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Abstract
Archetypal analysis (AA) aims to extract patterns
using self-expressive decomposition of data as
convex combinations of extremal points (on the
convex hull) of the data. This work presents a
computationally efficient greedy AA (GAA) algo-
rithm. GAA leverages the underlying geometry
of AA, is scalable to larger datasets, and has sig-
nificantly faster convergence rate. To achieve this,
archetypes are learned via sparse projection of
data. In the transformed space, GAA employs
an iterative subset selection approach to identify
archetypes based on the sparsity of convex repre-
sentations. The work further presents the use of
GAA algorithm for extended AA models such as
robust and kernel AA. Experimental results show
that GAA is considerably faster while performing
comparable to existing methods for tasks such as
classification, data visualization/categorization.

1. Introduction
In recent years, various matrix decompositions techniques
have helped researchers in summarizing and visualizing
large datasets of natural scenes, objects, faces, videos, and
text (Elhamifar et al., 2012; Mørup & Hansen, 2012; Thurau
& Bauckhage, 2009). The popular approaches are clustering
methods, principal component analysis (PCA), independent
component analysis (ICA), dictionary learning (DL)/sparse
coding (SC), non-negative matrix factorization (NMF) etc
(Bernstein, 2009; Mørup & Hansen, 2012; Tosic & Frossard,
2011). Specifically, we seek factors D ∈ Rn×d and A ∈
Rd×l for a collection of signals as columns of matrix X ∈
Rn×l by minimizing the objective function

‖X−DA‖2F =

l∑
i=1

‖xi −Dai‖22, (1)
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where ‖.‖F is the Frobenius norm (Tosic & Frossard, 2011;
Elhamifar et al., 2012). Different decomposition approaches
employ different constraints (such as non-negativity, spar-
sity, independence etc.) on factors D and A and hence lead
to different type of representations of the data, suitable for
various pattern recognition tasks. For instance, clustering
approaches give easy interpretable representation, while ap-
proaches such as PCA/ICA/NMF/SC are more efficient in
capturing inherent structures and patterns of data (Mørup &
Hansen, 2012).

This paper is focused on an unsupervised learning technique
called archetypal analysis (AA), which is intuitive and easy
to interpret like clustering, and has flexibility as that of ma-
trix factorization (Chen et al., 2014; Mørup & Hansen, 2012;
Fotiadou et al., 2017). In contrast to centroids, archetypes
characterize extremal rather than average properties of the
given data, and therefore leads to a more compact representa-
tion (Seth & Eugster, 2016a; Yale Song et al., 2015). AA is
decomposition of data as convex combinations of extremal
points that lie on the convex hull of the data and are them-
selves restricted to being a convex combinations of individ-
ual observations (Mørup & Hansen, 2012; Mei et al., 2018).
AA has found application in variety of problems ranging
from style transfer (Wynen et al., 2018), hyperspectral im-
age unmixing (Zhao et al., 2016; Zhao et al., 2016), fMRI
analysis (Hinrich et al., 2016), video summarization (Yale
Song et al., 2015), clustering (Mørup & Hansen, 2012; Seth
& Eugster, 2016a), acoustic modelling (Thakur et al., 2018)
to action and texture segmentation (Cabero & Epifanio,
2019; Fotiadou et al., 2017). However, compared to other
factorization models, it is believed that the lack of efficient
algorithms has limited the deployment of AA to prevail as a
tool for data visualization and analysis (Chen et al., 2014);
our goal in this paper is to address this issue.

This paper presents an approach which exploits the under-
lying geometry and sparsity pattern of the convex represen-
tations to identify archetypes or points on convex hull of
the data. It is based on the observation that extremal points
have a sparser convex representation compared to interior
points of the data distribution. This motivates identifying
archetypes efficiently in the transformed space involving
sparse matrices. First, we develop an efficient algorithm
based on greedy column subset selection strategy (Jafari &
Plumbley, 2011). Then, we demonstrate that our approach
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is scalable and faster than existing publicly available AA al-
gorithms. Finally, we show the application of AA in various
problems ranging from computer vision, digit classification
to data visualization.

2. Problem Formulation
The AA problem attempts to identify the archetypes as
columns of matrix D, i.e., a factorial representation to
the data matrix X under two geometrical constraints: 1)
each observation vector xi should be well approximated
by a convex combination of archetypes djs, and 2) each
archetype dj should be a convex combination of observa-
tions xis (Chen et al., 2014; Eugster & Leisch, 2011; Mørup
& Hansen, 2012). To elaborate, AA is equivalent to solv-
ing the following non-convex optimization problem with
simplex constraints:

argmin
B,A

bj∈∆l,ai∈∆d

‖X−DA‖2F = ‖X−XBA‖2F ,

∆l , [b � 0,‖b‖1 = 1],∆d , [a � 0, ‖a‖1 = 1]

(2)

Here, the columns of D are the inferred archetypes. For
d = 1, the solution is given by centroid of the data, for
d = 2, the solution coincides with the first principal axis of
the data, and for d > 2, archetypes lie on the convex hull
of the observations (Chen et al., 2014; McCallum & Avis,
1979). Further, the stochastic constraints in (2) enforces
sparseness i.e., only a few of the observations in X will
contribute to dj , and similarly columns ai of matrix A
are convex and sparse. This problem can be solved using
quadratic programming (QP). This is done via alternate
minimization, as the problem is convex with respect to one
of the variables B or A, when the other is fixed.

2.1. Prior Work

AA dates back to alternating least-squares based algorithm
by Cutler and Breiman (Adele Cutler, 1994). In the past
there have been numerous improvements; specifically AA
using projected gradients (AAPG) (Mørup & Hansen, 2012),
with Kullback-Leibler divergence (AAKL) (Diment & Vir-
tanen, 2015), efficient active-set quadratic programming
(AAAS) (Chen et al., 2014), projection-free convex op-
timization via Frank-Wolfe techniques (Bauckhage et al.,
2015) and online dictionary learning via block-coordinate
descent (AAODL) (Mei et al., 2018). However, these ap-
proaches do not provide theoretical guarantees on the quality
of approximation. Some approaches trade-off accuracy for
speed to provide approximate solutions by performing AA
on precomputed data subset e.g., Frame (Mair et al., 2017)
or Coreset (Mair & Brefeld, 2019). Again for large problem
size e.g., the Million Song Dataset, pre-computing Frame
(all data points lying on the boundary of the convex hull) is
difficult within a reasonable amount of time while AA Core-

set results in large approximation error (Mair & Brefeld,
2019).

Notably there also exists other versions of AA such as prob-
abilistic AA (Seth & Eugster, 2016b), functional AA (Mo-
liner & Epifanio, 2019), separable AA (Damle & Sun, 2017)
or AA for missing data (Epifanio et al., 2019), which are
not considered in this work.

3. Proposed Greedy Archetypal Analysis
(GAA) Algorithm

AA is a least-squares optimization problem with simplex
constraints. In contrast to using only generic QP solvers
or gradient decent based algorithms, we leverage the un-
derlying sparsity of convex representations, to design an
algorithm which is scalable to larger datasets while giving
significantly faster convergence as compared to existing
methods. In addition, the usual approach to solve (2) is to
optimize both factors B and A alternatively with respect to
the whole data matrix X. Thus, computational complexity
of conventional AA algorithms scales exponentially with
the dimensionality of X (McCallum & Avis, 1979).

We show that alternative to (2), one can define an objective
function such that learning B is efficient and independent
of any computations involving X. Once B is known, A can
be updated via a suitable fast QP solver1. This is achieved
by learning the matrix B in the coefficient space rather than
the signal space (Abrol et al., 2016). This is motivated from
the fact that the error in the coefficient or the representation
domain upper bounds the error in the signal domain. In
particular for a matrix D we have:

‖x− x̂‖22 = ‖Da−Dâ‖22 ≤ λ2(D)‖a− â‖22 (3)

where x̂ is an estimate of x and λ(D) is the largest singular
value of D (Chen et al., 2013). A similar approach using
random projections has been shown to be effective in case of
NMF (Chu & Lin, 2008; Thurau et al., 2011). Now consider
an alternate objective function by re-expressing (2) as:

‖X−XBA‖2F = ‖X−XC‖2F
s.t. diag(C) = 0, ci � 0, and ‖ci‖1 = 1

(4)

Here, diag(.) denotes the diagonal elements and matrix C
(having columns ci), can be seen as the coefficient matrix for
representing each exemplar in X as a linear combination of
other exemplars (Abrol et al., 2016). This can be interpreted
as an affinity transformation, where training exemplars lying
in the same subspace utilize one another in their convex
representations (Elhamifar et al., 2012). The coefficient
matrix C is computed such that the error is bounded i.e.,

1GAA employ the active-set solver for QP from SPAMS tool-
box: http://spams-devel.gforge.inria.fr/
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Figure 1. Illustration of geometry in convex representation using a
2-simplex and 7 points in a 2-D plane.

‖X−XC‖2F < η 2. To maintain this bound, the product
BA should be close to C for a convex coefficient matrix
A, or equivalently we can update the factors B and A by
alternatively solving the problem (Abrol et al., 2016)

argmin
B,A

bj∈∆l,ai∈∆d

‖C−BA‖2F , (5)

with respect to B and A, instead of the one defined in
(2). Here, matrix C is computed using X only once. In-
terestingly, computing C gives an inherent advantage of
clustering the data by applying spectral clustering to the
graph Laplacian of G = |C| + |CT |. Hence, if partially
labelled data is available, one can know the suitability of
the obtained C prior to solving (5). There exist a case
where XC = XBA, but C 6= BA, which occurs when
C = BA + V with V ∈ Null(X). The problem in (5) is
an alternate formulation of (2), and can also be seen as a
matrix factorization problem. The main difference lies in
use of C instead of X. Further, note that all the matrices
involved i.e C, B and A are sparse or compressible which
helps in speeding up the procedure of finding archetypes as
discussed in the next section 3.1.

3.1. Finding Archetypes using Subset Selection

We employ a greedy subset/exemplar selection approach
to update B i.e., the training exemplars (or equivalently
columns of C) are chosen as columns/atoms of B. Further,
it is ensured that the information learned by the previous
columns is used to guide an adaptive selection of subsequent
ones. The aim is to identify archetypes or points on convex
hull by exploiting the intrinsic sparsity structure of convex
representations. The assumption of sparsity comes from
the observation that archetypes are the extremal points of
the data, and hence only a few archetypes are sufficient
to represent an observation (Seth & Eugster, 2016a). To
achieve this, define the overall error/residual matrix in the

2(4) can also be formulated as a standard QP problem.

coefficient domain as,

E = C−BA = C−(W1+W2+. . .) ∀j : Wj = bja[j],
(6)

where, bj and a[j] denotes the jth column and row of B
and A, respectively.

In each iteration, matrix B and A are alternatively optimized
to minimize the residual. In general, careful initialization im-
proves the convergence rate and reduces the risk of finding
inappropriate archetypes. Hence, as suggested in (Mørup
& Hansen, 2012), we used the ‘FurthestSum’ method to
initialize D. Initially, the coefficient matrix A is updated
by a fast QP solver. Following this, the error/residual E is
initialized to C i.e., considering B = ∅. Finally, B is up-
dated column-by-column by sequentially extracting a new
column ek from the current error matrix EΩ based on the
criterion; maximum Gini(ek), computed over its columns3.
Since, C is sparse in nature, the sparsity measure is used
to quantify information content of its columns in order to
update B.

The geometric interpretation of our selection criterion can
be understood from Figure 1, which shows a 2-simplex and
7 points in a 2-D plane (4-on, 2-inside and 1-outside of
convex hull marked by red boundary). Following properties
of convex geometry, points x4 and x5 can be represented
as a convex combination of points x1,x2 and x3, while
point x6 as a convex combination of x2 and x3. In fact,
every convex combination of two extremal points lies on
the line segment between the points. However, point x7 can
only be represented as an affine combination of all other
points. It is now evident that extremal points have a sparser
convex representation compared to interior points of the data
distribution, which motivates our selection criterion. Further,
note that any finite set of non-negative vectors (columns of
C) lies within a convex polyhedral cone, and thus columns
of B are indeed edges of the cone that coincide with them.

Further, to leverage the underlying sparsity pattern in a[j],
any column bj is updated from only those columns in E
(denoted by set Ω = |S(a[j])|, S being the soft-thresholding
operator), whose representations use the current archetype.
Thresholding favours the observations closer to edges as
they are sufficient to identify the extremal points of the
data distribution, leading to a better estimate of archetypes.
Following this, the error E is minimized by subtracting
the selected column’s energy contribution i.e., EΩ

new =
EΩ
old − bja

Ω
[j]. Note that the coefficients aΩ

[j] are not re-
estimated, as the main goal of the GAA algorithm is just
to emphasize the potential candidates for next atom update.
This is done to give more emphasis to the current updated
support set, such that the chosen archetypes in addition to

3Function Gini(.) denotes the Gini Index sparsity metric
which has been shown to satisfy all important sparsity attributes
(Hurley & Rickard, 2009).
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Algorithm 1 Greedy Archetypal Analysis (GAA) algorithm

Inputs: Training signal matrix X ∈ Rn×l
Outputs: Archetypal dictionary D ∈ Rn×d and sparse
coefficient matrices B ∈ Rl×d and A ∈ Rd×l
Initialization: δ, iter, D via FurthestSum, random B s.t.
D = XB

1: Compute C via (4)
Perform outer iterations

2: A← argmin
A,ai∈∆d

‖X−DA‖2F
3: E← C, I = ∅

Perform inner iterations: j = 1
4: Ω← |S(a[j])|
5: k ← argmax

k/∈I,k∈Ω

(Gini(ek))

6: bj ← ek, I ← I ∪ k
7: bj ← bj/‖bj‖1
8: EΩ ← EΩ − bja

Ω
[j]

9: j = j + 1
Until d columns

Until iter > 0
10: D← XB
11: A← argmin

A,ai∈∆d

‖X−DA‖2F

being extremal, are encouraged to be close to the data points
that uses them in their decompositions. The modified error
matrix serves for the next atom update and as a result, the
same exemplar will not be selected again. The pseudo-code
of the proposed approach is shown in Algorithm 1.

4. Solution to Extended AA models
In many scenarios, it is not possible to find the “true”
archetypes or a convex representation in terms of the ob-
served data (Mørup & Hansen, 2012). Also, conventional
AA is not robust to outliers, and may produce undesirable
archetypes. Furthermore, finding archetypes sometimes is
much easier in higher dimensions using a measure of pair-
wise similarity (Chen et al., 2014). To address these issues,
various extensions of the proposed approach for extended
AA models are briefly discussed, however a full evaluation
of these models is beyond the scope of this manuscript.

4.1. Relaxed AA Model

To address the issue of non-existence of true archetypes,
work in (Mørup & Hansen, 2012) proposed a relaxed AA
model. This model assumes that the true archetypes reside
outside the convex hull of the data. Mathematically, the

model can be expressed as:

argmin
B,A

bj∈∆l,ai∈∆d

‖X−DA‖2F = ‖X−XBUA‖2F ,

α = diag(U), 1− δ ≤ αj ≤ 1 + δ,

(7)

where αj is the scaling parameter which relaxes ‖bj‖1
within the range defined by δ (see Figure 2(c) for illus-
tration). The solution to (7) can be found using the same
method as proposed in Section 3, where in each iteration
after estimating B and A, one can update α via gradient
descend (Mørup & Hansen, 2012).

4.2. Robust AA Model

In the conventional AA model, one tries to minimize the
Euclidean (matrix) norm of the residual. Hence, the AA
algorithm will be biased towards outliers, and ends up find-
ing undesired archetypes (Eugster & Leisch, 2011). This
can be addressed by replacing the least-square function by
another function that reduces the effect of outliers. One
such robust AA model was proposed in (Chen et al., 2014),
and is expressed as:

argmin
B,A

bj∈∆l,ai∈∆d

=
∑
i

h(‖xi−Dai‖2)

= .5
∑
i

1

wi
‖xi−Dai‖22 + wi,

(8)

where h(u) = .5 minw≥ε[u
2/w+w] : R→ R is the Huber

loss function. With definition of (8) in place, it is easy to
see that for fixed B and A, we have a closed form solution
for weights wi as max(‖xi−Dai‖22, ε) (Chen et al., 2014).
Similarly, while fixing wi, B and A can be alternatively
optimized as proposed in Section 3.

4.3. Kernel AA Model

The conventional AA model can also be generalized to
the case when finding archetypes is much easier in some
higher dimensional Hilbert space (Bauckhage & Manshaei,
2014). For instance, data lying in overlapping union of
subspaces can be projected in higher dimensional space to
separate the individual subspaces in order to extract mean-
ingful archetypes for tasks such as visualization and classifi-
cation (Abrol et al., 2016). To understand this, consider the
objective function in (2) as:

‖φ(X)− φ(X)BA‖2F = ‖φ(X)(I−BA)‖2F
=tr((I−BA)TK(X,X)(I−BA))

(9)

where the transformation φ : Rn → R maps the input space
to a high-dimensional Hilbert spaceR (Abrol et al., 2016;
Van Nguyen et al., 2013). Although the transformation φ
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Table 1. Average archetypal analysis run-times for finding 1000 archetypes via different methods over 10 trials.

Dataset Samples Run-time (s)
AAKL AAPG AAAS AAODL GAA

SUN Attribute 14340 2400 2250 1400 1100 820
Flickr 70K 8500 8030 5740 3710 3230
H3.6M 300K 67452 53130 34040 21340 17050

is unknown, the optimization of kernel AA model is still
feasible via kernel trick using the kernel matrix K(X,X)
whose elements are computed as κ(xi,xj) = φ(xi)

Tφ(xj),
κ being the kernel similarity function (Van Nguyen et al.,
2013; Zhao et al., 2016). Again the objective in (9) can be
minimized and the solution can be obtained in coefficient
domain using the method proposed in Section 3.

5. Computational Complexity
Projected gradient based AAPG algorithm update both the
factors B and A as a whole. The mathematical complexity
of AAPG algorithm thus scales as O(ndl). In contrast, fac-
tors B and A are updated column by column in both GAA
and AAAS algorithms. In AAAS algorithm which essen-
tially is a cyclic-coordinate algorithm, both the factors are
updated using a fast active-set based QP solver. For instance,
the complexity of solving for a column of A approximately
scales asO(nd+a2), a being the size of the active set in the
current iteration (see (Chen et al., 2014) for more details).
The difference with GAA lies in the update of factor B. In
GAA algorithm this is done by firstly sorting the vector in
O(n log n) operations, precomputing the Gini Index mea-
sure for each observation with complexity of O(n). Next,
the archetypes are identified by subset selection (finding the
vector with minimum sparsity) with complexity O(|Ω \ I|).

Table 1 shows runtime comparison of different algorithms
for a fixed error tolerance of 10−3 as stopping criterion. The
empirical computational times are measured on a Quad-Core
Intel i7 machine at 3.5 GHz, 12 GB RAM, using MATLAB
and under Windows10 operating system. Experimental re-
sults shows that GAA is nearly 2× faster than the current
state-of-the-art AAAS algorithm, while on large datasets4

it is considerably faster than recently proposed AAODL
algorithm. In practice, it was observed that the empirical
complexity of GAA algorithm is linear in l and d, while for
AAAS and AAODL algorithm it is only linear in l. As dis-
cussed later in Section7, matrix C can be precomputed over
data partitions in parallel on multiple machines, resulting in
further speed gains.

4The flickr dataset was obtained by querying “most interesting”
images across 50 categories.
H3.6M Dataset: http://vision.imar.ro/human3.6m/
SUN Attribute: https://cs.brown.edu/∼gmpatter/sunattributes.html

6. Convergence Analysis
GAA employ active-set based QP algorithm for comput-
ing factors C and A, which is guaranteed to converge to
a stationary point. In regard to B, exploiting the approx-
imate sub-modularity property of the matrix factorization
(Nemhauser et al., 1978; Krause et al., 2008), approximation
guarantee on how the proposed algorithm for updating B
will behave in practice can be obtained.

Proposition1: Let’s denote the candidate training set by
T , the selected and optimal archetypal set by A and A∗,
respectively. GAA algorithm while minimizing (2) starts
with an empty set A = ∅, iteratively adds a new element
and obtains a set A which is at-least a constant fraction of
the optimal one.

Proposition1 holds for sub-modular functions and it is easy
to show that (2) has a sub-modular surrogate function which
is also related to the incoherence, a geometric property of
the candidate training set (Nemhauser et al., 1978). To in-
vestigate how good this theoretical approximation is, an
experiment is done to check the ability of different algo-
rithms to recover the true underlying archetypal dictionary.
A data matrix X ∈ R200×30000 is generated, by selecting
uniformly random 5 archetypes from D ∈ R200×100. By
solving the inverse problem, we were able to recover the
true D more than 74.7% (AAODL) (Mei et al., 2018), 75%
(AAAS) (Chen et al., 2014), 74.4% (AAPG) (Mørup &
Hansen, 2012), and 72.9% (GAA) of the time.

Proposition2: GAA algorithm restricts its search of
archetypes around the convex hull of the data.

Result in Proposition2 is interesting in the sense that GAA
searches for archetypes around the convex hull regardless
of the distribution of data points inside the simplex and
hence is scalable for larger datasets. This suggest various
alternatives to further speed up the archetypal search, few
of which are discussed in the next section.

7. Sequential Updates for GAA
In the proposed method one needs to solve for C, and it may
be argued if solving for a big matrix C is more favorable
than solving for the smaller matrices A and B or not. How-
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Figure 2. Illustration of archetypal analysis for real-valued observations where model order in (a), (c), (d) is 3, and in (b) is 4. The corners
of each coloured polygon indicate the estimated archetypes.

ever, note that in existing algorithms such as in (Chen et al.,
2014), updating B require operations involving XT and
(XTX)−1 which has large time and storage complexity for
larger datasets. Moreover, such operations are performed
iteratively until both factors A and B converges. In con-
trast, in GAA algorithm C is computed only once, which
takes away the computational burden from step involving
update of B, done via fast subset selection approach. Hence,
the algorithm converges much faster as compared to other
approaches. As a result of Proposition2, C can be updated
over partitions of X, since for non-empty discrete sets X1
and X2 (Mair et al., 2017)

conv(X1 ∪ X2) = conv(conv(X1) ∪ conv(X2)). (10)

Nevertheless, an alternative way is to adopt a sequential
approach where instead of processing the whole collection
of signals or X, we process each signal (or a batch) sequen-
tially one at a time, thereby jointly optimizing C, B and A
iteratively. In particular, we employed a sampling criterion
based on which a new signal xi is either included or not to
a base dictionary P such that D = PB. Note that we have
P = X in standard AA model, and thus P should span the
same space as X, with B emphasizing the most important
directions in that space. Due to inherent sparsity of B, one
can choose only the most important signals in P instead
of the whole X, thereby reducing the complexity of updat-
ing C, and B significantly. Thus, we propose a sampling
criterion which searches for the signals that does not lie in
the span of the already selected signals. Specifically, any
column xi from X is added in P if the following condition
holds

‖xi −Πxi‖22 = ‖xi −PP†xi‖22 > τ (11)

It computes the distance of vector xi to the space spanned
by the set P. Here, Π is the projection matrix, PP†xi is the
projection of xi on to P, † denotes the pseudo-inverse and
τ denotes a threshold value. Our implementation is inspired
by the fast exemplar selection (FES) algorithm (see (Abrol

et al., 2017) for more details) such as block matrix updates
and incremental Cholesky factor updates.

8. Experimental Results and Comparison
with Other Algorithms

This section studies the efficiency of the proposed GAA
algorithm along with existing algorithms i.e., AA using
active-set (AAAS) algorithm (Chen et al., 2014), AA using
projected gradient (AAPG) algorithm (Mørup & Hansen,
2012), AA with Kullback-Leibler divergence (AAKL) algo-
rithm (Diment & Virtanen, 2015), in various signal process-
ing/machine learning tasks. For a fair comparison we have
excluded the approaches such as (Mair & Brefeld, 2019)
which apply AA on precomputed subset of data, as for very
large number of examples any of the existing AA algorithms
can be complemented with such approaches.

8.1. Synthetic Dataset

In this experiment, we considered the synthetic 2D-data
of 1000 observations with the dimensionality of simplex
set to 3 and 4, respectively. The various archetypes found
by different algorithms are shown in Figure 2. It can be
observed that for model order-3 GAA, AAAS and AAPG
algorithms found archetypes which are lying in close vicin-
ity (see Figure 2(a)). The AAKL algorithm performs poorly
among all. For model order-4, we observed a 4% relative
lower reconstruction error for all the observations than the
AAPG algorithm (see Figure 2(b)). Here, GAA seems to be
favouring the points near the top-right edge. Since, robust
analysis is not considered here, its difficult to argue either
in favor of the solution obtained via GAA or AAPG algo-
rithm. Hence, both the results can be considered for good
approximation of data.

We deliberately considered the model order-3 dataset, as
there are no true archetypes available (Mørup & Hansen,
2012). However, as discussed earlier one can use the relaxed
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AA model to find them. As an illustration, we have shown
the archetypes found by the proposed GAA algorithm for
various values of δ in Figure 2(c). Finally, Figure 2(d) shows
the results for the robust AA model, and it can be observed
that the proposed GAA algorithm performs well in finding
archetypes robust to outliers.

8.2. Digit Classification

The state-of-the-art results for this task using existing kernel-
DL methods are reported in (Abrol et al., 2016; Van Nguyen
et al., 2013). This experiment uses the kernel AA model
for digit classification task on USPS dataset (Bache &
Lichman, 2013), to see if similar performance could be
achieved by using AA instead of DL. Following the strat-
egy in (Van Nguyen et al., 2013), we used the generative
classification approach, where a test example is classified to
the class that give the smallest reconstruction error. We first
concatenate dictionaries (consisting of dictionary atoms or
archetypes) from all (say Q) classes as:

D̈f = [D̈1 . . . D̈Q] = [φ(X1)B1 . . . φ(XQ)BQ] (12)

The final dictionary D̈f is used to solve for the
sparse/convex decomposition at = [a1

t , . . . ,a
Q
t ] for a given

test example xt. Finally, the error with respect to qth class
is computed as:

rqt = ‖φ(xt)− φ(Xq)Bqaqt‖22 ∀q q = 1, . . . , Q

= K(xt,xt)− 2K(xt,X
q)Bqaqt

+ aqTt BqTK(Xq,Xq)Bjaqt

(13)

In order to have a fair comparison, all experiments are per-
formed under similar conditions. Specifically, dictionary
for each class using kernel-GAA (KGAA), kernel-AAAS
(KAAAS), kernel-KSVD (KKSVD) (Van Nguyen et al.,
2013) and kernel sparse greedy dictionary (KSGD) (Abrol
et al., 2016) algorithm is learned with the following pa-
rameters: 300 atoms/archetypes, cardinality in SC step 5,
polynomial kernel of degree 4, error tolerance ε = 10−4

and maximum iterations 200. With additional complexity
of implementing a Kernel version of AAODL algorithm, a
comparison is excluded for this experiment, although we
expect similar performance. It can be observed from results
reported in Table 2 that AA achieves comparative perfor-
mance at par with DL based methods even in presence of
additive noise, and advocate towards its uses as an alter-
native for such tasks. Further, AA has the advantage of
reduced computational cost in testing, since computing a
convex representation is much more faster than computing
a sparse representation, and more research is required to
exploit these gains in many other tasks.

Table 2. Comparison of classification accuracies on USPS dataset
for different methods.

Method Noise Standard Deviation σ
0 0.3 0.9 1.2 1.5

KKSVD 98.42 97.6 94.5 87.6 83.6
KSGD 98.40 97.5 94.4 87.6 83.6
KAAAS 98.36 97.3 94.2 87.3 83.8
KGAA 98.48 97.5 94.6 87.8 83.8

8.3. Archetypal Analysis In Large Image Collection

In this experiment, we analyze the SUN attribute image
dataset: a subset of SUN image database (Xiao et al., 2010).
The dataset consist of 14, 340 images and 102 attributes,
and each image has been manually labelled with an attribute.
For our analysis, we represented each image by a concatena-
tion of GIST, HOG, and geometric context colour histogram
features (see (Xiao et al., 2010) for more details), since
they individually describe distinct visual phenomena. In the
experiments reported here, we computed 1, 000 archetypes,
which were further grouped into 10 categories (using spec-
tral clustering) resembling to images of (i) water related
activities such as sailing and swimming; (ii) physical ac-
tivity such as sports, competition, and exercise; (iii) ocean,
river and lake; (iv) enclosed area; (v) buildings and houses;
(vi) highways and roads; (vii) transport (viii) open area
with greenery; (ix) open area without greenery; and (x) ab-
stract images. Figure 3(a) (columns 1 − 4) shows few of
the common generating images for each of the archetype,
found by all AA algorithms. Figure 3(a), columns 5 and 6
shows example generating images found only by AAAS and
GAA algorithms, respectively. It can be observed that the
generating images are intuitively as expected. In addition,
Figure 3(b) also shows few images, where each image is
composed by three archetypes found by GAA algorithm. It
can be observed that certain archetypes contribute structures
while others are responsible for colour and intensity con-
tent. For instance, Green border image is composed of A5
(building), A8 (open area with greenery) and A6 (road).

9. Summary
In this paper, we presented a greedy algorithm for archety-
pal analysis. The proposed approach exploits the underly-
ing sparsity pattern of the convex representations to iden-
tify archetypes or points on the convex hull of the data.
This is done efficiently in the coefficient domain involv-
ing sparse matrices rather than the signal domain. The
proposed method employs an iterative fast subset selection
approach to find the archetypes. We have shown that the
proposed algorithm has promising applications in computer



A Geometric Approach to Archetypal Analysis via Sparse Projections

A1

A2

A3
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A6

A7

A8

A9

A10
(a)

A9 + A3 + A10 A1 + A3 + A2 A5 + A8 + A6

(b)

Figure 3. Visualization of the archetypes found for the SUN attribute dataset. (a) The top four generating images (columns 1-4) for each
one of the ten archetypes (A1-A10), along with example images (column 5-6) found only by AAAS and GAA algorithm, respectively. (b)
Example images with top three generating archetypes found by GAA algorithm.

vision/machine learning such as prediction tasks, and visu-
alization for large databases of natural images. Further, we
have shown that the proposed algorithm is also suitable for
obtaining solutions to extended AA models.
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