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Abstract
In min-min optimization or max-min optimiza-
tion, one has to compute the gradient of a function
defined as a minimum. In most cases, the mini-
mum has no closed-form, and an approximation is
obtained via an iterative algorithm. There are two
usual ways of estimating the gradient of the func-
tion: using either an analytic formula obtained
by assuming exactness of the approximation, or
automatic differentiation through the algorithm.
In this paper, we study the asymptotic error made
by these estimators as a function of the optimiza-
tion error. We find that the error of the automatic
estimator is close to the square of the error of the
analytic estimator, reflecting a super-efficiency
phenomenon. The convergence of the automatic
estimator greatly depends on the convergence of
the Jacobian of the algorithm. We analyze it for
gradient descent and stochastic gradient descent
and derive convergence rates for the estimators in
these cases. Our analysis is backed by numerical
experiments on toy problems and on Wasserstein
barycenter computation. Finally, we discuss the
computational complexity of these estimators and
give practical guidelines to chose between them.

1. Introduction
In machine learning, many objective functions are expressed
as the minimum of another function: functions ` defined as

`(x) = min
z∈Rm

L (z, x) , (1)

where L : Rm × Rn → R. Such formulation arises for
instance in dictionary learning, where x is a dictionary, z a
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sparse code, and L is the Lasso cost (Mairal et al., 2010).
In this case, ` measures the ability of the dictionary x to
encode the input data. Another example is the computa-
tion of the Wassertein barycenter of distributions in opti-
mal transport (Agueh and Carlier, 2011): x represents the
barycenter, ` is the sum of distances to x, and the distances
themselves are defined by minimizing the transport cost. In
the field of optimization, formulation (1) is also encountered
as a smoothing technique, for instance in reweighted least-
squares (Daubechies et al., 2010) where L is smooth but not
`. In game theory, such problems naturally appear in two-
players maximin games(von Neumann, 1928), with applica-
tions for instance to generative adversarial nets (Goodfellow
et al., 2014). In this setting, ` should be maximized.

A key point to optimize ` – either maximize or minimize –
is usually to compute the gradient of `, g∗(x) , ∇`(x).
If the minimizer z∗(x) = arg minz L(z, x) is avail-
able, the first order optimality conditions impose that
∇1L (z∗(x), x) = 0 and the gradient is given by

g∗(x) = ∇2L (z∗(x), x) . (2)

However, in most cases the minimizer z∗(x) of the function
is not available in closed-form. It is approximated via an
iterative algorithm, which produces a sequence of iterates
zt(x). There are then three ways to estimate g∗(x):

The analytic estimator corresponds to plugging the approx-
imation zt(x) in (2)

g1
t (x) , ∇2L (zt(x), x) . (3)

The automatic estimator is g2
t (x) , d

dx [L (zt(x), x)],
where the derivative is computed with respect to zt(x) as
well. The chain rule gives

g2
t (x) = ∇2L (zt(x), x) +

∂zt
∂x
∇1L (zt(x), x) . (4)

This expression can be computed efficiently using automatic
differentiation (Baydin et al., 2018), in most cases at a cost
similar to that of computing zt(x).

If ∇2
11L(z∗(x), x) is invertible, the implicit func-

tion theorem gives ∂z∗(x)
∂x = J (z∗(x), x) where



Super efficiency of automatic differentiation

J (z, x) , −∇2
21L (z, x)

[
∇2

11L (z, x)
]−1

. The implicit
estimator is

g3
t (x),∇2L(zt(x),x)+J (zt(x),x)∇1L(zt(x),x). (5)

This estimator can be more costly to compute than the pre-
vious ones, as a m×m linear system has to be solved.

These estimates have been proposed and used by different
communities. The analytic one corresponds to alternate
optimization of L, where one updates x while considering
that z is fixed. It is used for instance in dictionary learning
(Olshausen and Field, 1997; Mairal et al., 2010) or in opti-
mal transport (Feydy et al., 2019). The second is common
in the deep learning community as a way to differentiate
through optimization problems (Gregor and Le Cun, 2010).
Recently, it has been used as a way to accelerate convo-
lutional dictionary learning (Tolooshams et al., 2018). It
has also been used to differentiate through the Sinkhorn
algorithm in optimal transport applications (Boursier and
Perchet, 2019; Genevay et al., 2018). It integrates smoothly
in a machine learning framework, with dedicated libraries
(Abadi et al., 2016; Paszke et al., 2019). The third one is
found in bi-level optimization, for instance for hyperparame-
ter optimization (Bengio, 2000). It is also the cornerstone of
the use of convex optimization as layers in neural networks
(Agrawal et al., 2019).

Contribution In this article, we want to answer the fol-
lowing question: which one of these estimators is the best?
The central result, presented in Sec.2, is the following con-
vergence speed, when L is differentiable and under mild
regularity hypothesis (Prop.2.1, 2.2 and 2.3)

|g1
t (x)− g∗(x)| = O (|zt(x)− z∗(x)|) ,

|g2
t (x)− g∗(x)| = o (|zt(x)− z∗(x)|) ,

|g3
t (x)− g∗(x)| = O

(
|zt(x)− z∗(x)|2

)
.

This is a super-efficiency phenomenon for the automatic esti-
mator, illustrated in Fig.1 on a toy example. As our analysis
reveals, the bound on g2 depends on the convergence speed
of the Jacobian of zt, which itself depends on the optimiza-
tion algorithm used to produce zt. In Sec.3, we build on the
work of Gilbert (1992) and give accurate bounds on the con-
vergence of the Jacobian for gradient descent (Prop.3.2) and
stochastic gradient descent (Prop.3.5 and 3.6) in the strongly
convex case. We then study a simple case of non-strongly
convex problem (Prop.3.9). To the best of our knowledge,
these bounds are novel. This analysis allows us to refine
the convergence rates of the gradient estimators. In Sec.4,
we start by recalling and extending the consequence of us-
ing wrong gradients in an optimization algorithm (Prop.4.1
and 4.2). Then, since each gradient estimator comes at a dif-
ferent cost, we put the convergence bounds developed in the
paper in perspective with a complexity analysis. This leads
to practical and principled guidelines about which estimator
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Figure 1. Convergence of the gradient estimators. L is strongly
convex, x is a random point and zt(x) corresponds to t iterations
of gradient descent. As t increases, zt goes to z∗ at a linear rate.
g1t converges at the same rate while g2t and g3t are twice as fast.

should be used in which case. Finally, we provide numerical
illustrations of the aforementioned results in Sec.5.

Notation The `2 norm of z ∈ Rm is |z| =
√∑m

i=1 z
2
i .

The operator norm ofM ∈ Rm×n is ‖M‖ = sup|z|=1 |Mz|
and the Frobenius norm is ‖M‖F =

√∑
i,jM

2
ij . The

vector of size n full of 1′s is 1n. The Euclidean scalar
product is 〈·, ·〉. The derivative of L with respect to its
first variable (resp. second variable) is ∇1L ∈ Rm (resp
∇2L ∈ Rn). The second derivative of L with respect
to its variable i = 1, 2 and variable j = 1, 2 is denoted
∇2
ijL. For sequences xt, yt ∈ R indexed by t, we denote

xt = O(yt) when there exists C > 0 such that |xt| ≤ C|yt|
for t large enough. We denote xt = o(yt) when xt

yt
→ 0

when t → +∞. Finally, we use the Landau notation Θ
to report computation and memory complexity magnitude.
The proofs are only sketched in the article, full proofs are
deferred to appendix.

2. Convergence speed of gradient estimates
We consider a compact set K = Kz ×Kx ⊂ Rm×Rn. We
make the following assumptions on L.

H1: L is twice differentiable overK with second derivatives
∇2

21L and ∇2
11L respectively L21 and L11-Lipschitz.

H2: For all x ∈ Kx, z → L(z, x) has a unique minimizer
z∗(x) ∈ int(Kz). The mapping z∗(x) is differentiable,
with Jacobian J∗(x) ∈ Rn×m.

H1 implies that ∇1L and ∇2L are Lipschitz, with con-
stants L1 and L2. The Jacobian of zt at x ∈ Kx is
Jt ,

∂zt(x)
∂x ∈ Rn×m. For the rest of the section, we con-

sider a point x ∈ Kx, and we denote g∗ = g∗(x), z∗ = z(x)
and zt = zt(x).

2.1. Analytic estimator g1

The analytic estimator (3) approximates g∗ as well as zt
approximates z∗ by definition of the L2-smoothness.
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Proposition 2.1 (Convergence of the analytic estimator).
The analytic estimator verifies |g1

t − g∗| ≤ L2|zt − z∗|.

2.2. Automatic estimator g2

The automatic estimator (4) can be written as

g2 = g∗ +R(Jt)(zt − z∗) +R21 + JtR11 (6)

where

R21 , ∇2L(zt, x)−∇2L(z∗, x)−∇2
21L(z∗, x)(zt − z∗)

R11 , ∇1L(zt, x)−∇2
11L(z∗, x)(zt − z∗) .

are Taylor’s rests and

R(J) , J∇2
11L(z∗, x) +∇2

21L(z∗, x) . (7)

The implicit function theorem states thatR(J∗) = 0. Impor-
tantly, in a non strongly-convex setting where ∇2

11L(z∗, x)
is not invertible, it might happen that R(Jt) goes to 0 even
though Jt does not converge to J∗. H1 implies a quadratic
bound on the rests

|R21| ≤
L21

2
|zt − z∗|2 and |R11| ≤

L11

2
|zt − z∗|2. (8)

We assume that Jt is bounded ‖Jt‖ ≤ LJ . This holds when
Jt converges, which is the subject of Sec.3. The triangle
inequality in Equation 6 gives:
Proposition 2.2 (Convergence of the automatic estimator).
We define

L , L21 + LJL11 (9)

Then |g2
t − g∗| ≤ ‖R(Jt)‖|zt − z∗|+ L

2 |zt − z∗|2.

This proposition shows that the rate of convergence of g2

depends on the speed of convergence ofR(Jt). For instance,
if R(Jt) goes to 0, we have

g2
t − g∗ = o(|zt − z∗|) .

Unfortunately, it might happen that, even though zt goes
to z∗, R(Jt) does not go to 0 since differentiation is not a
continuous operation. In Sec.3, we refine this convergence
rate by analyzing the convergence speed of the Jacobian in
different settings.

2.3. Implicit estimator g3

The implicit estimator (5) is well defined provided that
∇2

11L is invertible. We obtain convergence bounds
by making a Lipschitz assumption on J (z, x) =

−∇2
21L(z, x)

[
∇2

11L(z, x)
]−1

.
Proposition 2.3. [Convergence of the implicit estimator]
Assume that J is LJ -Lipschitz with respect to its first ar-
gument, and that ‖Jt‖ ≤ LJ . Then, for L as defined in (9),

|g3
t − g∗| ≤ (

L

2
+ LJL1)|zt − z∗|2 . (10)

Sketch of proof. The proof is similar to that of Prop.2.2,
using ‖R(J (zt, x))‖ ≤ L1LJ |zt − z∗|.

Therefore this estimator converges twice as fast as g1, and at
least as fast as g2. Just like g1 this estimator does not need
to store the past iterates in memory, since it is a function
of zt and x. However, it is usually much more costly to
compute.

2.4. Link with bi-level optimization

Bi-level optimization appears in a variety of machine-
learning problems, such as hyperparameter optimization
(Pedregosa, 2016) or supervised dictionary learning (Mairal
et al., 2012). It considers problems of the form

min
x∈Rn

`′(x) , L′ (z∗(x), x) s.t. z∗(x) ∈ arg min
z∈Rm

L(z, x),

(11)
where L′ : Rm × Rn → R is another objective function.
The setting of our paper is a special instance of bi-level
optimization where L′ = L. The gradient of `′ is

g′∗ = ∇`′(x) = ∇2L′(z∗, x) + J∗∇1L′(z∗, x) .

When zt(x) is a sequence of approximate minimizers of L,
gradient estimates can be defined as

g′1 = ∇2L′(zt(x), x),

g′2 = ∇2L′(zt(x), x) + Jt∇1L′(zt(x), x),

g′3 = ∇2L′(zt(x), x) + J (zt(x), x)∇1L′(zt(x), x).

Here, ∇1L′(z∗, x) 6= 0, since z∗ does not minimize L′.
Hence, g′1 does not estimate g′∗. Moreover, in general,

∇2
21L′(z∗, x) + J∗∇2

11L′(z∗, x) 6= 0.

Therefore, there is no cancellation to allow super-efficiency
of g2 and g3 and we only obtain linear rates

g′2 − g∗ = O(|zt − z∗|), g′3 − g∗ = O(|zt − z∗|) .

3. Convergence speed of the Jacobian
In order to get a better understanding of the convergence
properties of the gradient estimators – in particular g2 –
we analyze it in different settings. A large portion of the
analysis is devoted to the convergence of R(Jt) to 0, since
it does not directly follow from the convergence of zt. In
most cases, we show convergence of Jt to J∗, and use

‖R(Jt)‖ ≤ L1‖Jt − J∗‖ (12)

in the bound of Prop.2.2.
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3.1. Contractive setting

When zt are the iterates of a fixed point iteration with a
contractive mapping, we recall the following result due to
Gilbert (1992).

Proposition 3.1 (Convergence speed of the Jacobian). As-
sume that zt is produced by a fixed point iteration

zt+1 = Φ (zt, x) ,

where Φ : Kz ×Kx → Kz is differentiable. We suppose
that Φ is contractive: there exists κ < 1 such that for all
(z, z′, x) ∈ Kz×Kz×Kx, |Φ(z, x)−Φ(z′, x)| ≤ κ|z−z′|.
Under mild regularity conditions on Φ:

• zt converges to a differentiable function z∗ such that
z∗ = Φ(z∗, x), with Jacobian J∗.

• |zt − z∗| = O(κt) and ‖Jt − J∗‖ = O(tκt)

3.2. Gradient descent in the strongly convex case

We consider the gradient descent iterations produced by
the mapping Φ(z, x) = z − ρ∇1L(z, x), with a step-size
ρ ≤ 1/L1. We assume that L is µ-strongly convex with
respect to z, i.e. ∇2

11L � µId for all z ∈ Kz, x ∈ Kx. In
this setting, Φ satisfies the hypothesis of Prop.3.1, and we
obtain precise bounds.

Proposition 3.2. [Convergence speed of the Jacobian of
gradient descent in a strongly convex setting] Let zt pro-
duced by the recursion zt+1 = zt − ρ∇1L(zt, x) with
ρ ≤ 1/L1 and κ , 1−ρµ. We have |zt−z∗| ≤ κt|z0−z∗|
and ‖Jt − J∗‖ ≤ tκt−1ρL|z0 − z∗| where L is defined
in (9).

Sketch of proof (C.1). We show that δt = ‖Jt − J∗‖ satis-
fies the recursive inequality δt+1 ≤ κδt+ρL|z0−z∗|κt.

As a consequence, Prop. 2.1, 2.2, 2.3 together with Eq. (12)
give in this case

|g1 − g∗| ≤ L2|z0 − z∗|κt,
|g2 − g∗| ≤ (ρL1t+

κ

2
)L|z0 − z∗|2κ2t−1, (13)

|g3 − g∗| ≤ (
L

2
+ LJL1)|z0 − z∗|2κ2t .

We get the convergence speed g2 − g∗ = O(tκ2t), which
is almost twice better than the rate for g1. Importantly, the
order of magnitude in Prop.3.2 is tight, as it can be seen in
the appendix Prop.C.1, where we exhibit a function reaching
this upper-bound.

3.3. Stochastic gradient descent in z

We provide an analysis of the convergence of Jt in the
stochastic gradient descent setting, assuming once again the
µ-strong convexity of L. We suppose that L is an expecta-
tion

L(z, x) = Eξ[C(z, x, ξ)] ,

where ξ is drawn from a distribution d, and C is twice
differentiable. Stochastic gradient descent (SGD) with steps
ρt iterates

zt+1(x) = zt(x)−ρt∇1C (zt(x), x, ξt+1) where ξt+1 ∼ d .

In the stochastic setting, Prop.2.2 becomes
Proposition 3.3. Define

δt = E
[
‖Jt − J∗‖2F

]
and dt = E

[
|zt − z∗|2

]
. (14)

We have E[|g2 − g∗|] ≤ L1

√
δt
√
dt + L

2 dt.

Sketch of proof (C.4). We use Cauchy-Schwarz and the
norm inequality ‖·‖ ≤ ‖·‖F to bound E [‖R(Jt)‖|zt − z∗|].

We begin by deriving a recursive inequality on δt, inspired
by the analysis techniques of dt.
Proposition 3.4. [Bounding inequality for the Ja-
cobian] We assume bounded Hessian noise, in
the sense that E

[
‖∇2

11C(z, x, ξ)‖2F
]
≤ σ2

11 and
E
[
‖∇2

21C(z, x, ξ)‖2F
]
≤ σ2

21. Let r = min(n,m),
and B2 = σ2

21 + L2
Jσ

2
11. We have

δt+1 ≤ (1− 2ρtµ)δt + 2ρt
√
rL
√
dt
√
δt + ρ2

tB
2. (15)

Sketch of proof (C.5). A standard strong convexity argu-
ment gives the bound

δt+1≤(1−2ρtµ)δt+2ρt
√
rLE[‖Jt−J∗‖F |zt−z0|]+ρ2

tB
2.

The middle term is then bounded using Cauchy-Schwarz
inequality.

Therefore, any convergence bound on dt provides another
convergence bound on δt by unrolling Eq. (15). We first an-
alyze the fixed step-size case by using the simple “bounded
gradients” hypothesis and bounds on dt from Moulines and
Bach (2011). In this setting, the iterates converge linearly
until they reach a threshold caused by gradient variance.
Proposition 3.5. [SGD with constant step-size] As-
sume that the gradients have bounded variance
Eξ[|∇1C(z, x, ξ)|2] ≤ σ2. Assume ρt = ρ < 1/L1,

and let κ2 =
√

1− 2ρµ and β =
√

σ2ρ
2µ . In this setting

δt ≤
(
κt2 (‖J∗‖F + tα) +B2

)2
,

where α = ρ
√
rL
κ2
|z∗ − z0| and B2 = ρ

√
rLβ

κ2(1−κ2) + ρB
(1−κ2) .
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Sketch of proof (C.6). Moulines and Bach (2011) give dt ≤
κ2t

2 |z0−z∗|2 +β2, which implies
√
dt ≤ κt2|z0−z∗|+β .

A bit of work on Eq. (15) then gives

√
δt+1 ≤ κ2

√
δt + ρκt2 + (1− κ2)B2

Unrolling the recursion gives the proposed bound.

This bound showcases that the familiar “two-stages” be-
havior also stands for δt: a transient linear decay at rate
(1− 2ρµ)t in the first iterations, and then convergence to a
stationary noise level B2

2 . This bound is not tight enough to
provide a good estimate of the noise level in δt. Let B2

3 the
limit of the sequence defined by the recursion (15). We find

B2
3 = (1− 2ρµ)B2

3 + 2ρ
√
rLβB3 + ρ2B2,

which gives by expanding β

B3 =
√
ρ

√
rLσ

(2µ)
3
2

(
1 +

√
1 +

4µ2B2

rL2σ2

)
.

This noise level scales as
√
ρ, which is observed in practice.

In this scenario, Prop. 2.1, 2.2 and 2.3 show that g1 − g∗
reaches a noise level proportional to

√
ρ, just like dt, while

both g2− g∗ and g3− g∗ reach a noise level proportional to
ρ: g2 and g3 can estimate g∗ to an accuracy that can never
be reached by g1. We now turn to the decreasing step-size
case.

Proposition 3.6. [SGD with decreasing step-size] Assume
that ρt = ρ0t

−α with α ∈ (0, 1). Assume a bound on dt of
the form dt ≤ d2t−α. Then

δt ≤ 4
ρ0B

2µ+ rL2d2

µ2
t−α + o(t−α) .

Sketch of proof (C.7). We use (15) to obtain a recursion

δt+1 ≤
(
1− µρ0t

−α) δt + (B2ρ2
0 +

rL2d2ρ0

µ
)t−2α ,

which is then unrolled.

When ρt ∝ t−α, we have dt = O(t−α) so the assumption
dt ≤ d2t−α is verified for some d. One could use the
precise bounds of (Moulines and Bach, 2011) to obtain
non-asymptotic bounds on δt as well. The rate t−α in this
bound is tight, as we exhibit a function with this rate in the
appendix Prop.C.2.

Overall, we recover bounds for δt with the same behavior
than the bounds for dt. Pluging them in Prop.3.3 gives the
asymptotic behaviors for the gradient estimators.

Proposition 3.7 (Convergence speed of the gradient estima-
tors for SGD with decreasing step). Assume that ρt = Ct−α

with α ∈ (0, 1). Then

Eξ[|g1 − g∗|] = O(
√
t−α), Eξ[|g2 − g∗|] = O(t−α)

Eξ[|g3 − g∗|] = O(t−α)

The super-efficiency of g2 and g3 is once again illustrated,
as they converge at the same speed as dt.

3.4. Beyond strong convexity

All the previous results rely critically on the strong convexity
of L. A function f with minimizer z∗ is p-Łojasiewicz
(Attouch and Bolte, 2009) when µ(f(z) − f(z∗))p−1 ≤
‖∇f(z)‖p for some µ > 0. Any strongly convex function
is 2-Łojasiewicz: the set of p-Łojasiewicz functions for
p ≥ 2 offers a framework beyond strong-convexity that
still provides convergence rates on the iterates. The general
study of gradient descent on this class of function is out
of scope for this paper. We analyze a simple class of p-
Łojasiewicz functions, the least mean p-th problem, where

L(z, x) ,
1

p

n∑

i=1

(xi − [Dz]i)
p (16)

for p an even integer and D is overcomplete (rank(D) =
n). In this simple case, L(·, x) is minimized by cancelling
x−Dz, and g∗ = (x−Dz∗)p−1 = 0.

In the case of least squares (p = 2) we can perfectly describe
the behavior of gradient descent, which converges linearly.

Proposition 3.8. Let zt the iterates of gradient descent with
step ρ ≤ 1

L1
in (16) with p = 2, and z∗ ∈ arg minL(z, x).

It holds

g1 = D(zt − z∗), g2 = D(z2t − z∗) and g3 = 0.

Proof. The iterates verify zt−z∗ = (In−D>D)t(z0−z∗),
and we find Jt∇1L(zt, x) = (In−(In−D>D)t)(x−Dzt).
The result follows.

The automatic estimator therefore goes exactly twice as fast
as the analytic one to g∗, while the implicit estimator is
exact. Then, we analyze the case where p ≥ 4 in a more
restrictive setting.

Proposition 3.9. For p ≥ 4, we assume DD> = In. Let
α , p−1

p−2 . We have

|g1
t | = O(t−α), |g2

t | = O(t−2α), g3
t = 0 .

Sketch of proof (C.8). We first show that the residuals rt =

x−Dzt verify rt =
(

1
ρ(p−2)t

) 1
p−2

(1 +O( log(t)
t )), which
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gives the result for g1. We find g2
t = Mtr

p−1
t where Mt =

In−JtD> verifies Mt+1 = Mt(In− (p−1)ρdiag(rp−2
t )).

Using the development of rt and unrolling the recursion
concludes the proof.

For this problem, g2 is of the order of magnitude of g1

squared and as p → +∞, we see that the rate of conver-
gence of g1 goes to t−1, while the one of g2 goes to t−2.

4. Consequence on optimization
In this section, we study the impact of using the previous
inexact estimators for first order optimization. These estima-
tors nicely fit in the framework of inexact oracles introduced
by Devolder et al. (2014).

4.1. Inexact oracle

We assume that ` is µ2-strongly convex and L2-smooth
with minimizer x∗. A (δ, µ, L)-inexact oracle is a couple
(`δ, gδ) such that `δ : Rm → R is the inexact value function,
gδ : Rm → Rm is the inexact gradient and for all x, y

µ

2
|x−y|2 ≤ `(x)−`δ(y)−〈gδ(y)|x−y〉 ≤ L

2
|x−y|2+δ .

(17)
Devolder et al. (2013) show that if the gradient approxima-
tion gi verifies |g∗(x)− gi(x)| ≤ ∆i for all x, then (`, gi)
is a (δi,

µ2

2 , 2L2)-inexact oracle, with

δi = ∆2
i (

1

µ2
+

1

2L2
) . (18)

We consider the optimization of ` with inexact gradient
descent: starting from x0 ∈ Rn, it iterates

xq+1 = xq − ηgit(xq) , (19)

with η = 1
2L2

, a fixed t and i = 1, 2 or 3.

Proposition 4.1. [Devolder et al. 2013, Theorem 4] The
iterates xq with estimate gi verify

`(xq)− `(x∗) ≤ 2L2(1− µ2

4L2
)q|x0 − x∗|2 + δi

with δi defined in (18).

As q goes to infinity, the error made on `(x∗) tends towards
δi = O(|git − g∗|2). Thus, a more precise gradient estimate
achieves lower optimization error. This illustrates the im-
portance of using gradients estimates with an error ∆i as
small as possible.

We now consider stochastic optimization for our problem,
with loss ` defined as

`(x) = Eυ[h(x, υ)] with h(x, υ) = min
z
H(z, x, υ) .

Table 1. Computational and memory costs for a quadratic loss L.
Here c ≥ 1 is to the relative cost of automatic differentiation.

Estimator Computational cost Memory cost
g1
t Θ(mnt) Θ(m)
g2
t Θ(cmnt) Θ(mt)
g3
t Θ(mnt+m3 +m2n)) Θ(m(m+ n))

Stochastic gradient descent with constant step-size η ≤ 1
2L2

and inexact gradients iterates

xq+1 = xq − ηgit(xq, υq+1) ,

where git(xq, υq+1) is computed by an approximate mini-
mization of z → H(z, xq, υq+1).

Proposition 4.2. We assume that H is µ2-strongly convex,
L2-smooth and verifies

E[|∇h(x, υ)−∇`(x)|2] ≤ σ2.

The iterates xq of SGD with approximate gradient gi and
step-size η verify

E|xq − x∗|2 ≤ (1− ηµ2

2
)q|x0 − x∗|+

2η

µ2
σ2 +

4

µ2
δi

with δi = ∆2
i (

1
µ2

+ 1
2L2

+ 2η).

The proof is deferred to Appendix D. In this case, it is
pointless to achieve an estimation error on the gradient ∆i

smaller than some fraction of the gradient variance σ2.

As a final note, these results extend without difficulty to the
problem of maximizing `, by considering gradient ascent or
stochastic gradient ascent.

4.2. Time and memory complexity

In the following, we put our results in perspective with a
computational and memory complexity analysis, allowing
us to provide practical guidelines for optimization of `.

Computational complexity of the estimators The cost
of computing the estimators depends on the cost function L.
We give a complexity analysis in the least squares case (16)
which is summarized in Table 1. In this case, computing the
gradient∇1L takes Θ(mn) operations, therefore the cost of
computing zt with gradient descent is Θ(mnt). Computing
g1
t comes at the same price. The estimator g2 requires a

reverse pass on the computational graph, which costs a
factor c ≥ 1 of the forward computational cost: the final
cost is Θ(cmn). Griewank and Walther (2008) showed that
typically c ∈ [2, 3]. A popular technique to alleviate the
cost of back-propagation is to only backpropagate through
the last k iterations of the algorithm, which it equivalent to
assuming Jt−k = 0 (Shaban et al., 2019). This technique
trades gradient accuracy for time and memory complexity.
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While it is beyond the scope of this paper, one could analyse
this method using the tools developed in Sec.3, where the
recursive inequalities in the proof of Prop.3.2 or in Prop.3.4
should be unrolled k times. Finally, computing g3 requires
a costly Θ(m2n) Hessian computation, and a Θ(m3) linear
system inversion. The final cost is Θ(mnt + m3 + m2n).
The linear scaling of g1

t and g2
t is highlighted in Fig.A.3.

Linear convergence: a case for the analytic estimator
In the time it takes to compute g2

t , one can at the same cost
compute g1

ct. If zt converges linearly at rate κt, Prop.2.1
shows that g1

ct− g∗ = O(κct), while Prop.2.2 gives, at best,
g2
t − g∗ = O(κ2t): g1

ct is a better estimator of g∗ than g2
t ,

provided that c ≥ 2. In the quadratic case, we even have
g2
t = g1

2t. Further, computing g2 might requires additional
memory: g1

ct should be preferred over g2
t in this setting.

However, our analysis is only asymptotic, and other effects
might come into play to tip the balance in favor of g2.

As it appears clearly in Table 1, choosing g1 over g3 depends
on t: when mnt � m3 + m2n, the additional cost of
computing g3 is negligible, and it should be preferred since
it is more accurate. This is however a rare situation in a
large scale setting.

Sublinear convergence We have provided two settings
where zt converges sub-linearly. In the stochastic gradient
descent case with a fixed step-size, one can benefit from
using g2 over g1, since it allows to reach an accuracy that
can never be reached by g1. With a decreasing step-size,
reaching |g1

t − g∗| ≤ ε requires Θ(ε−2/α) iterations, while
reaching |g2

t − g∗| ≤ ε only takes Θ(ε−1/α) iterations. For
ε small enough, we have cε−1/α < ε−2/α: it is always
beneficial to use g2 if memory capacity allows it.

The story is similar for the simple non-strongly convex prob-
lem studied in Sec.3.4: because of the slow convergence
of the algorithms, g2

t is much closer to g∗ than g1
ct. Al-

though our analysis was carried in the simple least mean
p-th problem, we conjecture it could be extended to the
more general setting of p-Łojasiewicz functions (Attouch
and Bolte, 2009).

Memory footprint of the estimators Another critical as-
pect when choosing between these estimators is their mem-
ory footprint. While g1 does not require extra memory com-
pared to computing the loss, computing g2 usually requires
to store in memory all intermediate variables, which might
be a burden as it requires memory Θ(mt). Checkpointing
can reduce the memory cost for g2 to Θ(m

√
t) but with

a computational complexity twice as large (Hascoet and
Araya-Polo, 2006). Also, some optimization algorithms are
invertible, such as SGD with momentum (Maclaurin et al.,
2015). Using these algorithms removes the need to store
each intermediate variable, since they can be recomputed
on the fly. Practical implementations of this method still
requires a small memory per iteration in order to enforce

numerical stability of the inversion. Note that truncated
backpropagation (Shaban et al., 2019) can also be used to
reduce the memory cost of using automatic differentiation,
with approximation. Finally, the main memory cost for
estimator g3 is storing the second order Hessian of size
Θ(m(m+ n)).

5. Experiments
All experiments are performed in Python using pytorch
(Paszke et al., 2019). The code to reproduce the figures is
available online.1

5.1. Considered losses

In our experiments, we considered several losses with dif-
ferent properties. For each experiments, the details on the
size of the problems are reported in Sec.A.1.

Regression For a design matrix D ∈ Rn×m and a regu-
larization parameter λ > 0, we define

L1(z, x) =
1

2
|x−Dz|2 +

λ

2
|z|2 ,

L2(z, x) =

n∑

i=1

log
(

1 + e−xi[Dz]i
)

+
λ

2
|z|2 ,

L3(z, x) =
1

p
|x−Dz|p; p = 4 .

L1 corresponds to Ridge Regression, which is quadratic and
strongly convex when λ > 0. L2 is the Regularized Logistic
Regression. It is strongly convex when λ > 0. L3 is studied
in Sec.3.4, and defined with DD> = In.

Regularized Wasserstein Distance The Wasserstein dis-
tance defines a distance between probability distributions.
In Cuturi (2013), a regularization of the problem is pro-
posed, which allows to compute it efficiently using the
Sinkhorn algorithm, enabling many large scale applications.
As we will see, the formulation of the problem fits nicely
in our framework. The set of histograms is ∆m

+ = {a ∈
Rm+ |

∑m
i=1 ai = 1}. Consider two histograms a ∈ ∆ma

+

and b ∈ ∆mb
+ . The set of couplings is U(a, b) = {P ∈

Rma×mb
+ | P1mb

= a, P>1ma
= b}. The histogram a

(resp. b) is associated with set of ma (resp. mb) points in
dimension k, (X1, . . . , Xma

) ∈ Rk (resp (Y1, . . . , Ymb
)).

The cost matrix isC ∈ Rma×mb such thatCij = |Xi−Yj |2.
For ε > 0, the entropic regularized Wasserstein distance is
W 2
ε (a, b) = minP∈U(a,b)〈C,P 〉+ ε〈log(P ), P 〉. The dual

formulation of the previous variational formulation is (Peyré
and Cuturi, 2019, Prop. 4.4.):

W 2
ε (a, b) = min

za,zb
〈a, za〉+ 〈b, zb〉+ ε〈e−za/ε, e−C/εe−zb/ε〉︸ ︷︷ ︸

L4((za,zb),a)

(20)
1See https://github.com/tomMoral/diffopt.

https://github.com/tomMoral/diffopt
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Figure 2. Evolution of |git−g∗|with the number of iteration t for (a) the Ridge RegressionL1, (b) the Regularized Logistic RegressionL2,
(c) the Least Mean p-th Norm L3 in log-scale and (d) the Wasserstein Distance L4. In all cases, we can see the asymptotic super-efficiency
of the g2 estimator compared to g1. The g3 estimator is better in most cases but it is unstable in (d). It is not included in (c) as it is equal
to 0 due to the particular shape of L3.

This loss is strongly convex up to a constant shift on za, zb.
The Sinkhorn algorithm performs alternate minimization of
L4 :

za ← ε(log(e−C/εe−zb/ε)− log(a)),

zb ← ε(log(e−C
>/εe−za/ε)− log(b)) .

This optimization technique is not covered by the results
in Sec.3, but we will see that the same conclusions hold in
practice.

5.2. Examples of super-efficiency

To illustrate the tightness of our bounds, we evaluate nu-
merically the convergence of the different estimators g1, g2

and g3 toward g∗ for the losses introduced above. For all
problems, g∗ is computed by estimating z∗(x) with gradi-
ent descent for a very large number of iterations and then
using (2).

Gradient Descent Fig.2 reports the evolution of |git− g∗|
with t for the losses {Lj}4j=1, where zt is obtained by gra-
dient descent for L1,L2 and L3, and by Sinkhorn iterations
for L4. For the strongly convex losses (a),(b), |g1

t − g∗|
converges linearly with the same rate as |zt − z∗| while
|g2
t − g∗| converges about twice as fast. This confirms the

theoretical findings of Prop.3.1 and (13). The estimator g3

also converges with the predicted rates in (a),(b), however,
it fails in (d) as the Hessian of L4 is ill-conditionned, lead-
ing to numerical instabilities. For the non-strongly convex
loss L3, Fig.2.(c) shows that the rates given in Prop.3.9 are
correct as g1 converges with a rate t−

3
2 while g2

t converges
as t−3. Here, we did not include g3

t as it is exact due to the
particular form of L3.

Stochastic Gradient Descent In Fig.3, we investigate the
evolution of expected performances of gi for the SGD, in
order to validate the results of Sec.3.3. We consider L2. The
left part (a) displays the asymptotic expected performance
E[|git−g∗|] in the fixed step case, as a function of the step ρ,
computed by running the SGD with sufficiently many itera-
tions to reach a plateau. As predicted in Sec.3.3, the noise
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Figure 3. Expected performances of gi for the SGD; (a) noise
level as t → +∞ for a constant step-size ρ; (b) Expected error
as a function of the number of iteration for decreasing step-size
ρt = Ct−0.8. The solid line displays the mean values and the
shaded area the first and last decile.

level scales as
√
ρ for g1 while it scales like ρ for g2 and g3.

The right part (b) displays the evolution of E[|git − g∗|] as
a function of t, where the step-size is decreasing ρt ∝ t−α.
Here again, the asymptotic rates predicted by Prop.3.7 is
showcased: g1− g∗ is O(

√
t−α) while g2− g∗ and g3− g∗

are O(t−α).

5.3. Example on a full training problem

We are now interested in the minimization of ` with respect
to x, possibly under constraints. We consider the problem
of computing Wasserstein barycenters using mirror descent,
as proposed in (Cuturi and Doucet, 2014). For a set of
histograms b1, . . . , bN ∈ ∆m

+ and a cost matrix C ∈ Rn×m,
the entropic regularized Wasserstein barycenter of the bi’s
is

x ∈ arg min
x∈∆n

+

`(x) =

N∑

i=1

W 2
ε (x, bi) ,

where W 2
ε is defined in (20), and we have:

`(x) = min
z1x,...,z

N
x ,z

1
b ,...,z

N
b

N∑

i=1

L4

(
(zix, z

i
b), x

)
. (21)
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Figure 4. Final optimization error δi relatively to (a) the number
of inner iterations used to estimation gi; (b) the time taken to reach
this optimization error level.

The dual variables zix, z
i
b are obtained with t iterations

of the Sinkhorn algorithm. In this simple setting,
∇2L4 ((zx, zb), x) = zx. The cost function is then op-
timized by mirror descent, with approximate gradient gi:
xq+1 = P∆(exp(−ηgi)xq), where P∆(x) = x/

∑n
i=1 xi

is the projection on ∆n
+. Fig.4 displays the scale of the error

δi = `(xq)− `(x∗). We excluded g3 here as the computa-
tion were unstable – as seen in Fig.2.(c) – and too expensive.
The error decreases much faster with number of inner itera-
tion t by using g2

t compared to g1
t . However, when looking

at the time taken to reach the asymptotic error, we can see
that g1 is a better estimator in this case. This illustrates the
fact that while g2 is almost twice as good at approximating
g∗ as g1, it is at least twice as expensive, as discussed in
Sec.4.2.

6. Conclusion
In this work, we have described the asymptotic behavior of
three classical gradient estimators for a special instance of bi-
level estimation. We have highlighted a super-efficiency phe-
nomenon of automatic differentiation. However, our com-
plexity analysis shows that it is faster to use the standard an-
alytic estimator when the optimization algorithm converges
linearly, and that the super-efficiency can be leveraged for
algorithms with sub-linear convergence. This conclusion
should be taken with caution, as our analysis is only asymp-
totic. This suggests a new line of research interested in the
non-asymptotic behavior of these estimators. Extending our
results to a broader class of non-strongly convex functions
would be another interesting direction, as we observe em-
pirically that for logistic-regression, g2 − g∗ ' (g1 − g∗)2.
However, as the convexity alone does not ensure the con-
vergence of the iterates, it raises interesting question for the
gradient estimation. Finally, it would also be interesting to
extend our analysis to non-smooth problems, for instance
when zt is obtained with the proximal gradient descent al-
gorithm as in the case of ISTA for dictionary learning.
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