
A Distributional View on Multi-Objective Policy Optimization

Abbas Abdolmaleki * 1 Sandy H. Huang * 1 Leonard Hasenclever 1 Michael Neunert 1 H. Francis Song 1

Martina Zambelli 1 Murilo F. Martins 1 Nicolas Heess 1 Raia Hadsell 1 Martin Riedmiller 1

Abstract
Many real-world problems require trading off mul-
tiple competing objectives. However, these ob-
jectives are often in different units and/or scales,
which can make it challenging for practitioners to
express numerical preferences over objectives in
their native units. In this paper we propose a novel
algorithm for multi-objective reinforcement learn-
ing that enables setting desired preferences for
objectives in a scale-invariant way. We propose
to learn an action distribution for each objective,
and we use supervised learning to fit a parametric
policy to a combination of these distributions. We
demonstrate the effectiveness of our approach on
challenging high-dimensional real and simulated
robotics tasks, and show that setting different pref-
erences in our framework allows us to trace out
the space of nondominated solutions.

1. Introduction
Reinforcement learning (RL) algorithms do an excellent
job at training policies to optimize a single scalar reward
function. Recent advances in deep RL have made it possi-
ble to train policies that exceed human-level performance
on Atari (Mnih et al., 2015) and Go (Silver et al., 2016),
perform complex robotic manipulation tasks (Zeng et al.,
2019), learn agile locomotion (Tan et al., 2018), and even
obtain reward in unanticipated ways (Amodei et al., 2016).

However, many real-world tasks involve multiple, possibly
competing, objectives. For instance, choosing a financial
portfolio requires trading off between risk and return; con-
trolling energy systems requires trading off performance
and cost; and autonomous cars must trade off fuel costs, ef-
ficiency, and safety. Multi-objective reinforcement learning
(MORL) algorithms aim to tackle such problems (Roijers

*Equal contribution 1DeepMind. Correspondence to: Abbas
Abdolmaleki <aabdolmaleki@google.com>, Sandy H. Huang
<shhuang@google.com>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

Figure 1. We demonstrate our approach in four complex continu-
ous control domains, in simulation and in the real world. Videos
are at http://sites.google.com/view/mo-mpo.

et al., 2013; Liu et al., 2015). A common approach is scalar-
ization: based on preferences across objectives, transform
the multi-objective reward vector into a single scalar re-
ward (e.g., by taking a convex combination), and then use
standard RL to optimize this scalar reward.

It is tricky, though, for practitioners to pick the appropriate
scalarization for a desired preference across objectives, be-
cause often objectives are defined in different units and/or
scales. For instance, suppose we want an agent to com-
plete a task while minimizing energy usage and mechan-
ical wear-and-tear. Task completion may correspond to a
sparse reward or to the number of square feet a vacuuming
robot has cleaned, and reducing energy usage and mechani-
cal wear-and-tear could be enforced by penalties on power
consumption (in kWh) and actuator efforts (in N or Nm),
respectively. Practitioners would need to resort to using
trial and error to select a scalarization that ensures the agent
prioritizes actually doing the task (and thus being useful)
over saving energy.

Motivated by this, we propose a scale-invariant approach for
encoding preferences, derived from the RL-as-inference per-
spective. Instead of choosing a scalarization, practitioners
set a constraint per objective. Based on these constraints, we
learn an action distribution per objective that improves on
the current policy. Then, to obtain a single updated policy
that makes these trade-offs, we use supervised learning to
fit a policy to the combination of these action distributions.
The constraints control the influence of each objective on
the policy, by constraining the KL-divergence between each
objective-specific distribution and the current policy. The
higher the constraint value, the more influence the objec-
tive has. Thus, a desired preference over objectives can be
encoded as the relative magnitude of these constraint values.

http://sites.google.com/view/mo-mpo

A Distributional View on Multi-Objective Policy Optimization

Fundamentally, scalarization combines objectives in reward
space, whereas our approach combines objectives in distri-
bution space, thus making it invariant to the scale of rewards.
In principle, our approach can be combined with any RL
algorithm, regardless of whether it is off-policy or on-policy.
We combine it with maximum a posteriori policy optimiza-
tion (MPO) (Abdolmaleki et al., 2018a;b), an off-policy
actor-critic RL algorithm, and V-MPO (Song et al., 2020),
an on-policy variant of MPO. We call these two algorithms
multi-objective MPO (MO-MPO) and multi-objective V-
MPO (MO-V-MPO), respectively. Code for MO-MPO will
be made available online.1

Our main contribution is providing a distributional view on
MORL, which enables scale-invariant encoding of prefer-
ences. We show that this is a theoretically-grounded ap-
proach, that arises from taking an RL-as-inference perspec-
tive of MORL. Empirically, we analyze the mechanics of
MO-MPO and show it finds all Pareto-optimal policies in a
popular MORL benchmark task. Finally, we demonstrate
that MO-MPO and MO-V-MPO outperform scalarized ap-
proaches on multi-objective tasks across several challenging
high-dimensional continuous control domains (Fig. 1).

2. Related Work
2.1. Multi-Objective Reinforcement Learning

Multi-objective reinforcement learning (MORL) algorithms
are either single-policy or multiple-policy (Vamplew et al.,
2011). Single-policy approaches seek to find the optimal
policy for a given scalarization of the multi-objective prob-
lem. Often this scalarization is linear, but other choices have
also been explored (Van Moffaert et al., 2013).

However, the scalarization may be unknown at training time,
or it may change over time. Multiple-policy approaches
handle this by finding a set of policies that approximates
the true Pareto front. Some approaches repeatedly call a
single-policy MORL algorithm with strategically-chosen
scalarizations (Natarajan & Tadepalli, 2005; Roijers et al.,
2014; Mossalam et al., 2016; Zuluaga et al., 2016). Other
approaches learn a set of policies simultaneously, by using a
multi-objective variant of the Q-learning update rule (Barrett
& Narayanan, 2008; Moffaert & Nowé, 2014; Reymond &
Nowé, 2019; Yang et al., 2019) or by modifying gradient-
based policy search (Parisi et al., 2014; Pirotta et al., 2015).

Most existing approaches for finding the Pareto front are
limited to discrete state and action spaces, in which tabular
algorithms are sufficient. Although recent work combining
MORL with deep RL handles high-dimensional observa-
tions, this is in domains with low-dimensional and usually
discrete action spaces (Mossalam et al., 2016; van Seijen

1http://github.com/deepmind/acme

et al., 2017; Friedman & Fontaine, 2018; Abels et al., 2019;
Reymond & Nowé, 2019; Yang et al., 2019; Nottingham
et al., 2019). In contrast, we evaluate our approach on con-
tinuous control tasks with more than 20 action dimensions.2

A couple of recent works have applied deep MORL to find
the Pareto front in continuous control tasks; these works
assume scalarization and rely on additionally learning ei-
ther a meta-policy (Chen et al., 2019) or inter-objective
relationships (Zhan & Cao, 2019). We take an orthogonal
approach to existing approaches: one encodes preferences
via constraints on the influence of each objective on the
policy update, instead of via scalarization. MO-MPO can
be run multiple times, with different constraint settings, to
find a Pareto front of policies.

2.2. Constrained Reinforcement Learning

An alternate way of setting preferences is to enforce that
policies meet certain constraints. For instance, threshold
lexicographic ordering approaches optimize a (single) ob-
jective while meeting specified threshold values on the other
objectives (Gábor et al., 1998), optionally with slack (Wray
et al., 2015). Similarly, safe RL is concerned with learning
policies that optimize a scalar reward while not violating
safety constraints (Achiam et al., 2017; Chow et al., 2018);
this has also been studied in the off-policy batch RL setting
(Le et al., 2019). Related work minimizes costs while ensur-
ing the policy meets a constraint on the minimum expected
return (Bohez et al., 2019), but this requires that the desired
or achievable reward is known a priori. In contrast, MO-
MPO does not require knowledge of the scale of rewards.
In fact, often there is no easy way to specify constraints on
objectives, e.g., it is difficult to figure out a priori how much
actuator effort a robot will need to use to perform a task.

2.3. Multi-Task Reinforcement Learning

Multi-task reinforcement learning can also be cast as a
MORL problem. Generally these algorithms learn a separate
policy for each task, with shared learning across tasks (Teh
et al., 2017; Riedmiller et al., 2018; Wulfmeier et al., 2019).
In particular, Distral (Teh et al., 2017) learns a shared prior
that regularizes the per-task policies to be similar to each
other, and thus captures essential structure that is shared
across tasks. MO-MPO differs in that the goal is to learn a
single policy that must trade off across different objectives.

Other multi-task RL algorithms seek to train a single agent

2MORL for continuous control tasks is difficult because the
policy can no longer output arbitrary action distributions, which
limits how well it can compromise between competing objectives.
In state-of-the-art RL algorithms for continuous control, policies
typically output a single action (e.g., D4PG (Barth-Maron et al.,
2018)) or a Gaussian (e.g., PPO (Schulman et al., 2017), MPO
(Abdolmaleki et al., 2018b), and SAC (Haarnoja et al., 2018)).

http://github.com/deepmind/acme

A Distributional View on Multi-Objective Policy Optimization

to solve different tasks, and thus need to handle different
reward scales across tasks. Prior work uses adaptive normal-
ization for the targets in value-based RL, so that the agent
cares equally about all tasks (van Hasselt et al., 2016; Hessel
et al., 2019). Similarly, prior work in multi-objective opti-
mization has dealt with objectives of different units and/or
scales by normalizing objectives to have similar magnitudes
(Marler & Arora, 2005; Grodzevich & Romanko, 2006; Kim
& de Weck, 2006; Daneshmand et al., 2017; Ishibuchi et al.,
2017). MO-MPO can also be seen as doing adaptive nor-
malization, but for any preference over objectives, not just
equal preferences.

In general, invariance to reparameterization of the function
approximator has been investigated in optimization liter-
ature resulting in, for example, natural gradient methods
(Martens, 2014). The common tool here is measuring dis-
tances in function space instead of parameter space, using
KL-divergence. Similarly in this work, to achieve invari-
ance to the scale of objectives, we use KL-divergence over
policies to encode preferences.

3. Background and Notation
Multi Objective Markov Decision Process. In this pa-
per, we consider a multi-objective RL problem defined by a
multi-objective Markov Decision Process (MO-MDP). The
MO-MDP consists of states s ∈ S and actions a ∈ A,
an initial state distribution p(s0), transition probabilities
p(st+1|st, at) which define the probability of changing
from state st to st+1 when taking action at, reward func-
tions {rk(s, a) ∈ R}Nk=1 per objective k, and a discount
factor γ ∈ [0, 1). We define our policy πθ(a|s) as a
state conditional distribution over actions parametrized by
θ. Together with the transition probabilities, this gives
rise to a state visitation distribution µ(s). We also con-
sider per-objective action-value functions. The action-
value function for objective k is defined as the expected
return (i.e., cumulative discounted reward) from choosing
action a in state s for objective k and then following pol-
icy π: Qπk (s, a) = Eπ[

∑∞
t=0 γ

trk(st, at)|s0 = s, a0 = a].
We can represent this function using the recursive expres-
sion Qπk (st, at) = Ep(st+1|st,at)

[
rk(st, at) + γV πk (st+1)

]
,

where V πk (s) = Eπ[Qπk (s, a)] is the value function of π for
objective k.

Problem Statement. For any MO-MDP there is a set
of nondominated policies, i.e., the Pareto front. A policy
is nondominated if there is no other policy that improves
its expected return for an objective without reducing the
expected return of at least one other objective. Given a
preference setting, our goal is to find a nondominated policy
πθ that satisfies those preferences. In our approach, a setting
of constraints does not directly correspond to a particular
scalarization, but we show that by varying these constraint

Algorithm 1 MO-MPO: One policy improvement step
1: given batch size (L), number of actions to sample (M), (N)

Q-functions {Qπold
k (s, a)}Nk=1, preferences {εk}Nk=1, previous

policy πold, previous temperatures {ηk}Nk=1, replay buffer D,
first-order gradient-based optimizer O

2:
3: initialize πθ from the parameters of πold
4: repeat
5: // Collect dataset {si, aij , Qijk }

L,M,N
i,j,k , where

6: // M actions aij ∼ πold(a|si) and Qijk = Q
πold
k (si, aij)

7:
8: // Compute action distribution for each objective
9: for k = 1, . . . , N do

10: δηk ← ∇ηkηkεk + ηk
∑L
i

1
L
log

(∑M
j

1
M

exp
(
Q

ij
k
ηk

))
11: Update ηk based on δηk , using optimizer O
12: qijk ∝ exp(

Q
ij
k
ηk

)

13: end for
14:
15: // Update parametric policy
16: δπ ← −∇θ

∑L
i

∑M
j

∑N
k q

ij
k log πθ(a

ij |si)
17: (subject to additional KL regularization, see Sec. 4.2.2)
18: Update πθ based on δπ , using optimizer O
19:
20: until fixed number of steps
21: return πold = πθ

settings, we can indeed trace out a Pareto front of policies.

4. Method
We propose a policy iteration algorithm for multi-objective
RL. Policy iteration algorithms decompose the RL problem
into two sub-problems and iterate until convergence:

1. Policy evaluation: estimate Q-functions given policy
2. Policy improvement: update policy given Q-functions

Algorithm 1 summarizes this two-step multi-objective pol-
icy improvement procedure. In Appendix E, we explain how
this can be derived from the “RL as inference” perspective.

We describe multi-objective MPO in this section and explain
multi-objective V-MPO in Appendix D. When there is only
one objective, MO-(V-)MPO reduces to (V-)MPO.

4.1. Multi-Objective Policy Evaluation

In this step we learn Q-functions to evaluate the previous
policy πold. We train a separate Q-function per objective,
following the Q-decomposition approach (Russell & Zim-
dars, 2003). In principle, any Q-learning algorithm can be
used, as long as the target Q-value is computed with respect
to πold.3 In this paper, we use the Retrace objective (Munos

3Russell & Zimdars (2003) prove critics suffer from “illusion of
control” if they are trained with conventional Q-learning (Watkins,
1989). In other words, if each critic computes its target Q-value

A Distributional View on Multi-Objective Policy Optimization

et al., 2016) to learn a Q-function Qπold
k (s, a;φk) for each

objective k, parameterized by φk, as follows:

min
{φk}N1

N∑
k=1

E(s,a)∼D

[(
Q̂ret
k (s, a)−Qπold

k (s, a;φk))2
]
,

where Q̂ret
k is the Retrace target for objective k and the

previous policy πold, and D is a replay buffer containing
gathered transitions. See Appendix C for details.

4.2. Multi-Objective Policy Improvement

Given the previous policy πold(a|s) and associated Q-
functions {Qπold

k (s, a)}Nk=1, our goal is to improve the previ-
ous policy for a given visitation distribution µ(s).4 To this
end, we learn an action distribution for each Q-function and
combine these to obtain the next policy πnew(a|s). This is a
multi-objective variant of the two-step policy improvement
procedure employed by MPO (Abdolmaleki et al., 2018b).

In the first step, for each objective k we learn an improved
action distribution qk(a|s) such that Eqk(a|s)[Q

πold
k (s, a)] ≥

Eπold(a|s)[Q
πold
k (s, a)], where states s are drawn from a visi-

tation distribution µ(s).

In the second step, we combine and distill the improved
distributions qk into a new parametric policy πnew (with
parameters θnew) by minimizing the KL-divergence between
the distributions and the new parametric policy, i.e,

θnew = argmin
θ

N∑
k=1

Eµ(s)

[
KL
(
qk(a|s)‖πθ(a|s)

)]
. (1)

This is a supervised learning loss that performs maximum
likelihood estimate of distributions qk. Next, we will explain
these two steps in more detail.

4.2.1. OBTAINING ACTION DISTRIBUTIONS PER
OBJECTIVE (STEP 1)

To obtain the per-objective improved action distributions
qk(a|s), we optimize the standard RL objective for each
objective Qk:

max
qk

∫
s

µ(s)

∫
a

qk(a|s)Qk(s, a) dads (2)

s.t.
∫
s

µ(s) KL(qk(a|s)‖πold(a|s)) ds < εk ,

where εk denotes the allowed expected KL divergence for
objective k. We use these εk to encode preferences over ob-
jectives. More concretely, εk defines the allowed influence
of objective k on the change of the policy.

based on its own best action for the next state, then they overesti-
mate Q-values, because in reality the parametric policy πθ (that
considers all critics’ opinions) is in charge of choosing actions.

4In practice, we use draws from the replay buffer to estimate
expectations over the visitation distribution µ(s).

For nonparametric action distributions qk(a|s), we can solve
this constrained optimization problem in closed form for
each state s sampled from µ(s) (Abdolmaleki et al., 2018b),

qk(a|s) ∝ πold(a|s) exp
(Qk(s, a)

ηk

)
, (3)

where the temperature ηk is computed based on the corre-
sponding εk, by solving the following convex dual function:

ηk = argmin
η

η εk + (4)

η

∫
s

µ(s) log

∫
a

πold(a|s) exp
(Qk(s, a)

η

)
dads .

In order to evaluate qk(a|s) and the integrals in (4), we draw
L states from the replay buffer and, for each state, sample
M actions from the current policy πold. In practice, we
maintain one temperature parameter ηk per objective. We
found that optimizing the dual function by performing a few
steps of gradient descent on ηk is effective, and we initialize
with the solution found in the previous policy iteration step.
Since ηk should be positive, we use a projection operator
after each gradient step to maintain ηk > 0. Please refer to
Appendix C for derivation details.

Application to Other Deep RL Algorithms. Since the
constraints εk in (2) encode the preferences over objectives,
solving this optimization problem with good satisfaction
of constraints is key for learning a policy that satisfies the
desired preferences. For nonparametric action distributions
qk(a|s), we can satisfy these constraints exactly. One could
use any policy gradient method (e.g. Schulman et al., 2015;
2017; Heess et al., 2015; Haarnoja et al., 2018) to obtain
qk(a|s) in a parametric form instead. However, solving the
constrained optimization for parametric qk(a|s) is not exact,
and the constraints may not be well satisfied, which impedes
the use of εk to encode preferences. Moreover, assuming a
parametric qk(a|s) requires maintaining a function approx-
imator (e.g., a neural network) per objective, which can
significantly increase the complexity of the algorithm and
limits scalability.

Choosing εk. It is more intuitive to encode preferences via
εk rather than via scalarization weights, because the former
is invariant to the scale of rewards. In other words, having a
desired preference across objectives narrows down the range
of reasonable choices for εk, but does not narrow down the
range of reasonable choices for scalarization weights. In
order to identify reasonable scalarization weights, a RL prac-
titioner needs to additionally be familiar with the scale of
rewards for each objective. In practice, we have found that
learning performance is robust to a wide range of scales for
εk. It is the relative scales of the εk that matter for encoding
preferences over objectives—the larger a particular εk is
with respect to others, the more that objective k is preferred.
On the other hand, if εk = 0, then objective k will have

A Distributional View on Multi-Objective Policy Optimization

no influence and will effectively be ignored. In Appendix
A.1, we provide suggestions for setting εk, given a desired
preference over objectives.

4.2.2. FITTING A NEW PARAMETRIC POLICY (STEP 2)

In the previous section, for each objective k, we have ob-
tained an improved action distribution qk(a|s). Next, we
want to combine these distributions to obtain a single para-
metric policy that trades off the objectives according to
the constraints εk that we set. For this, we solve a super-
vised learning problem that fits a parametric policy to the
per-objective action distributions from step 1,

θnew = argmax
θ

N∑
k=1

∫
s

µ(s)

∫
a

qk(a|s) log πθ(a|s) dads

s.t.
∫
s

µ(s) KL(πold(a|s) ‖πθ(a|s)) ds < β , (5)

where θ are the parameters of our policy (a neural network)
and the KL constraint enforces a trust region of size β that
limits the overall change in the parametric policy. The KL
constraint in this step has a regularization effect that pre-
vents the policy from overfitting to the sample-based action
distributions, and therefore avoids premature convergence
and improves stability of learning (Schulman et al., 2015;
Abdolmaleki et al., 2018a;b).

Similar to the first policy improvement step, we evaluate
the integrals by using the L states sampled from the replay
buffer and the M actions per state sampled from the old
policy. In order to optimize (5) using gradient descent, we
employ Lagrangian relaxation, similar to in MPO (Abdol-
maleki et al., 2018a) (see Appendix C for more detail).

5. Experiments: Toy Domains
In the empirical evaluation that follows, we will first demon-
strate the mechanics and scale-invariance of MO-MPO in
a single-state environment (Sec. 5.1), and then show that
MO-MPO can find all Pareto-dominant policies in a popular
MORL benchmark (Sec. 5.2). Finally, we show the benefit
of using MO-MPO in high-dimensional continuous control
domains, including on a real robot (Sec. 6). Appendices
A and B contain a detailed description of all domains and
tasks, experimental setups, and implementation details.

Baselines. The goal of our empirical evaluation is to
analyze the benefit of using our proposed multi-objective
policy improvement step (Sec. 4.2.2), that encodes prefer-
ences over objectives via constraints εk on expected KL-
divergences, rather than via weights wk. Thus, we primarily
compare MO-MPO against scalarized MPO, which relies
on linear scalarization weights wk to encode preferences.
The only difference between MO-MPO and scalarized MPO
is the policy improvement step: for scalarized MPO, a single

Figure 2. A simple environment in which the agent starts at state
S0, and chooses to navigate to one of three terminal states. There
are two objectives. Taking the left action, for instance, leads to
a reward of 1 for the first objective and 4 for the second.

improved action distribution q(a|s) is computed, based on∑
k wkQk(s, a) and a single KL constraint ε.

State-of-the-art approaches that combine MORL with deep
RL assume linear scalarization as well, either learning a
separate policy for each setting of weights (Mossalam et al.,
2016) or learning a single policy conditioned on scalar-
ization weights (Friedman & Fontaine, 2018; Abels et al.,
2019). Scalarized MPO addresses the former problem,
which is easier. The policy evaluation step in scalarized
MPO is analagous to scalarized Q-learning, proposed by
Mossalam et al. (2016). As we show later in Sec. 6, even
learning an optimal policy for a single scalarization is diffi-
cult in high-dimensional continuous control domains.

5.1. Simple World

First, we will examine the behavior of MO-MPO in a simple
multi-armed bandit with three actions (up, right, and
left) (Fig. 2), inspired by Russell & Zimdars (2003).
We train policies with scalarized MPO and with MO-MPO.
The policy evaluation step is exact because the Q-value
function for each objective is known: it is equal to the
reward received for that objective after taking each action,
as labeled in Fig. 2.5

We consider three possible desired preferences: equal pref-
erence for the two objectives, preferring the first, and pre-
ferring the second. Encoding preferences in scalarized
MPO amounts to choosing appropriate linear scalarization
weights, and in MO-MPO amounts to choosing appropriate
ε’s. We use the following weights and ε’s:

• equal preference: weights [0.5, 0.5] or ε’s [0.01, 0.01]
• prefer first: weights [0.9, 0.1] or ε’s [0.01, 0.002]
• prefer second: weights [0.1, 0.9] or ε’s [0.002, 0.01]

We set ε = 0.01 for scalarized MPO. If we start with a
5The policy improvement step can also be computed exactly,

because solving for the optimal temperature η (or η1 and η2 in the
MO-MPO case) is a convex optimization problem, and the KL-
constrained policy update is also a convex optimization problem
when there is only one possible state. We use CVXOPT (Andersen
et al., 2020) as our convex optimization solver.

A Distributional View on Multi-Objective Policy Optimization

uniform policy and run MPO with β = 0.001 until the
policy converges, scalarized MPO and MO-MPO result in
similar policies (Fig. 3, solid bars): up for equal preference,
right for prefer first, and left for prefer second.

However, if we make the rewards imbalanced by multiply-
ing the rewards obtained for the first objective by 20 (e.g.,
left now obtains a reward of [20, 4]), we see that the poli-
cies learned by scalarized MPO shift to preferring the opti-
mal action for the first objective (right) in both the equal
preference and prefer second cases (Fig. 3, striped bars).
In contrast, the final policies for MO-MPO are the same as
for balanced rewards, because in each policy improvement
step, MO-MPO optimizes for a separate temperature ηk that
scales each objective’s Q-value function. This ηk is com-
puted based on the corresponding allowed KL-divergence
εk, so when the rewards for any objective k are multiplied
by a factor but εk remains the same, the computed ηk ends
up being scaled by that factor as well, neutralizing the effect
of the scaling of rewards (see Eq. (4)).

Even in this simple environment, we see that MO-MPO’s
scale-invariant way of encoding preferences is valuable. In
more complex domains, in which the Q-value functions
must be learned in parallel with the policy, the (automatic)
dynamic adjustment of temperatures ηk per objective be-
comes more essential (Sec. 6).

The scale of εk controls the amount that objective k can
influence the policy’s update. If we set ε1 = 0.01 and sweep
over the range from 0 to 0.01 for ε2, the resulting policies go
from always picking right, to splitting probability across
right and up, to always picking up (Fig. 4, right). In
contrast, setting weights leads to policies quickly converging
to placing all probability on a single action (Fig. 4, left).
We hypothesize this limits the ability of scalarized MPO
to explore and find compromise policies (that perform well
with respect to all objectives) in more challenging domains.

5.2. Deep Sea Treasure

An important quality of any MORL approach is the ability
to find a variety of policies on the true Pareto front (Roijers
et al., 2013). We demonstrate this in Deep Sea Treasure
(DST) (Vamplew et al., 2011), a popular benchmark for test-
ing MORL approaches. DST consists of a 11×10 grid world
with ten treasure locations. The agent starts in the upper left
corner (s0 = (0, 0)) and has a choice of four actions (mov-
ing one square up, right, down, and left). When the
agent picks up a treasure, the episode terminates. The agent
has two objectives: treasure value and time penalty. The
time penalty is −1 for each time step that the agent takes,
and farther-away treasures have higher treasure values. We
use the treasure values in Yang et al. (2019).

We ran scalarized MPO with weightings [w, 1 − w] and

0.0

0.5

1.0
equal preference prefer first prefer second

left up right
0.0

0.5

1.0

left up right left up right

scalarized
distributional

scalarized, imbalanced rewards
distributional, imbalanced rewards

Figure 3. When two objectives have comparable reward scales
(solid bars), scalarized MPO (first row) and MO-MPO (second row)
learn similar policies, across three different preferences. However,
when the scale of the first objective is much higher (striped bars),
scalarized MPO shifts to always preferring the first objective. In
contrast, MO-MPO is scale-invariant and still learns policies that
satisfy the preferences. The y-axis denotes action probability.

0.0 0.5 1.0
p(left)

0

1
distributional

[0,.01]

[.01,.01]

[.01,0]

0.0 0.5 1.0
p(left)

0

1
p(

ri
gh

t)
scalarized

[0,1]

[.5,.5]

[1,0]
[w1, w2]

0.0 0.5 1.0
p(left)

0

1
p(

ri
gh

t)
scalarized

[0,1]

[.5,.5]

[1,0]

0.0 0.5 1.0
p(left)

0

1

p(
ri
gh

t)

scalarized

[0,1]

[.5,.5]

[1,0]
[𝜖1, 𝜖2]

0.0 0.5 1.0
p(left)

0

1
distributional

[0,.01]

[.01,.01]

[.01,0]

Figure 4. A visualization of policies during learning—each curve
corresponds to a particular setting of weights (left) or ε’s (right).
Policies are initialized as uniform (the blue dot), and are trained
until convergence. Each point (x, y) corresponds to the policy
with p(left) = x, p(right) = y, and p(up) = 1−x−y. The
top left and bottom right blue stars denote the optimal policy for
the first and second objectives, respectively.

w ∈ [0, 0.01, 0.02, . . . , 1]. All policies converged to a point
on the true Pareto front, and all but three found the optimal
policy for that weighting. In terms of coverage, policies
were found for eight out of ten points on the Pareto front.6

We ran MO-MPO on this task as well, for a range of ε:
εtime ∈ [0.01, 0.02, 0.05] and εtreasure = c ∗ εtime, where
c ∈ [0.5, 0.51, 0.52, . . . , 1.5]. All runs converged to a policy
on the true Pareto front, and MO-MPO finds policies for all
ten points on the front (Fig. 5, left). Note that it is the ratio
of ε’s that matters, rather than the exact settings—across
all settings of εtime, similar ratios of εtreasure to εtime result
in similar policies; as this ratio increases, policies tend to
prefer higher-value treasures (Fig. 5, right).

6Since scalarized MPO consistently finds the optimal policy
for any given weighting in this task, with a more strategic selection
of weights, we expect policies for all ten points would be found.

A Distributional View on Multi-Objective Policy Optimization

Figure 5. Left: Blue stars mark the true Pareto front for Deep Sea
Treasure. MO-MPO, with a variety of settings for εk, discovers
all points on the true Pareto front. The area of the orange circles
is proportional to the number of εk settings that converged to
that point. Right: As more preference is given to the treasure
objective (i.e., as x increases), policies tend to prefer higher-value
treasures. Each orange dot in the scatterplot corresponds to a
particular setting of εk.

6. Experiments: Continuous Control Domains
The advantage of encoding preferences via ε’s, rather than
via weights, is apparent in more complex domains. We com-
pared our approaches, MO-MPO and MO-V-MPO, against
scalarized MPO and V-MPO in four high-dimensional con-
tinuous control domains, in MuJoCo (Todorov et al., 2012)
and on a real robot. The domains we consider are:

Humanoid: We use the humanoid run task defined in Deep-
Mind Control Suite (Tassa et al., 2018). Policies must opti-
mize for horizontal speed h while minimizing energy usage.
The task reward is min(h/10, 1) where h is in meters per
second, and the energy usage penalty is action `2-norm. The
humanoid has 21 degrees of freedom, and the observation
consists of joint angles, joint velocities, head height, hand
and feet positions, torso vertical orientation, and center-of-
mass velocity, for a total of 67 dimensions.

Shadow Hand: We consider three tasks on the Shadow
Dexterous Hand: touch, turn, and orient. In the touch and
turn tasks, policies must complete the task while minimiz-
ing “pain.” A sparse task reward of 1.0 is given for pressing
the block with greater than 5N of force or for turning the
dial from a random initial location to the target location.
The pain penalty penalizes the robot for colliding with ob-
jects at high speed; this penalty is defined as in Huang et al.
(2019). In the orient task, there are three aligned objectives:
touching the rectangular peg, lifting it to a given height, and
orienting it to be perpendicular to the ground. All three
rewards are between 0 and 1. The Shadow Hand has five

fingers and 24 degrees of freedom, actuated by 20 motors.
The observation consists of joint angles, joint velocities,
and touch sensors, for a total of 63 dimensions. The touch
and turn tasks terminate when the goal is reached or after 5
seconds, and the orient task terminates after 10 seconds.

Humanoid Mocap: We consider the large-scale humanoid
motion capture tracking task from Hasenclever et al. (2020),
in which policies must learn to follow motion capture ref-
erence data. There are five objectives, each capturing a
different aspect of the similarity of the pose between the
simulated humanoid and the mocap target: joint orientations,
joint velocities, hand and feet positions, center-of-mass po-
sitions, and certain body positions and joint angles. These
objectives are described in detail in Appendix B.4. In order
to balance these multiple objectives, prior work relied on
heavily-tuned reward functions (e.g. Peng et al., 2018). The
humanoid has 56 degrees of freedom and the observation is
1021-dimensional, consisting of proprioceptive observations
as well as six steps of motion capture reference frames. In
total, we use about 40 minutes of locomotion mocap data,
making this an extremely challenging domain.

Sawyer Peg-in-Hole: We train a Rethink Robotics Sawyer
robot arm to insert a cylindrical peg into a hole, while min-
imizing wrist forces. The task reward is shaped toward
positioning the peg directly above the hole and increases
for insertion, and the penalty is the `1-norm of Cartesian
forces measured by the wrist force-torque sensor. The latter
implicitly penalizes contacts and impacts, as well as exces-
sive directional change (due to the gripper’s inertia inducing
forces when accelerating). We impose a force threshold
to protect the hardware—if this threshold is exceeded, the
episode is terminated. The action space is the end effector’s
Cartesian velocity, and the observation is 102-dimensional,
consisting of Cartesian position, joint position and velocity,
wrist force-torque, and joint action, for three timesteps.

6.1. Evaluation Metric

We run MO-(V-)MPO and scalarized (V-)MPO with a wide
range of constraint settings εk and scalarization weights
wk, respectively, corresponding to a wide range of possible
desired preferences. (The exact settings are provided in
Appendix A.) For tasks with two objectives, we plot the
Pareto front found by each approach. We also compute
the hypervolume of each found Pareto front; this metric is
commonly-used for evaluating MORL algorithms (Vamplew
et al., 2011). Given a set of policies Π and a reference policy
r that is dominated by all policies in this set, this metric is
the hypervolume of the space of all policies that dominate
r and are dominated by at least one policy in Π. We use
DEAP (Fortin et al., 2012) to compute hypervolumes.

A Distributional View on Multi-Objective Policy Optimization

�3000 0
0

400

800

ta
sk

re
w
ar

d

mid-training

�3000 0

action norm penalty

end of training

�3000 0

normal scale

�30000 0

10x penalty

MO-MPO scalarized MPO

�5 0
pain penalty

0.0

0.5

ta
sk

re
w
ar

d

touch, mid-training

�5 0
pain penalty

touch

�5 0
pain penalty

turn

0 100
z

0

150

an
gl

e

orient

�3000 0
0

400

800

ta
sk

re
w
ar

d

mid-training

�3000 0

action norm penalty

end of training

�3000 0

normal scale

�30000 0

10x penalty

MO-MPO scalarized MPO

�5 0
pain penalty

0.0

0.5

ta
sk

re
w
ar

d

touch, mid-training

�5 0
pain penalty

touch

�5 0
pain penalty

turn

0 100
z

0

150

an
gl

e

orient

touch
mid-training

1x penalty

action norm penalty

pain penalty

�3000 0
0

400

800

ta
sk

re
w
ar

d

mid-training

�3000 0

action norm penalty

end of training

�3000 0

normal scale

�30000 0

10x penalty

MO-MPO scalarized MPOscalarized MPOMO-MPO

touch
end of training

Figure 6. Pareto fronts found by MO-MPO and scalarized MO-
MPO for humanoid run (top row) and Shadow Hand tasks. Each
dot represents a single trained policy. Corresponding hypervol-
umes are in Table 1. Task reward is discounted for touch and turn,
with a discount factor of 0.99. For orient, the x and y axes are the
total reward for the lift and orientation objectives, respectively.

6.2. Results: Humanoid and Shadow Hand

In the run, touch, and turn tasks, the two objectives are
competing—a very high preference for minimizing action
norm or pain, as opposed to getting task reward, will result
in a policy that always chooses zero-valued actions. Across
these three tasks, the Pareto front found by MO-MPO is
superior to the one found by scalarized MPO, with respect
to the hypervolume metric (Table 1).7 In particular, MO-
MPO finds more policies that perform well with respect to
both objectives, i.e., are in the upper right portion of the
Pareto front. MO-MPO also speeds up learning on run and
touch (Fig. 6). Qualitatively, MO-MPO trains run policies
that look more natural and “human-like”; videos are at
http://sites.google.com/view/mo-mpo.

When we scale the action norm penalty by 10× for run,
scalarized MPO policies no longer achieve high task reward,
whereas MO-MPO policies do (Fig. 6, top right). This
supports that MO-MPO’s encoding of preferences is indeed
scale-invariant. When the objectives are aligned and have
similarly scaled rewards, as in the orient task, MO-MPO
and scalarized MPO perform similarly, as expected.

Ablation. We also ran vanilla MPO on humanoid run, with
the same range of weight settings as for scalarized MPO, to
investigate how useful Q-decomposition is. In vanilla MPO,
we train a single critic on the scalarized reward function,

7We use hypervolume reference points of [0,−104] for run,
[0,−105] for run with 10× penalty, [0,−20] for touch and turn,
and the zero vector for orient and humanoid mocap.

Task scalarized MPO MO-MPO

Humanoid run, mid-training 1.1×106 3.3×106

Humanoid run 6.4×106 7.1×106

Humanoid run, normal scale 5.0×106 5.9×106

Humanoid run, 10× penalty 2.6×107 6.9×107

Shadow touch, mid-training 14.3 15.6
Shadow touch 16.2 16.4
Shadow turn 14.4 15.4
Shadow orient 2.8×104 2.8×104

Humanoid Mocap 3.86×10−6 3.41×10−6

Table 1. Hypervolume measurements across tasks and approaches.

which is equivalent to removing Q-decomposition from
scalarized MPO. Vanilla MPO trains policies that achieve
similar task reward (up to 800), but with twice the action
norm penalty (up to −104). As a result, the hypervolume
of the Pareto front that vanilla MPO finds is more than a
magnitude worse than that of scalarized MPO and MO-MPO
(2.2×106 versus 2.6×107 and 6.9×107, respectively).

6.3. Results: Humanoid Mocap

The objectives in this task are mostly aligned. In contrast to
the other experiments, we use V-MPO (Song et al., 2020) as
the base algorithm because it outperforms MPO in learning
this task. In addition, since V-MPO is an on-policy vari-
ant of MPO, this enables us to evaluate our approach in
the on-policy setting. Each training run is very computa-
tionally expensive, so we train only a handful of policies
each.8 None of the MO-V-MPO policies are dominated
by those found by V-MPO. In fact, although the weights
span a wide range of “preferences” for the joint velocity, the
only policies found by V-MPO that are not dominated by a
MO-V-MPO policy are those with extreme values for joint
velocity reward (either ≤ 0.006 or ≥ 0.018), whereas it is
between 0.0103 and 0.0121 for MO-V-MPO policies.

Although the hypervolume of the Pareto front found by V-
MPO is higher than that of MO-V-MPO (Table 1), finding
policies that over- or under- prioritize any objective is unde-
sirable. Qualitatively, the policies trained with MO-V-MPO
look more similar to the mocap reference data—they exhibit
less feet jittering, compared to those trained with scalarized
V-MPO; this can be seen in the corresponding video.

6.4. Results: Sawyer Peg-in-Hole

In this task, we would like the robot to prioritize successful
task completion, while minimizing wrist forces. With this

8For MO-V-MPO, we set all εk = 0.01. Also, for each objec-
tive, we set εk = 0.001 and set all others to 0.01. For V-MPO,
we fix the weights of four objectives to reasonable values, and try
weights of [0.1, 0.3, 0.6, 1, 5] for matching joint velocities.

http://sites.google.com/view/mo-mpo

A Distributional View on Multi-Objective Policy Optimization

0 200000 400000

20
0

40
0

number of policy improvement steps

task reward

0 200000 400000

−
12

00
−

80
0

wrist force penalty

MO-MPO scalarized MPO [0.95, 0.05] [0.8, 0.2]

Figure 7. Task reward (left) and wrist force penalty (right) learning
curves for the Sawyer peg-in-hole task. The policy trained with
MO-MPO quickly learns to optimize both objectives, whereas the
other two do not. Each line represents a single trained policy.

in mind, for MO-MPO we set εtask = 0.1 and εforce = 0.05,
and for scalarized MPO we try [wtask, wforce] = [0.95, 0.05]
and [0.8, 0.2]. We find that policies trained with scalarized
MPO focus all learning on a single objective at the beginning
of training; we also observed this in the touch task, where
scalarized MPO policies quickly learn to either maximize
task reward or minimize pain penalty, but not both (Fig. 6,
bottom left). In contrast, the policy trained with MO-MPO
simultaneously optimizes for both objectives throughout
training. In fact, throughout training, the MO-MPO policy
does just as well with respect to task reward as the scalarized
MPO policy that cares more about task reward, and similarly
for wrist force penalty (Fig. 7).

7. Discussion
Choosing ε’s Versus Weights. Our approach requires an
RL practitioner to encode their preferences across objec-
tives by selecting appropriate hyperparameters εk, rather
than choosing scalarization weights. We believe choosing
εk is easier than choosing scalarization weights, because the
former is invariant to the scale of rewards. In other words,
having a desired preference across objectives narrows down
the range of reasonable choices for εk, but not for scalariza-
tion weights. In order to identify reasonable scalarization
weights, the RL practitioner needs to additionally be familiar
with the scale of rewards for each objective.

To see why this is the case, suppose there are two objectives
that are equally important. Then ε1 and ε2 should be approx-
imately equal to each other. However, if the two objectives
have different scales of rewards (as is typically the case),
then having equal scalarization weights does not correspond
to equal preference between the two objectives. Instead, the
scalarization weight for the objective with lower-magnitude
rewards should be higher than the weight for the other objec-
tive, to counteract the difference in reward scales; how much
higher depends on the relative reward scales. In Appendix
A.1, we provide guidelines for how to choose εk, depending
on what the desired preference over objectives is.

Outperforming Scalarization. Empirically, MO-MPO
finds a better Pareto front than scalarized MPO does, but
why is this the case? One reason may be that the relative
scales of rewards between objectives depends on the (behav-
ioral) policy. Since the policy changes over the course of
training, the relative scales of acquired rewards also changes.
Thus, a fixed setting of weights w will likely encode differ-
ent preferences over the course of training.

One solution to this would be to adapt the weights during
training. MO-MPO can be seen as a principled approach
to adaptive weighting, since it scales the Q-values of each
objective by a learned temperature ηk per objective, as in
(3). These per-objective temperatures vary over the course
of training: for each policy improvement step, they are cho-
sen in order to satisfy the constraint imposed by εk, which
defines the influence of objective k. If we instead fixed
the temperatures, then we would then suffer from the same
problems as the scalarization baseline, because the influence
of each objective would vary per policy improvement step,
depending on what the range of learned Q-values is at that
point in training.

8. Conclusions and Future Work
In this paper we presented a new distributional perspective
on multi objective reinforcement learning, that is derived
from the RL-as-inference perspective. This view leads to
two novel multi-objective RL algorithms, namely MO-MPO
and MO-V-MPO. We showed that these algorithms enable
practitioners to encode preferences in a scale-invariant way,
and empirically lead to faster learning and convergence to a
better Pareto front, compared to linear scalarization.

A limitation of this work is that MO-(V-)MPO is a single-
policy approach to MORL, so producing a Pareto front of
policies requires iterating over a relatively large number of
ε’s, which is computationally expensive. In future work,
we plan to extend MO-(V-)MPO into a true multiple-policy
MORL approach, either by conditioning the policy on set-
tings of ε’s or by developing a way to strategically select ε’s
to train policies for, analogous to what prior work has done
for weights (e.g., Roijers et al. (2014)).

Acknowledgments
The authors would like to thank Guillaume Desjardins for
providing valuable feedback on an earlier draft of the paper.
We would also like to thank Csaba Szepesvari, Jost Tobias
Springenberg, Steven Bohez, Philemon Brakel, Brendan
Tracey, Jonas Degrave, Jonas Buchli, Alex Lee, Adam Ko-
siorek, Leslie Fritz, Chloe Rosenberg, and many others at
DeepMind for their support and input during this project.

A Distributional View on Multi-Objective Policy Optimization

References
Abdolmaleki, A., Springenberg, J. T., Degrave, J., Bohez, S.,

Tassa, Y., Belov, D., Heess, N., and Riedmiller, M. Rela-
tive entropy regularized policy iteration. arXiv preprint
arXiv:1812.02256, 2018a.

Abdolmaleki, A., Springenberg, J. T., Tassa, Y., Munos, R.,
Heess, N., and Riedmiller, M. Maximum a posteriori
policy optimisation. In Proceedings of the Sixth Interna-
tional Conference on Learning Representations (ICLR),
2018b.

Abels, A., Roijers, D. M., Lenaerts, T., Nowé, A., and
Steckelmacher, D. Dynamic weights in multi-objective
deep reinforcement learning. In Proceedings of the 36th
International Conference on Machine Learning (ICML),
2019.

Achiam, J., Held, D., Tamar, A., and Abbeel, P. Constrained
policy optimization. In Proceedings of the 34th Inter-
national Conference on Machine Learning (ICML), pp.
22–31, 2017.

Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schul-
man, J., and Mané, D. Concrete problems in AI safety.
arXiv preprint arXiv:1606.06565, 2016.

Andersen, M. S., Dahl, J., and Vandenberghe, L. CVXOPT:
A Python package for convex optimization, version 1.2.
https://cvxopt.org/, 2020.

Barrett, L. and Narayanan, S. Learning all optimal policies
with multiple criteria. In Proceedings of the 25th Inter-
national Conference on Machine Learning (ICML), pp.
41–47, 2008.

Barth-Maron, G., Hoffman, M. W., Budden, D., Dabney, W.,
Horgan, D., TB, D., Muldal, A., Heess, N., and Lillicrap,
T. Distributed distributional deterministic policy gradi-
ents. In Proceedings of the Sixth International Conference
on Learning Representations (ICLR), 2018.

Bohez, S., Abdolmaleki, A., Neunert, M., Buchli, J., Heess,
N., and Hadsell, R. Value constrained model-free contin-
uous control. arXiv preprint arXiv:1902.04623, 2019.

Chen, X., Ghadirzadeh, A., Björkman, M., and Jensfelt, P.
Meta-learning for multi-objective reinforcement learning.
arXiv preprint arXiv:1811.03376, 2019.

Chentanez, N., Müller, M., Macklin, M., Makoviychuk, V.,
and Jeschke, S. Physics-based motion capture imitation
with deep reinforcement learning. In International Con-
ference on Motion, Interaction, and Games (MIG). ACM,
2018.

Chow, Y., Nachum, O., Duenez-Guzman, E., and
Ghavamzadeh, M. A Lyapunov-based approach to safe
reinforcement learning. In Proceedings of the 31st Inter-
national Conference on Neural Information Processing
Systems (NeurIPS), pp. 8092–8101, 2018.

Daneshmand, M., Tale Masouleh, M., Saadatzi, M. H.,
Ozcinar, C., and Anbarjafari, G. A robust proportion-
preserving composite objective function for scale-
invariant multi-objective optimization. Scientia Iranica,
24(6):2977–2991, 2017.

Fortin, F.-A., De Rainville, F.-M., Gardner, M.-A., Parizeau,
M., and Gagné, C. DEAP: Evolutionary algorithms made
easy. Journal of Machine Learning Research, 13:2171–
2175, July 2012.

Friedman, E. and Fontaine, F. Generalizing across multi-
objective reward functions in deep reinforcement learning.
arXiv preprint arXiv:1809.06364, 2018.

Gábor, Z., Kalmár, Z., and Szepesvári, C. Multi-criteria
reinforcement learning. In Proceedings of the Fifteenth
International Conference on Machine Learning (ICML),
pp. 197–205, 1998.

Grodzevich, O. and Romanko, O. Normalization and other
topics in multi-objective optimization. In Proceedings of
the Fields-MITACS Industrial Problems Workshop, 2006.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft
actor-critic: Off-policy maximum entropy deep reinforce-
ment learning with a stochastic actor. In Proceedings of
the 35th International Conference on Machine Learning
(ICML), pp. 1861–1870, 2018.

Hasenclever, L., Pardo, F., Hadsell, R., Heess, N., and Merel,
J. CoMic: Complementary task learning and mimicry for
reusable skills. In Proceedings of the 37th International
Conference on Machine Learning (ICML), 2020.

Heess, N., Wayne, G., Silver, D., Lillicrap, T., Erez, T., and
Tassa, Y. Learning continuous control policies by stochas-
tic value gradients. In Advances in Neural Information
Processing Systems 28 (NIPS). 2015.

Hessel, M., Soyer, H., Espeholt, L., Czarnecki, W., Schmitt,
S., and van Hasselt, H. Multi-task deep reinforcement
learning with popart. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 33, pp. 3796–3803,
2019.

Huang, S. H., Zambelli, M., Kay, J., Martins, M. F., Tassa,
Y., Pilarski, P. M., and Hadsell, R. Learning gentle object
manipulation with curiosity-driven deep reinforcement
learning. arXiv preprint arXiv:1903.08542, 2019.

https://cvxopt.org/

A Distributional View on Multi-Objective Policy Optimization

Ishibuchi, H., Doi, K., and Nojima, Y. On the effect of
normalization in MOEA/D for multi-objective and many-
objective optimization. Complex & Intelligent Systems, 3
(4):279–294, 2017.

Kim, I. and de Weck, O. Adaptive weighted sum method
for multiobjective optimization: A new method for pareto
front generation. Structural and Multidisciplinary Opti-
mization, 31(2):105–116, 2006.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In Proceedings of the Third International
Conference on Learning Representations (ICLR), 2015.

Le, H., Voloshin, C., and Yue, Y. Batch policy learning
under constraints. In Proceedings of the 36th Inter-
national Conference on Machine Learning (ICML), pp.
3703–3712, 2019.

Levine, S., Finn, C., Darrell, T., and Abbeel, P. End-to-end
training of deep visuomotor policies. Journal of Machine
Learning Research, 17(39):1–40, 2016.

Liu, C., Xu, X., and Hu, D. Multiobjective reinforcement
learning: A comprehensive overview. IEEE Transactions
on Systems, Man, and Cybernetics: Systems, 45(3):385–
398, 2015.

Marler, R. T. and Arora, J. S. Function-transformation
methods for multi-objective optimization. Engineering
Optimization, 37(6):551–570, 2005.

Martens, J. New perspectives on the natural gradient method.
arXiv preprint arXiv:1412.1193, 2014.

Merel, J., Ahuja, A., Pham, V., Tunyasuvunakool, S., Liu,
S., Tirumala, D., Heess, N., and Wayne, G. Hierarchi-
cal visuomotor control of humanoids. In International
Conference on Learning Representations (ICLR), 2019.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):
529, 2015.

Moffaert, K. V. and Nowé, A. Multi-objective reinforcement
learning using sets of Pareto dominating policies. Journal
of Machine Learning Research, 15:3663–3692, 2014.

Mossalam, H., Assael, Y. M., Roijers, D. M., and Whiteson,
S. Multi-objective deep reinforcement learning. arXiv
preprint arXiv:1610.02707, 2016.

Munos, R., Stepleton, T., Harutyunyan, A., and Bellemare,
M. Safe and efficient off-policy reinforcement learning.
In Proceedings of the 29th International Conference on
Neural Information Processing Systems, pp. 1054–1062,
2016.

Natarajan, S. and Tadepalli, P. Dynamic preferences in
multi-criteria reinforcement learning. In Proceedings of
the 22nd International Conference on Machine Learning
(ICML), pp. 601–608, 2005.

Nottingham, K., Balakrishnan, A., Deshmukh, J., Christo-
pherson, C., and Wingate, D. Using logical specifications
of objectives in multi-objective reinforcement learning.
arXiv preprint arXiv:1910.01723, 2019.

Parisi, S., Pirotta, M., Smacchia, N., Bascetta, L., and
Restelli, M. Policy gradient approaches for multi-
objective sequential decision making. In Proceedings
of the International Joint Conference on Neural Networks
(IJCNN), pp. 2323–2330, 2014.

Peng, X. B., Abbeel, P., Levine, S., and van de Panne, M.
Deepmimic: Example-guided deep reinforcement learn-
ing of physics-based character skills. ACM Transactions
on Graphics, 37(4), 2018.

Pirotta, M., Parisi, S., and Restelli, M. Multi-objective
reinforcement learning with continuous Pareto frontier
approximation. In Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence (AAAI), 2015.

Reymond, M. and Nowé, A. Pareto-DQN: Approximat-
ing the Pareto front in complex multi-objective decision
problems. In Proceedings of the Adaptive and Learning
Agents Workshop at the 18th International Conference
on Autonomous Agents and MultiAgent Systems AAMAS,
2019.

Riedmiller, M., Hafner, R., Lampe, T., Neunert, M., De-
grave, J., Van de Wiele, T., Mnih, V., Heess, N., and Sprin-
genberg, J. T. Learning by playing - solving sparse reward
tasks from scratch. arXiv preprint arXiv:1802.10567,
2018.

Roijers, D. M., Vamplew, P., Whiteson, S., and Dazeley, R.
A survey of multi-objective sequential decision-making.
Journal of Artificial Intelligence Research, 48(1):67–113,
2013.

Roijers, D. M., Whiteson, S., and Oliehoek, F. A. Linear
support for multi-objective coordination graphs. In Pro-
ceedings of the International Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS), pp. 1297–
1304, 2014.

Russell, S. and Zimdars, A. L. Q-decomposition for rein-
forcement learning agents. In Proceedings of the Twenti-
eth International Conference on International Conference
on Machine Learning (ICML), pp. 656–663, 2003.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz,
P. Trust region policy optimization. In Proceedings of
the 32nd International Conference on Machine Learning
(ICML), 2015.

A Distributional View on Multi-Objective Policy Optimization

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Shadow Robot Company. Shadow dexterous hand.
https://www.shadowrobot.com/products/
dexterous-hand/, 2020.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
van den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe,
D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T.,
Leach, M., Kavukcuoglu, K., Graepel, T., and Hassabis,
D. Mastering the game of Go with deep neural networks
and tree search. Nature, 529:484–503, 2016.

Song, H. F., Abdolmaleki, A., Springenberg, J. T., Clark,
A., Soyer, H., Rae, J. W., Noury, S., Ahuja, A., Liu,
S., Tirumala, D., Heess, N., Belov, D., Riedmiller, M.,
and Botvinick, M. M. V-MPO: On-policy maximum a
posteriori policy optimization for discrete and continu-
ous control. In International Conference on Learning
Representations, 2020.

Sutton, R. S. Learning to predict by the methods of temporal
differences. Machine learning, 3(1):9–44, 1988.

Tan, J., Zhang, T., Coumans, E., Iscen, A., Bai, Y., Hafner,
D., Bohez, S., and Vanhoucke, V. Sim-to-real: Learning
agile locomotion for quadruped robots. In Proceedings
of Robotics: Science and Systems (RSS), 2018.

Tassa, Y., Doron, Y., Muldal, A., Erez, T., Li, Y.,
de Las Casas, D., Budden, D., Abdolmaleki, A., Merel, J.,
Lefrancq, A., Lillicrap, T., and Riedmiller, M. Deepmind
control suite. arXiv preprint arXiv:1801.00690, 2018.

Teh, Y. W., Bapst, V., Czarnecki, W. M., Quan, J., Kirk-
patrick, J., Hadsell, R., Heess, N., and Pascanu, R. Dis-
tral: Robust multitask reinforcement learning. CoRR,
abs/1707.04175, 2017. URL http://arxiv.org/
abs/1707.04175.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics
engine for model-based control. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 5026–5033, 2012.

Vamplew, P., Dazeley, R., Berry, A., Issabekov, R., and
Dekker, E. Empirical evaluation methods for multiobjec-
tive reinforcement learning algorithms. Machine Learn-
ing, 84(1):51–80, Jul 2011.

van Hasselt, H. P., Guez, A., Hessel, M., Mnih, V., and Sil-
ver, D. Learning values across many orders of magnitude.
In Advances in Neural Information Processing Systems,
pp. 4287–4295, 2016.

Van Moffaert, K., Drugan, M. M., and Nowé, A. Scalar-
ized multi-objective reinforcement learning: Novel de-
sign techniques. In Proceedings of the IEEE Symposium
on Adaptive Dynamic Programming and Reinforcement
Learning (ADPRL), pp. 191–199, 2013.

van Seijen, H., Fatemi, M., Romoff, J., Laroche, R., Barnes,
T., and Tsang, J. Hybrid reward architecture for reinforce-
ment learning. In Proceedings of the 31st International
Conference on Neural Information Processing Systems
(NeurIPS), pp. 5398–5408, 2017.

Watkins, C. J. C. H. Learning from Delayed Rewards. PhD
thesis, King’s College, Cambridge, UK, May 1989.

Wray, K. H., Zilberstein, S., and Mouaddib, A.-I. Multi-
objective MDPs with conditional lexicographic reward
preferences. In Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence (AAAI), pp. 3418–
3424, 2015.

Wulfmeier, M., Abdolmaleki, A., Hafner, R., Springenberg,
J. T., Neunert, M., Hertweck, T., Lampe, T., Siegel, N.,
Heess, N., and Riedmiller, M. Regularized hierarchical
policies for compositional transfer in robotics. arXiv
preprint arXiv:1906.11228, 2019.

Yang, R., Sun, X., and Narasimhan, K. A generalized algo-
rithm for multi-objective reinforcement learning and pol-
icy adaptation. In Proceedings of the 32nd International
Conference on Neural Information Processing Systems
(NeurIPS), pp. 14610–14621, 2019.

Zeng, A., Song, S., Lee, J., Rodriguez, A., and Funkhouser,
T. Tossingbot: Learning to throw arbitrary objects with
residual physics. In Proceedings of Robotics: Science
and Systems (RSS), 2019.

Zhan, H. and Cao, Y. Relationship explainable multi-
objective optimization via vector value function based
reinforcement learning. arXiv preprint arXiv:1910.01919,
2019.

Zuluaga, M., Krause, A., and Püschel, M. ε-pal: An ac-
tive learning approach to the multi-objective optimization
problem. Journal of Machine Learning Research, 17(1):
3619–3650, 2016.

https: //www.shadowrobot.com/products/dexterous-hand/
https: //www.shadowrobot.com/products/dexterous-hand/
http://arxiv.org/abs/1707.04175
http://arxiv.org/abs/1707.04175

