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Abstract

We study the exploration-exploitation dilemma
in the linear quadratic regulator (LQR) setting.
Inspired by the extended value iteration algorithm
used in optimistic algorithms for finite MDPs, we
propose to relax the optimistic optimization of
OFU-LQ and cast it into a constrained extended
LQR problem, where an additional control vari-
able implicitly selects the system dynamics within
a confidence interval. We then move to the corre-
sponding Lagrangian formulation for which we
prove strong duality. As a result, we show that
an e-optimistic controller can be computed effi-
ciently by solving at most O (log(1/¢)) Riccati
equations. Finally, we prove that relaxing the orig-
inal OFU problem does not impact the learning
performance, thus recovering the O(v/T') regret
of OFU-LQ. To the best of our knowledge, this
is the first computationally efficient confidence-
based algorithm for LQR with worst-case optimal
regret guarantees.

1. Introduction

Exploration-exploitation in Markov decision processes
(MDPs) with continuous state-action spaces is a challenging
problem: estimating the parameters of a generic MDP may
require many samples, and computing the corresponding
optimal policy may be computationally prohibitive. The lin-
ear quadratic regulator (LQR) model formalizes continuous
state-action problems, where the dynamics is linear and the
cost is quadratic in state and action variables. Thanks to its
specific structure, it is possible to efficiently estimate the
parameters of the LQR by least-squares regression and the
optimal policy can be computed by solving a Riccati equa-
tion. As a result, several exploration strategies have been
adapted to the LQR to obtain effective learning algorithms.
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Confidence-based exploration. Bittanti et al. (2006) intro-
duced an adaptive control system based on the “bet on best”
principle and proved asymptotic performance guarantees
showing that their method would eventually converge to
the optimal control. Abbasi-Yadkori & Szepesviri (2011)
later proved a finite-time O(+/T') regret bound for OFU-LQ,
later generalized to less restrictive stabilization and noise
assumptions by Faradonbeh et al. (2017). Unfortunately, nei-
ther exploration strategy comes with a computationally effi-
cient algorithm to solve the optimistic LQR, and thus they
cannot be directly implemented. On the TS side, Ouyang
et al. (2017) proved a O(\/T) regret for the Bayesian regret,
while Abeille & Lazaric (2018) showed that a similar bound
holds in the frequentist case but restricted to 1-dimensional
problems. While TS-based approaches require solving a
single (random) LQR, the theoretical analysis of Abeille &
Lazaric (2018) suggests that a new LQR instance should be
solved at each time step, thus leading to a computational
complexity growing linearly with the total number of steps.
On the other hand, OFU-based methods allow for “lazy”
updates, which require solving an optimistic LQR only a
logarithmic number of times w.r.t. the total number of steps.
A similar lazy-update scheme is used by Dean et al. (2018),
who leveraged robust control theory to devise the first learn-
ing algorithm with polynomial complexity and sublinear
regret. Nonetheless, the resulting adaptive algorithm suffers
from a O(T?/3) regret, which is significantly worse than

the O(v/T) achieved by OFU-LQ.

To the best of our knowledge, the only efficient algorithm for
confidence-based exploration with O(+/T') regret has been
recently proposed by Cohen et al. (2019). Their method,
called OSLO, leverages an SDP formulation of the LQ prob-
lem, where an optimistic version of the constraints is used.
As such, it translates the original non-convex OFU-LQ opti-
mization problem into a convex SDP. While solving an SDP
is known to have polynomial complexity, no explicit analysis
is provided and it is said that the runtime may scale polyno-
mially with LQ-specific parameters and the time horizon T'
(Cor. 5), suggesting that OSLO may become impractical for
moderately large T'. Furthermore, OSLO requires an initial
system identification phase of length O(v/T) to properly
initialize the method. This strong requirement effectively
reduces OSLO to an explore-then-commit strategy, whose
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regret is dominated by the length of the initial phase.

Perturbed certainty equivalence exploration. A recent
stream of research (Faradonbeh et al., 2018b; Mania et al.,
2019; Simchowitz & Foster, 2020) studies variants of the
perturbed certainty equivalence (CE) controller (i.e., the op-
timal controller for the estimated LQR) and showed that this
simple exploration strategy is sufficient to reach worst-case
optimal regret O(/T). Since the CE controller is not recom-
puted at each step (i.e., lazy updates) and the perturbation
is obtained by sampling from a Gaussian distribution, the
resulting methods are computationally efficient. Nonethe-
less, these methods rely on an isotropic perturbation (i.e., all
control dimensions are equally perturbed) and they require
the variance to be large enough so as to eventually reduce
the uncertainty on the system estimate along the dimensions
that are not naturally “excited” by the CE controller and
the environment noise. Being agnostic to the uncertainty
of the model estimate and its impact on the average cost,
may lead this type of approaches to have longer (unnec-
essary) exploration and larger regret. On the other hand,
confidence-based methods relies on exploration controllers
that are explicitly designed to excite more the dimensions
with higher uncertainty and impact on the performance. As
a result, they are able to perform more effective exploration.
We further discuss this difference in Sect. 6.

In this paper, we introduce a novel instance of OFU, for
which we derive a computationally efficient algorithm to
solve the optimistic LQR with explicit computational com-
plexity and O(+/T) regret guarantees. Our approach is in-
spired by the extended value iteration (EVI) used to solve a
similar optimistic optimization problem in finite state-action
MDPs (e.g. Jaksch et al., 2010). Relying on an initial esti-
mate of the system obtained after a finite number of system
identification steps, we first relax the confidence ellipsoid
constraints and we cast the OFU optimization problem into
a constrained LQR with extended control. We show that
the relaxation of the confidence ellipsoid constraint does
not impact the regret and we recover a O(v/T') bound. We
then turn the constrained LQR into a regularized optimiza-
tion problem via Lagrangian relaxation. We prove strong
duality and show that we can compute an e-optimistic and
e-feasible solution for the constrained LQR by solving only
O(log(1/€)) algebraic Riccati equations. As a result, we ob-
tain the first efficient worst-case optimal confidence-based
algorithm for LOR. In deriving these results, we introduce a
novel derivation of explicit conditions on the accuracy of the
system identification phase leveraging tools from Lyapunov
stability theory that may be of independent interest.

2. Preliminaries

We consider the discrete-time linear quadratic regulator
(LQR) problem. At any time ¢, given state z; € R™ and

control u; € R?, the next state and cost are obtained as

Tep1 = Asxy + Boug + €441

(D
T T

c(xe,ur) = 2y Quy + uy Rug,
where A., B., ), R are matrices of appropriate di-
mension and {e;y;}: is the process noise. Let F; =

., T, uy) be the filtration up to time ¢, we rely
1

U(’I 0, U0, - -
on the following assumption on the noise.

Assumption 1. The noise {¢; }+ is a martingale difference
sequence w.r.t. the filtration F; and it is componentwise
conditionally sub-Gaussian, i.e., there exists ¢ > 0 such
that E(exp(vert1,:)|Ft) < exp(v20?/2) for all v € R.
Furthermore, we assume that the covariance of €, is the
identity matrix.

)

The dynamics parameters are summarized in 8] = (A,
= t

B
y Dx
and the cost function can be written as (x4, u;) = 2] Cz
with z; = (24, u¢)T and the cost matrix

Qo
C_(O R). @)

The solution to an LQ is a stationary deterministic policy
7 : R" — R mapping states to controls minimizing the
infinite-horizon average expected cost

T
Jﬂ'(e*) = lim sSup ;E[Z C(xtv ut):| ) (3)

T— o0 t—0

with o = 0 and u; = m(a¢). We assume that the LQR
problem is “well-posed”.

Assumption 2. The cost matrices QQ and R are symmetric
p-d. and known, and (A,, B.) is stabilizable, i.e., there
exists a controller K, such that p(A, + B,K) < 1.2

In this case, Thm.16.6.4 in (Lancaster & Rodman, 1995)
guarantees the existence and uniqueness of an optimal policy
me = argmin, J (), which is linear in the state, i.e.,
m(x) = K(0,)x, where,

K(6.) = —(R+ BT P(6.)B.) 'BIP(6.)A.,

)
P0,) =Q+ AIP(0.)A, + ATP(0,)B.K(6.,).

For convenience, we will denote P, = P(6.). The op-
timal average cost is J, = Jr (0.) = Tr(P.). Further,
let L(6,)T = (I K(6,)"), then the closed-loop matrix
A%(0,) = A, + B.K(0.) = 0] L(0.) is asymptotically
stable.

'As shown by Faradonbeh et al. (2017), this can be relaxed to
Weibull distributions with known covariance.

2p(A) is the spectral radius of the matrix A, i.e., the largest
absolute value of the eigenvalues of A.
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While Asm. 2 guarantees the existence of an optimal linear
controller, its optimal cost .J, may still grow unbounded
when 6, is nearly unstable. A popular solution is to intro-
duce a “strong” stability assumption (i.e., p(A°(0,)) <p <
1). Nonetheless, this imposes stability uniformly over all
state dimensions, whereas, depending on the cost matrices
@ and R, some dimensions may be less sensitive than oth-
ers in terms of their impact on the cost. Here we prefer
imposing an assumption directly on the optimal cost.?

Assumption 3. There exists D > 0 such that J, =
Tr(P.) < D and D is known.

Finally, we introduce £ = D/Anin(C), a quantity that
will characterize the complexity of many aspects of the
learning problem in the following. Intuitively, x measures
the cost of controlling w.r.t. the minimum cost incurred if
the uncontrolled system was perfectly stable.

The learning problem. We assume that () and R are
known, while 6, needs to be estimated from data. We con-
sider the online learning problem where at each step ¢ the
learner observes the current state x, it executes a control wu;
and it incurs the associated cost ¢(z¢, u); the system then
transitions to the next state z;4; according to Eq. 1. The
learning performance is measured by the cumulative regret
over T steps defined as Ry (6,) = >1_g (c; — Jo(6.)).
Exploiting the linearity of the dynamics, the unknown pa-
rameter 0, can be directly estimated from data by regu-
larized least-squares (RLS). For any sequence of controls
(ug, . . .,ut) and the induced states (zg, 1, ..., T¢1), let
2y = (w4, us) T, the RLS estimator with a regularization bias
fo and regularization parameter A € R’} defined as*

t—1

0, = argmin Z llzssi1 — 07 25 ||* + N[0 — 6o]|%
OcR(ntd)xn 5—0

-1 ()\90 + z_: zstl),

where V; = A\ + ZS o Zs24 is the design matrix. The RLS
estimator concentrates as follows (see App. C.3).

&)

Proposition 1 (Thm. 1 in Abbasi-Yadkori & Szepesvari
2011). For any 6 € (0,1) and any Fi-adapted sequence
(20, . -, 2t), the RLS estimator 0y is such that

16, = O llv, < B:(5)

det(V;)1/2n
Bi(5) = U\/Qn log (da&%l%) + Y210 — 0.

where 6)

w.p. 1 — & (w.r.t. the noise {€,11}+ and any randomization
in the choice of the control).

3 An alternative assumption may bound the operator norm of
P, (see e.g., Simchowitz & Foster (2020)).

“For 0y = 0, this reduces to the standard estimator. The need
for a “centered” regularization term is explained in the next section.

Finally, we recall a standard result of RLS.

Proposition 2 (Lem. 10 in Abbasi-Yadkori & Szepesvari
2011). Let \ > 1, for any arbitrary Fi-adapted sequence

(20,21, - - -, 2t), let Vi1 be the corresponding design matrix,
then
¢
det(Vig1)
. 2 +1
slls=1,1) <2log ————=.
2 min Ul 1) = 2108 0 63

Moreover when ||z¢|| < Z for all t > 0, then

S el < (1+2) ot 1

s=0

( +1)2?2

m) 7

3. A Sequentially Stable Variant of OFU-LQ

In this section we introduce a variant of the original OFU-
LQ of Abbasi-Yadkori & Szepesvari (2011) that we refer to
as OFU-LQ++. Similar to (Faradonbeh et al., 2017), we use
an initial system identification phase to initialize the system
and we provide explicit conditions on the accuracy required
to guarantee sequential stability thereafter. This result is
obtained leveraging tools from Lyapunov stability theory
which may be of independent interest.

Faradonbeh et al. (2018a) showed that it is possible to con-
struct a set ©g = {0 : ||0 — Oy|| < €0} containing the
true parameters 6* with high probability, through a system
identification phase where a randomized sequence of linear
controllers is used to accurately estimate the dynamics. In
particular, they proved that a set O with accuracy € can be
obtained by running the system identification phase for as
long as Ty = Q(ey ?) steps.”

After the initial phase, OFU-LQ++ uses the estimate 6 to
regularize the RLS as in (5) and it proceeds through episodes.
At the beginning of episode k it computes a parameter

0y = arg grencn J(9), (3)

where t; is the step at which episode k begins and the
constrained set Cy, is defined as

Ck = C(Buy, Vi) = {0 : 10 = O llvi, <Bu}, O

where §; = f:(§/4) is defined in (6). Then the corre-
sponding optimal control K (0;) is computed (4) and the
associated policy is executed until det(V;) > 2det(V4,).

Lemma 1. Ler ©g = {0 : ||0 — 6p|| < eo} be the output
of the initial system identification phase of Faradonbeh

5 An alternative scheme for system identification requires access
to a stable controller Kg and to perturb the corresponding controls
to returned a set ©¢ of desired accuracy ¢ (see e.g., Simchowitz
& Foster 2020).
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et al. (2018a). For all t > 0, consider the confidence
ellipsoid Cy := {0 : ||0 — 0;||v, < Bi}, where 6, and Vy are
defined in (5) with regularization bias 0y (the center of ©),
regularization parameter

_ 2no?

=" (108(4n/8)+(n + d)log (1 +KX°T)),

(10)
and By is defined in (6) where ||0 — 0.|| is replaced by its
upper-bound ey. Let {K(0;)}i>1 be the sequence of opti-
mistic controllers generated by OFU-LQ++ and let {x }+>0
be the induced state process (Eq. 1). If eg < O(1/K2), then
with probability at least 1 — §/2, forall t < T,

{0* € C
(11
|l || < X::2OU\//<||P*||2log(4T/5)/)\min(C).

OFU-LQ++ has some crucial differences w.r.t. the original
algorithm. OFU-LQ receives as input a O such that for
any § € ©q the condition [|§TL(#)|| < 1 holds. While
this condition ensures that all the LQ systems in Q¢ are in-
deed stable, it does not immediately imply that the optimal
controllers K () stabilize the true system 6,. Nonethe-
less, Abbasi-Yadkori & Szepesvari (2011) proved that the
sequence of controllers generated by OFU-LQ naturally
defines a state process {z;}; which remains bounded at
any step ¢ with high probability. Unfortunately, their anal-
ysis suffers from several drawbacks: 1) the state bound
scales exponentially with the dimensionality, 2) as 6, is
required to belong to Oy, it should satisfy itself the condi-
tion [|0] L(6.)|| < 1, which significantly restricts the type
of LQR systems that can be solved by OFU-LQ, 3) the
existence of O is stated by assumption and no concrete
algorithm to construct it is provided.

Furthermore, OFU-LQ requires solving (8) under the con-
straint that 6 belongs to the intersection C;, N O, while
OFU-LQ++ only uses the confidence set Cj, to guarantee
that the controllers K (gk) generated through the episodes
induces a sequentially stable state process. Although the
resulting optimization problem is still non-convex and diffi-
cult to solve directly, removing the constraint of ©( enables
the relaxation that we introduce in the next section. Fi-
nally, we notice that our novel analysis of the sequential
stability of OFU-LQ++ leads to a tighter bound on the state,
more explicit conditions on €y, and lighter assumptions
than Faradonbeh et al. (2018a).

As aresult, we can refine the analysis of OFU-LQ and obtain
a much sharper regret bound for OFU-LQ++.

Lemma 2. For any LOR (A.,B.,Q,R) satisfying
Asm. 1, 2, and 3, after T steps OFU-LQ++, if properly
initialized and tuned as in Lem. 1, suffers a regret

R(D)=O((|IP.[3+VEIP. 15 > (n+a/m)VT). (12)

4. An Extended Formulation of OFU-LQ++

The optimization in (8) is non-convex and it cannot be
solved directly. In this section we introduce a relaxed con-
strained formulation of (8) and show that its solution is an
optimistic controller with similar regret as OFU-LQ++ at the
cost of requiring a slightly more accurate initial exploration
phase (i.e., smaller €g).

4.1. The Extended Optimistic LQR with Relaxed
Constraints

Our approach is directly inspired by the extended value
iteration (EVI) used to solve a similar optimistic optimiza-
tion problem in finite state-action MDPs (e.g. Jaksch et al.,
2010). In EVI, the choice of dynamics 6 from C is added as
an additional control variable, thus obtaining an extended
policy 7. Exploiting the specific structure of finite MDPs, it
is shown that optimizing over policies 7 through value itera-
tion is equivalent to solving a (finite) MDP with the same
state space and an extended (compact) control space and the
resulting optimal policy, which prescribes both actions and a
choice of the model 6, is indeed optimistic w.r.t. the original
MDP. Leveraging a similar idea, we “extend” the LQR with
estimated parameter 5,5 by introducing an additional control
variable w corresponding to a specific choice of § € C. In
the following we remove the dependency of 0, B, V, and
C on the learning step t; and episode k, while we use a
generic time s to formulate the extended LQR.

Let € C such that§ = 8 + 65 = (A, B) = (A+64,B +
0p), then the dynamics of the corresponding LQR is

Tsy1 = Azg + Bu, + €s+1
= Az, + Bug + 6425 + S pu, + €541, (13)
= A\ms + §us + 5923 + €s+1,

where we isolate the “perturbations” § 4 and é g applied to
the current estimates. We replace the perturbation associ-
ated to 6 with a novel control variable wg, the perturbation
control variable, which effectively plays the role of “choos-
ing” the parameters of the perturbed LQR, thus obtaining

Ts41 = A:LES + %gs + ws + €541, (14)
= Azs + Bug + €541,

where we conveniently introduced B = [E ,I] and u, =
[us, ws].5 This extended system has the same state variables
as the original LQ, while the number of control variables
moves from d to n + d. Since perturbations dg are such
that @ = 6 + & € C, we introduce a constraint on the per-
turbation control such that [|w;|| = |6} 25| < Bllzs|lv-1

%1n the following we use tilde-notation such as 7 and wtB to
denote quantities in the extended LQR.
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(see Prop. 1). We refer to the resulting system as the ex-
tended LOR with hard constraints. Unfortunately, this con-
strained system is no longer a “standard” LQR structure, as
the constraint should be verified at each step. To overcome
this difficulty, we relax the previous constraint and define

N 1 il
95(0.8,V)= lim ZE( Y llus[2=A2z [} ), (15)
s=0

= lim
S—o0

where T = (7%, ™) is an extended policy defining both
standard and perturbation controls, so that u; = 7%(z) and
ws = 7% (x4), the expectation is w.r.t. the noise €41, and
the dynamics of =, follows (14). As a result, we translate
the original constraint § € C, which imposed a per-step
condition on wy to gz (5, B,V) < 0, which considers the
asymptotic average behavior of w,. We are now ready to
define the extended LOR with relaxed constraints as

[icmmm»]

~ 1
min 7z (0, 5,V) :=limsup —E
T s=0

S—o0 S
LTs+1 = A\xs + Eas + €541
g%(§7ﬁ7 V) S 07

subject to (16)

where J5 is the average cost of (14) when controlled with
7 and c is the cost of the original LQ. We also denote by
T« (5, B,V) the minimum of (16). Once the constrained
LQR is solved, the component 7% relative to the variable
u is used to control the real system for the whole episode
until the ter~mination condition is met. When 7 is linear, we
denote by K the associated gain (i.e., 7(z) = Kx), and we
use K, (resp. K,,) to refer to the block of K corresponding
to the control u (resp. the perturbation control w).

4.2. Optimism and Regret

We show that the optimization in (16) preserves the learning
guarantees of the original OFU-LQ algorithm at the cost of
a slightly stronger requirement on €y. This is not obvious
as (16) is relaxing the constraints imposed by the confidence
set used in (8) and solving the extended LQR might lead to a
perturbation control 7% that does not actually correspond to
any feasible model 6 in C. Intuitively, we need the constraint
g= to be loose enough so as to guarantee optimism and tight
enough to preserve good regret performance. We start by
showing that optimizing (16) gives an optimistic solution.

Lemma 3. Under Asm. 2, and 3, whenever 0, € C, the
optimal solution to (16) is optimistic, i.e.,

J.(0,8,V) < J., (17)
The lemma above shows that the optimal controller in the ex-
tended LQR has an average cost (in the extended LQR) that
is smaller than the true optimal average cost, thus certifying

its optimistic nature of (16). This is expected, since (16) is a
relaxed version of the original OFU-LQ++ problem, which
returns optimistic solutions by definition. Then we show
that applying the optimistic extended controllers induce a
sequentially stable state process.

Lemma 4. Given the same system identification phase and
RLS estimator of OFU-LQ++ (see Lem. 1), let { K, };>1 be
the sequence of extended optimistic controllers generated
by solving (16) and {x.}1>0 be the state process (Eq. 1)
induced when by the sequence of controllers { K, s }1>0. If
€0 < O(1/K%?), then with probability at least 1 — §/2, for
allt < T,

(18)

9* € Ct
]| < X :=200\/~|| P[] 10g(4T/6) / Amin (C)

This lemma is the counterpart of Lem. 1 for the extended
LQR and it illustrates that, due to the relaxed constraint,
the condition on ¢ is tighter by a factor 1/4/k, while the
bound on the state remains the same and this, in turn, leads
to the same regret as OFU-LQ++ (Lem. 2) but for problem
dependent constants.

Theorem 1. Let (A, B.,Q,R) be any LOR satisfying
Asm. 1, 2, and 3. If the conditions in Lem. 4 are satis-
fied and the extended LOR with relaxed constrained (16) is
solved exactly at each episode, then w.p. at least 1 — 9,

R(T) = O((n+d)vns*?| P|3VT).  (19)

5. Efficient Solution to the Constrained
Extended LQR via Lagrangian Relaxation

We introduce the Lagrangian formulation of (16). Let u € R
be the Lagrangian parameter, we define

ﬁ%(é\vﬂv V7M) = j%(é\vﬁ7 V) + /J’g%(é\vﬁ7 V)

Since both average cost [J% and constraint gz measure
asymptotic average quantities, we can conveniently define
the matrices (C; being the bordering of matrix C' in (2))

Q 0 0 gyt
0 0 0

(20)

Ci =
and write the Lagrangian as

S—1
o . 1 T ~T Ts
L(0,5,Vip) = Jim ZE [ Z;) (zI al)Cy <ﬁs> ] ,
with C,, = Ct + pCy. This formulation shows that £z (1)
can be seen as the average cost of an extended LQR prob-
lem with state x4, control us, linear dynamics (A, B) and
quadratic cost with matrix C,. As a result, we introduce
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the Lagrangian extended LOR problem associated to the
extended LQR with relaxed constraints of (16) as

L.(6,5,V) = sup min Lz (8, 8, V; p)
peM T (21)

)

subjectto  Tsy1 = A\xs + EEZS + €541

where M = [0, t) is the domain of the Lagrangian parame-
ter (more details on zi are reported in App. G.2). We prove
the following fundamental result.

Theorem 2. For any extended LOR parametrized by 5 V,
B, and psd cost matrices Q, R, there exists a domain M =
[0, 1) with i € Ry, such that strong duality between the
relaxed optimistic optimization in (16) and its Lagrangian
formulation (21) holds:

\7*(5763 V) = ‘C*(é\vﬂa V)

Supported by the strong duality above, we provide a more
detailed characterization of E;(@ , B, V'; ), which motivates
the design of an efficient algorithm to optimize over 7, p.
For ease of notation, in the following we consider 5, 5, and
V as fixed and we drop them from the definition of L5 (u),
which we study as a function of 7 and .

5.1. The Lagrangian Dual Function

We introduce the Lagrangian dual function, for any pp € Ry,
D(p) = min L5 (1)

R _ ;o (22
S.t. Tg41 = Axs + Bas + €541

and we denote by 7, the corresponding extended optimal
policy. For small enough 1, the cost matrix C), is p.d.,
which allows solving (22) using standard Riccati theory.
The main technical challenge arises for larger values of p
when the solution of the dual Lagrangian function may not
be computable by Riccati equations or it may not even be
defined. Fortunately, the following lemma shows that within
the domain M where Thm. 2 holds, there always exists a
Riccati solution for (22).

Lemma 5. For any extended LOR parametrized by 5 V,
B, and psd cost matrices @), R, consider the domain M =
[0, ;i) where Thm. 2 holds, then for any u € M

1. The extended LQ in (22) is controllable and it admits
a unique solution

7, = argmin Lz (p), (23)

obtained by solving the generalized discrete alge-
braic Riccati equation (DARE) (M()lifl\(/l}i, 1975)7 as-
sociated with the Lagrange LOR (A, B,C),). Let

"The need for generalized DARE is due to the fact that for
some /1 € M, the associated cost C,, may not be p.s.d.

C, = (R, Nu; N, Q) be the canonical formula-
tion for the cost matrix, then

D,=R,+B"P,B (24)
RL = Q/L + ATF)/LA
—[ATP,B+ N]ID,' [BTP,A+ N,

and the optimal control is K, = —D;l[BTP#A +
N, while the dual function is D(p) = Tr(P,).

2. D(u) is concave and continuously differentiable.

3. The derivative D' (1) = g, i.e., it is equal to the
constraint evaluated at the optimal extended policy for
. As a result, the Lagrangian dual can be written as

Lz, (n) =D(p) = Tz, +pD'(n).  (25)

The previous lemma implies that in order to solve (21) we
may need to evaluate the dual function D(p) only where the
the optimal control can be computed by solving a DARE.

Since D(1) is concave and smooth, we can envision using
a simple dichotomy approach to optimize D(u) over M
and solve (21). Nonetheless, we notice that Thm. 2 only
provides strong duality in a sup/min sense, which means that
the optimum may not be attainable within M. Furthermore,
even when there exists a maximum, computing an e-optimal
solution in terms of the Lagrangian formulation, i.e., finding
a pair pu, 7 such that |£z(u) — L£4] < €, may not directly
translate in a policy with desirable performance in terms of
its average cost Jz and feasibility w.r.t. the constraint gs.

We illustrate this issue in the example in Fig. 1. We dis-
play a qualitative plot of the Lagrangian dual D(u) and its
derivative D’() when (21) admits a maximum at p* and the
dichotomy search returned values y; and ., that are e-close
and p* € [y, ). We consider the case where the algorithm
returns y; as the candidate solution. By concavity and the
fact that D’(0) > 0, the function D(u) is Lipschitz in the in-
terval [0, 1*) with constant bounded by D’(0). Thus the ac-
curacy p* — p; < e translates into an equivalent e-optimality
in D (e, D(u*) — D(u) = L* — Lz, () < D'(0)e).
Nonetheless, this does not imply a similar guarantee for
D’(u). If the second derivative of D(u) (i.e., the curvature
of the function) is large close to p*, the original error €
can be greatly amplified when evaluating D’(y;). For in-
stance, if D" (u) > 1/¢, then D' (1) = (1). Given the
last point of Lem. 5, this means that despite returning an
e-optimal solution in the sense of (21), 7,,, may significantly
violate the constraint (as D'(w) = gz, = €1(1)). While
Eq. (25) implies that 7, is still optimistic (i.e., j%#z < J*,
as in Lem. 3), the regret accumulated by 7, cannot be con-
trolled anymore, since the pertubration control w, may be
arbitrarily outside the confidence interval. Interestingly, the



Efficient Optimistic Exploration in Linear-Quadratic Regulators via Lagrangian Relaxation

curvature becomes larger and larger as the optimum shifts
to the extremum of M and, in the limit, (21) only admits a
supremum. In this case, no matter how close ; is to p*, the
associated policy 7, may perform arbitrarily bad.

More formally, we have the following lemma (the explicit
value of « is reported in Lem. 14).

Lemma 6. For any LOR parametrized by 0V, B, and psd
cost matrices Q, R, consider the domain M = |0, 1) where
Thm. 2 holds. Let M be a subset of M such that M =
{p € M s.t. D'(u) > 0}. Then, D has Lipschitz gradient,
i.e., there exists a constant o depending on é\, V, B, and the
cost matrices Q, R, such that for all (ju1, ) € M2,

2 -7 < |y — g —2
D (12) = D' (pz)| < lpr = pal5— 5.

where D,, is defined in (24).

This result shows that even when | p1—u2| < €, the difference
in gradients may be arbitrarily large when Apmin (D)) < €
(i.e., large curvature). In the next section, we build on
this lemma to craft an adaptive stopping condition for the
dichotomy search and to detect that case of large curvature.

5.2. An Efficient Dichotomy Search

The algorithm we propose, DS-OFU, seeks to find a value
of p of zero gradient D’(p) by dichotomy search. While
D(p) is a 1-dim function and Lem. 5 guarantees that it is
concave in M, there are three major challenges to address:
1) Thm. 2 does not provide any explicit value for 1z; 2) The
algorithm needs to evaluate D’(u); 3) For any ¢, DS-OFU
must return a policy 7. that is e-optimistic and e-feasible for
the extended LQR with relaxed constraints (16).

DS-OFU starts by checking the sign of the gradient D’ (0).
If D’(0) < 0, the algorithm ends and outputs the optimal
policy 7 since by concavity 0 is the arg-max of D and 7
is the exact solution to (21). If D’(0) > 0, the dichotomy
starts with accuracy € and a valid® search interval [0, fimax],
where [imax 1S defined as follows.

Lemma 7. Lef jigay = B_QAmaX(C)/\maX(V), then
D/(,umax) < 0.

The previous lemma does not imply that [0, ftmax] 2 M,
but it provides an explicit value of 1 with negative gradient,
thus defining a bounded and valid search interval for the
dichotomy process. At each iteration, DS-OFU updates
either i or p, so that the interval [p;, p,] is always valid.

The second challenge is addressed in the following propo-
sition, which illustrates how the derivative D’(u) (equiva-
lently the constraint gz ) can be efficiently computed.

8We say that [u;, u] is valid if D’ (p;) > 0 and D’ (pr) < 0.

Proposition 3. Forany j1 € M, let 7, (Eq. 23) have an as-
sociated controller K u that induces a closed-loop dynamics
AC(IN(“) = A+ éf(“ then D' (p) = gz, = Tr(G,.), where
G, is the unique solutions of the Lyapunov equation

Gy = (A(K,) GuA“(K,) + (fg)T Co (Iéu) ’

This directly from the fact that g is an asymptotic average
quadratic quantity (as much as the average cost .J), and it is
thus the solution of a Lyapunov equation of dimension n.

The remaining key challenge is to design an adaptive stop-
ping condition that is able to keep refining the interval
[t21, o] until either an accurate enough solution is returned,
or, the curvature is too large (or even infinite). In the latter
case, the algorithm switches to a failure mode, for which
we design an ad-hoc solution.

Since the objective is to achieve an e-feasible solution (i.e.,
g7, < €), we leverage Lem. 6 and we interrupt the di-
chotomy process whenever (p, — 1)t/ Amin(Dy,) < €.
Nonetheless, when the optimum of (21) is not attainable in
M, the previous stopping condition may never be verified
and the algorithm would never stop. As a result, we inter-
rupt the dichotomy process when Ayin (D)) < o€ for a
given constant \g. In this case, the dichotomy fails to return
a viable solution and we need to revert to a backup strategy,
which consists in either modifying the controller found at
or applying a suitable perturbation to the original cost ma-
trix C. In the latter case, we design a perturbation such that
1) the optimization problem (21) associated to the system
with the perturbed cost C% admits a maximum and can be
efficiently solved by the same dichotomy process illustrated
before and 2) the corresponding solution 7’ is e-optimistic
and e-feasible in the original system. The explicit backup
strategy is reported in App. L.

Theorem 3. For any LOR parametrized by 0V, B, and psd
cost matrices Q, R, and any accuracy ¢ € (0,1/2), there
exists values of o and \g and a backup strategy such that

1. DS-OFU outputs an e-optimistic and e-feasible policy
T given by the linear controller K. such that

Jw#. < Ji+e€ and gz <e

2. DS-OFU terminates within at most N =
O(log(kmax/€)) iterations, —each solving one
Riccati and one Lyapunov equation for the extended
Lagrangian LOR, both with complexity O(n3).

This result shows that DS-OFU returns a solution to (16) at
any level of accuracy e in a total runtime O(n3log(1/¢)).
We refer to the algorithm resulting by plugging DS-OFU into
the OFU-LQ++ learning scheme as LAGLQ (Lagrangian-
LQ). By running DS-OFU with ¢ = 1/+/t provides the
regret guarantee of Thm. 1.
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Figure 1. Qualitative plots of D(1) and its derivative D’ (11).

6. Discussion

We investigate the difference between confidence-based
and isotropic exploration in term of complexity, bounds
and empirical performance. While not conclusive, we be-
lieve this discussion sheds light on how confidence-based
methods may be better at adapting to the structure of the
problem. As a representative for isotropic exploration, we
refer to CECCE (Simchowitz & Foster, 2020), which offers
the tightest regret guarantee among the CE strategies. For
confidence-based exploration, we discuss the guarantee of
both OFU-LQ++ and LAGLQ, but limit the computational
and experiment comparisons with LAGLQ only.

Computational complexity. Both LAGLQ and CECCE pro-
ceeds through episodes of increasing length. LAGLQ re-
lies on the standard determinant-based rule (det(V;) >
2det(V4,)) to decide when to stop, while in CECCE the
length of each episode is twice longer than the previous
one. In both cases, the length of the episodes is increasing
exponentially over time, thus leading to O(log T') updates.
Given the complexity analysis in Thm. 3, we notice that DS-
OFU and computing the CE controller have the same order
of complexity, where CECCE solves one Riccati equation,
while DS-OFU solves as many as log(1/¢) Riccati and Lya-
punov equations. On systems of moderate side and given
the small number of recomputations, the difference between
the two approaches is relatively narrow.

Regret. We limit the comparison to the main order term
O(V/T) and the dependencies on dimensions 7 and d, and
problem-dependent constants such as  and || P*|

25

Input: 4/9\, B, V, e, a, Ao
1: if D(0) < 0 then
Setp =0and 7e = 7
. else
Set p; = 0, pbr = max (Lem. 7)
while a% > € or Amin(Dy,) > o€ do

2

3

4

5 min

6: Set i = (pu + pr) /2
7 if D' (@) > 0 then
8 p=F

9 else

10: Wr =1

11: end if

12: end while

13: end if

14: if —Hr—H1 _
)\min(Dw)

15:  Setn = and 7e = 7

16: else

17:  Set 7, to the control return by the backup procedure
18: end if

19: return Control policy 7.

Figure 2. The DS-OFU algorithm to solve (21).

< € then

Rcecce = 6(||P*H;1/2d\/nT),
Roru-Lgss = O (kY2 Py (n + dy/nvT),
Rirsia = (k2P [3(n + d) Vv T).

The first difference is that CECCE has worst-case optimal
dependency d+/n on the dimension of the problem, while
optimistic algorithms OFU-LQ++ and LAGLQ are slightly
worse, scaling with (n + d)+/n. While this shows that OFU-
LQ++ and LAGLQ are worst-case optimal when n = d, it is
an open question whether e—greedy is by nature superior
to confidence-based method when d < n or whether it is
due to a loose analysis. In fact, those dependencies are
mostly inherited from the confidence intervals in (1) which
is treated differently in (Simchowitz & Foster, 2020), thanks
to a refined bound and a different regret decomposition. This
suggests that a finer analysis for OFU-LQ++ and LAGLQ
may close this gap.

The main difference lies in the dependency on complexity-
related quantities x and ||P*||o. While there is no strict
ordering between them,’ they both measure the cost of con-
trolling the system. In this respect, CECCE suffers from a
significantly larger dependency than optimistic algorithms:
OFU-LQ++ offers the best performance while LAGLQ is
slightly worse than OFU-LQ++, due to the use of a relaxed
constraint to obtain tractability. We believe this difference
in performance may be intrinsic in the fact that methods

The definition of &K = D/Amin@, with D > Tr(P*) may
suggest £ > || P*||2, but the smallest eigenvalue of () may be
large enough so that x < || P*||2.
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based on isotropic perturbations of the CE are less effective
in adapting to the actual structure of the problem. As the
isotropic perturbation is tuned to guarantee a sufficient esti-
mation in all directions of the state-control space, it leads to
over-exploration w.r.t. some directions as soon as there is an
asymmetry in the cost sensitivity in the estimation error. On
the other hand, OFU-LQ++ and LAGLQ further leverage this
asymmetry from the confidence set, and by optimism, do
not waste exploration to learn accurately directions which
have little to no impact on the performance.

10*

LaglQ
CECCE
—— CECCE tuned

0.0 0.2 0.4 0.6 0.8 10
Iterations x10°7

Figure 3. Regret curves for CECCE and LAGLQ.

Empirical comparison. We conclude with a simple nu-
merical simulation (details in App. J). We compare CECCE
with the variance parameter (c2,) set as suggested in the
original paper and a tuned version where we shrink it by a
factor /|| Ps||2, and LAGLQ where the confidence interval
is set according to (1). Both algorithms receive the same set
O obtained from an initial system identification phase. In
Fig. 3 we see that LAGLQ performs better than both the origi-
nal and tuned versions of CECCE. More interestingly, while
CECCE is “constrained” to have a O(v/T) regret by the
definition of the perturbation itself, which scales as 1/ Vi,
it seems LAGLQ’s regret is o(v/T), suggesting that despite
the worst-case lower bound Q(+/7'), LAGLQ may be adapt
to the structure of the problem and achieve better regret.
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