Algorithm LATENTSNEDGES withO(τ2 log n+log n) many interventions recovers all latents effecting pairs of non-adjacent
nodes in the observable graph G with probability at least 1− 1/n2.

Proof. We follow a proof similar to Lemma B.2. Consider a pair of variables vi and vj such that there is no edge between
them inG. From Lemma B.5, we know that by intervening on all the colliders between vi and vj , we can identify the presence
of a latent. In Algorithm LATENTSNEDGES, we iterate over sets in Dij . As Dij ⊆ Dτ , we have |Dij | ≤ 24τ ′2 log n.
Let Γt denote the event that Dt ∈ Dij is such that vi, vj 6∈ Dt and Pij ⊆ Dt for a fixed t ∈ {1, · · · , 24τ ′2 log n}. Let
T = 24τ ′2 log n.

Pr[Γt] =

(
1− 1

τ ′

)|Pij | 1

τ ′2
≥
(

1− 1

τ ′

)τ ′
1

τ ′2
.

Using the inequality (1 + x
n )n ≥ ex(1− x2

n ) for |x| ≤ n, and since τ ′ ≥ 2 we have:

Pr[Γt] ≥ 1
e (1− 1

τ ′ )
1
τ ′2 ≥

1
2eτ ′2

⇒ Pr[Γ̄t] ≤ 1− 1
6τ ′2 and Pr[∃t ∈ [T ] : Γt] ≥ 1−

(
1− 1

6τ ′2

)24τ ′2 logn
.

Using the inequality (1 + x
n )n ≤ ex for |x| ≤ n we have:

Pr[∃t ∈ [T ] : Γt] ≥ 1− 1

n4
.

So the probability that there exists a set Dt for which vi, vj 6∈ Dt and Pij ⊆ Dt is at least 1− 1
n4 . A union bound over at

most n2 pair of variables completes the proof.

B.2. Latent Affecting Adjacent Nodes in G

We follow an approach similar to the one presented in section B.1 for detecting the presence of latent between an edge
vi → vj in G. In Algorithm 3, we block all the paths (excluding the edge) between the variables vi and vj using a
conditioning set Pa(vj) in the intervention distribution do(Pa(vi) ∪ Pij) in the do-see tests we perform. This idea is
formalized using the following lemma.

Lemma B.7. Suppose vi → vj ∈ G. Let ltj be a latent between vt and vj where vt 6= vi and vi, vj 6∈ B, Pij ⊆ B. Then,
ltj |= vi | Pa(vj),do(B ∪ {vi} ∪ Pa(vi)) and ltj |= vi | Pa(vj),do(Pa(vi) ∪B).

Proof. The proof goes through by analyzing various cases. We give a detailed outline of the proof.

Claim 1: ltj |= vi | Pa(vj),do(B ∪ {vi} ∪ Pa(vi)). Suppose vt ∈ Pa(vi) ∪B. Consider all the paths between vi and ltj in
the interventional distribution do(B ∪ {vi} ∪ Pa(vi)). The only paths that are not separated because of the intervention are
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ltj → vj ← vi, ltj → vj ← vk · · · ← vi where vk ∈ Pa(vj), and ltj → vj → · · · ← vi. As we are not conditioning on vj ,
ltj → vj ← vi is blocked (Rule-2 in d-separation); conditioning on Pa(vj) 3 vk block the paths ltj → vj ← vk · · · ← vi
(Rule-1 in d-separation); and ltj → vj → · · · ← vi paths have a collider that is not Pa(vj) hence blocked by Rule-2 in
d-separation.

Suppose vt 6∈ Pa(vi) ∪ B. As before it follows that all paths between ltj and vi going through vj are blocked. All other
paths between ltj and vi should have a collider. This is because in any such path π the only edge from ltj is ltj → vt and the
edges that remain at vi are outgoing. It is easy to see that the collider on this path π can’t be in Pa(vj) because otherwise it
will also be a p-collider between vi and vj which are intervened on through B. When there is a collider on the path that is
not in the conditioning set, then the path is blocked (Rule-2 in d-separation). The same holds for all paths between ltj and vi.

Claim 2: ltj |= vi | Pa(vj),do(B ∪ Pa(vi)). Consider all the paths between ltj and vi. Using the above arguments, we have
that all paths containing vj are blocked. All other paths between ltj and vi should have a collider. This is because in any
such path π the only edge from ltj is ltj → vt and π will end at vi either as ltj · · · ← vi or ltj → · · · ← vk → vi where
vk ∈ Pa(vi). It is again easy to see that the collider on this path π can’t be in Pa(vj) because otherwise it will also be a
p-collider between vi and vj which are intervened on through B. As before, when there is a collider on the path that is not
in the conditioning set, then the path is blocked (Rule-2 in d-separation). The same holds for all paths between ltj and vi.

Lemma B.8 (Lemma 4.9 Restated). Suppose vi → vj ∈ G and vi, vj 6∈ B, and Pij ⊆ B then, Pr[vj |
vi,Pa(vj),do(Pa(vi) ∪B)] = Pr[vj | Pa(vj),do({vi} ∪ Pa(vi) ∪B)] if there is no latent lij with vi ← lij → vj .

Proof. Suppose vi → vj in G and there is no latent between (vi, vj). Then, we claim that Pr[vj | vi,Pa(vj),do(Pa(vi) ∪
B)] = Pr[vj | Pa(vj),do({vi} ∪ Pa(vi) ∪ B)]. Let Lj represents all the latent parents of vj . By including vi in the
intervention,

Pr[vj | Pa(vj),do({vi} ∪ Pa(vi) ∪B)]

=
∑
Lj

Pr[vj | Lj ,Pa(vj),do({vi} ∪ Pa(vi) ∪B)] Pr[Lj | Pa(vj),do({vi} ∪ Pa(vi) ∪B)].

=
∑
Lj

Pr[vj | Lj ,Pa(vj),do({vi} ∪ Pa(vi) ∪B)] Pr[Lj | Pa(vj),do(Pa(vi) ∪B)]. (2)

As the value of Lj is only affected by conditioning on its descendants, and in the interventional distribution do(Pa(vi)), vi
is not a descendant of Lj , the last statement is true.

Under conditioning on vi

Pr[vj | vi,Pa(vj),do(Pa(vi) ∪B)]

=
∑
Lj

Pr[vj | Lj , vi,Pa(vj),do(Pa(vi) ∪B)] Pr[Lj | vi,Pa(vj),do(Pa(vi) ∪B)]

=
∑
Lj

Pr[vj | Lj , vi,Pa(vj),do(Pa(vi) ∪B)] Pr[Lj | Pa(vj),do(Pa(vi) ∪B)]. (3)

The last statement is true because Lj |= vi | Pa(vj) in the distribution do(B∪Pa(vi)) from Lemma B.7. From the invariance
principle (page 24 in [Pearl, 2009], [Kocaoglu et al., 2017b]), we have for any variable vi

Pr[vi | Pa(vi)] = Pr[vi | Z,do(Pa(vi) \ Z)] for any Z ⊆ Pa(vi)

Applying it to our case we get

Pr[vj | Lj , vi,Pa(vj),do(Pa(vi) ∪B)] = Pr[vj | Lj ,Pa(vj),do({vi} ∪ Pa(vi) ∪B)].

Putting this together with (2) and (3), we get Pr[vj | vi,Pa(vj),do(Pa(vi)∪B)] = Pr[vj | Pa(vj),do({vi}∪Pa(vi)∪B)],
if there is no latent lij with vi ← lij → vj .
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Lemma B.9 (Lemma 4.10 Restated). Suppose vi → vj ∈ G and vi, vj 6∈ B, and Pij ⊆ B, then, Pr[vj |
vi,Pa(vj),do(Pa(vi) ∪B)] 6= Pr[vj | Pa(vj),do({vi} ∪ Pa(vi) ∪B)] if there is a latent lij with vi ← lij → vj .

Proof. Suppose vi → vj in G and there is a latent lij between (vi, vj). Then, we claim that Pr[vj | vi,Pa(vj),do(Pa(vi)∪
B)] 6= Pr[vj | Pa(vj),do({vi} ∪Pa(vi) ∪B)]. Let Lj represents all the latent parents of vj , where lij ∈ Lj . Therefore, vi
is a descendant of Lj . By including vi in the intervention,

Pr[vj | vi,Pa(vj),do(Pa(vi) ∪B)]

=
∑
Lj

Pr[vj | Lj ,Pa(vj),do({vi} ∪ Pa(vi) ∪B)] Pr[Lj | Pa(vj),do({vi} ∪ Pa(vi) ∪B)]

=
∑
Lj

Pr[vj | Lj ,Pa(vj),do({vi} ∪ Pa(vi) ∪B)] Pr[Lj | Pa(vj),do(Pa(vi) ∪B)].

As the value of Lj is only affected by conditioning on its descendants, and in the interventional distribution do(Pa(vi)), vi
is not a descendant of Lj , the last statement is true. Under conditioning on vi, we have :

Pr[vj | vi,Pa(vj),do(Pa(vi) ∪B)]

=
∑
Lj

Pr[vj | Lj , vi,Pa(vj),do(Pa(vi) ∪B)] Pr[Lj | vi,Pa(vj),do(Pa(vi) ∪B)]

=
∑
Lj

Pr[vj | Lj , vi,Pa(vj),do(Pa(vi) ∪B)]
Pr[vi | Lj ,Pa(vj),do(Pa(vi) ∪B)]

Pr[vi | Pa(vj),do(Pa(vi) ∪B)]
Pr[Lj | Pa(vj),do(Pa(vi) ∪B)]

=
∑
Lj

Pr[vj | Lj , vi,Pa(vj),do(Pa(vi) ∪B)]
Pr[vi | Lj ,Pa(vj),do(Pa(vi) ∪B)]

Pr[vi | Pa(vj),do(Pa(vi) ∪B)]
Pr[Lj | Pa(vj),do(Pa(vi) ∪B)].

From the invariance principle (page 24 in [Pearl, 2009], [Kocaoglu et al., 2017b]), we have for any variable vi

Pr[vi | Pa(vi)] = Pr[vi | Z,do(Pa(vi) \ Z)] for any Z ⊆ Pa(vi)

Applying it to our case we get

Pr[vj | Lj , vi,Pa(vj),do(Pa(vi) ∪B)] = Pr[vj | Lj ,Pa(vj),do({vi} ∪ Pa(vi) ∪B)].

However, since the numerator of
Pr[vi | Lj ,Pa(vj),do(Pa(vi) ∪B)]

Pr[vi | Pa(vj),do(Pa(vi) ∪B)]

depends on Lj as vi is a descendant of lij ∈ Lj , whereas the denominator is not dependent on Lj , the ratio is not equal to 1
unless in pathological cases. A similar situation arises in the do-see test analysis for [Kocaoglu et al., 2017b]. Hence, we
have Pr[vj | vi,Pa(vj),do(Pa(vi) ∪B)] 6= Pr[vj | Pa(vj),do({vi} ∪ Pa(vi) ∪B)].

Proposition B.10 (Proposition 4.11 Restated). Let G(V ∪L,E ∪EL) be a τ -causal graph with observable graph G(V,E).
Algorithm LATENTSWEDGES with O(nτ log n+n log n) many interventions recovers all latents effecting pairs of adjacent
nodes in the observable graph G with probability at least 1− 1

n2 .

Proof. From Lemma B.2, we know that with probability 1− 1
n2 , for every pair vi and vj , there exists, with high probability,

an intervention B ∈ Bτ such that vi ∈ B, vj 6∈ B and Pij ⊆ B. On this B, using Lemmas 4.9 and 4.10, we can identify the
latent by using a distribution test on B ∪ Pa(vi) and B ∪ Pa(vi) ∪ {vi}.

For every variable vi ∈ V , our algorithm constructs at most 2|Bτ | many interventions, given by do({vi} ∪ Pa(vi) ∪B) and
do(Pa(vi) ∪B) for every B ∈ Bτ . Therefore, the total number of interventions used by Algorithm LATENTSWEDGES is
O(nτ log n+ n log n).
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C. Experiments
In this section, we compare the total number of interventions required to recover causal graph G parameterized by p-colliders
(See section 4) vs. maximum degree utilized by [Kocaoglu et al., 2017b].

Setup. We demonstrate our results by considering sparse random graphs generated from the families of: (i) Erdös-Rényi
random graphsG(n, c/n) for constant c, (ii) Random Bipartite Graphs generated usingG(n1, n2, c/n) model, with partitions
L, R and edges directed from L to R, (iii) Directed Trees with degrees of nodes generated from power law distribution. In
each of the graphs we generate, we additionally include latent variables by sampling 5% of

(
n
2

)
pairs and adding a latent

between them.

Finding p-colliders. Let G contain observable variables and the latents. To find p-colliders between every pair of observable
nodes of G, we enumerate all paths between them and check if any of the observable nodes on a path can be a possible
p-collider. As this became practically infeasible for larger values of n, we devise an algorithm that runs in polynomial time
(in the size of the graph) by constructing an appropriate flow network and finding maximum flow in this network. We will
first describe a construction that takes three nodes (vi, vj , vk) as input and checks if vk is a p-collider for the pair of nodes
vi and vj . Iterating over all possible nodes vk gives us all the p-colliders for the pair vi, vj .

Construction. If vk is not an ancestor of either vi or vj , then, output vk is not a p-collider. Else, we describe a modification
of G to obtain the flow network G̃. First, initialize G̃ with G. Remove all outgoing edges of vk from G̃ and set the capacity
of all incoming edges incident on vk to 1. Add a node Tij along with the edges Tij → vi and Tij → vj to G̃ and set the
capacity of these edges to 1. For every node w ∈ V ∪L \ {vk}, create two nodes win and wout. Add edge wout → win with
a capacity 1. Every incoming edge to w i.e., z → w is replaced by z → win and every outgoing edge w → z is replaced by
wout → z with capacity 1. Find maximum s, t flow in G̃ with Tij , vk as source and sink respectively. If the maximum flow
is 2, then output vk is a p-collider, otherwise no.

Now, we outline the idea for the proof of correctness of the above construction.

Sketch of the Proof. After ensuring that vk has a directed path to either vi or vj , we want to check whether there is an
undirected path from vi to vj containing vk as a collider. In other words, we want to check if there are two vertex disjoint
paths from vi and vj to vk such that both of these paths have incoming edges to vk. By adding a node Tij connected to vi
and vj , we want to route two units of flow from Tij to vk where each node has a vertex capacity of 1. Converting vertex
capacities into edge capacities by splitting every node into two nodes (one for incoming and the other for outgoing edges)
gives us the desired flow network on which we can solve maximum flow.
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Figure 4. Comparison of τ vs. maximum degree in various sparse random graph models. On the x-axis is the number of nodes in the
graph. Note that our bound on the number of interventions needed to recover G is better than those provided by [Kocaoglu et al., 2017b]
roughly when τ < d2/n.

Results. In our plots (Figure 4), we compare the maximum undirected degree (d) with the maximum number of p-colliders
between any pair of nodes (which defines τ ). We ran each experiment 10 times and plot the mean value along with one
standard deviation error bars. Recall that in the worst case, the number of interventions used by our approach (Theorem 4.12)
is O(nτ log n + n log n) while the algorithm proposed by [Kocaoglu et al., 2017b] uses O(min{d log2 n, `} + d2 log n)
many interventions where ` is the length of the longest directed path in the graph. So roughly when τ < d2/n, our bound is
better. For this purpose, we also plot the d2/n line using the mean value of d obtained.

For random bipartite graphs, that can be used to model causal relations over time, we use equal partition sizes n1 = n2 = n/2
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and plot the results for G(n/2, n/2, c/n) for constant c = 5. We observe that the behaviour is uniform for small constant
values of c. In this case, we observe that the number of p-colliders is close to zero for all values of n in the range considered
and our bound is better.

For directed random trees where degrees of nodes follow the powerlaw distribution (observed in real world networks [Adamic
& Huberman, 2000]), we again observe that for almost all the values of n, our bound is better. We run our experiments with
small constant values for the exponent γ and show the plots for γ = 3 in Figure 4. Powerlaw graphs contain only a few
nodes concentrated around a very high degree. Therefore, we expect our algorithm to perform better in such cases.

Also for Erdös-Rényi random graphs G(n, 1/n), we observe that our bound is either better or comparable to that of [Kocaoglu
et al., 2017b].

It is interesting to see that in the sparse graphs we considered τ is considerably smaller compared to d. Moreover, if we want
to identify only the observable graph G under the presence of latents, our algorithm uses O(τ log n) interventions where as
the previous known algorithm [Kocaoglu et al., 2017b] uses O(d log2 n) interventions. In the random graphs considered
above, our algorithms perform significantly better for identifying G. Therefore, we believe that minimizing the number of
interventions based on the notion of p-colliders is a reasonable direction to consider.


