A Distributional View on Multi-Objective Policy Optimization

A. Experiment Details

In this section, we describe implementation details and spec-
ify the hyperparameters used for our algorithm. In all our
experiments, the policy and critic(s) are implemented with
feed-forward neural networks. We use Adam (Kingma &
Ba, 2015) for optimization.

In our continuous control tasks, the policy returns a Gaus-
sian distribution with a diagonal covariance matrix, i.e,
mg(als) = N (u,X). The policy is parametrized by a
neural network, which outputs the mean p = p(s) and di-
agonal Cholesky factors A = A(s), such that ¥ = AAT.
The diagonal factor A has positive diagonal elements en-
forced by the softplus transform A;; < log(1 + exp(A;;))
to ensure positive definiteness of the diagonal covariance
matrix.

Table 2 shows the default hyperparameters that we use for
MO-MPO and scalarized MPO, and Table 3 shows the hy-
perparameters that differ from these defaults for the hu-
manoid, Shadow Hand, and Sawyer experiments. For all
tasks that we train policies with MO-MPO for, a separate
critic is trained for each objective, with a shared first layer.
The only exception is the action norm penalty in humanoid
run, which is computed exactly from the action. We found
that for both policy and critic networks, layer normalization
of the first layer followed by a hyperbolic tangent (tanh) is
important for the stability of the algorithm.

In our experiments comparing the Pareto front found by
MO-MPO versus scalarized MPO, we ran MO-MPO with a
range of €, settings and ran scalarized MPO with a range of
weight settings, to obtain a set of policies for each algorithm.
The settings for humanoid run and the Shadow Hand tasks
are listed in Table 4. The settings for humanoid mocap and
Sawyer are specified in the main paper, in Sec. 6.3 and 6.4,
respectively.

In the following subsections, we first give suggestions for
choosing appropriate € to encode a particular preference
(Sec. A.1), then we describe the discrete MO-MPO used
for Deep Sea Treasure (Sec. A.2), and finally we describe
implementation details for humanoid mocap (Sec. A.3).

A.1. Suggestions for Setting ¢

Our proposed algorithm, MO-(V-)MPO, requires practition-
ers to translate a desired preference across objectives to nu-
merical choices for € for each objective k. At first glance,
this may seem daunting. However, in practice, we have
found that encoding preferences via ¢y, is often more in-
tuitive than doing so via scalarization. In this subsection,
we seek to give an intuition on how to set ¢, for different
desired preferences. Recall that each €j, controls the influ-
ence of objective k on the policy update, by constraining the
KL-divergence between each objective-specific distribution

Hyperparameter Default
policy network
layer sizes (300, 200)

take tanh of action mean? yes
minimum variance 10712
maximum variance unbounded

critic network(s)

layer sizes (400, 400, 300)

take tanh of action? yes

Retrace sequence size 8

discount factor 0.99
both policy and critic networks

layer norm on first layer? yes

tanh on output of layer norm? yes

activation (after each hidden layer) ELU
MPO

actions sampled per state 20

default € 0.1

KL-constraint on policy mean, 3,, 1073

KL-constraint on policy covariance, 35, 107°
initial temperature 7 1
training
batch size 512
replay buffer size 10°
Adam learning rate 3x107*
Adam € 107°
target network update period 200

Table 2. Default hyperparameters for MO-MPO and scalarized
MPO, with decoupled update on mean and covariance (Sec. C.3).

and the current policy (Sec. 4.1). We generally choose €, in
the range of 0.001 to 0.1.

Equal Preference. When all objectives are equally impor-
tant, the general rule is to set all ¢; to the same value. We
did this in our orient and humanoid mocap tasks, where ob-
jectives are aligned or mostly aligned. In contrast, it can be
tricky to choose appropriate weights in linear scalarization
to encode equal preferences—setting all weights equal to
1/K (where K is the number of objectives) is only appro-
priate if the objectives’ rewards are of similar scales. We
explored this in Sec. 5.1 and Fig. 3.

When setting all €, to the same value, what should this
value be? The larger ¢, is, the more influence the objectives
will have on the policy update step. Since the per-objective
critics are learned in parallel with the policy, setting ¢y,
too high tends to destabilize learning, because early on in
training, when the critics produce unreliable Q-values, their
influence on the policy will lead it in the wrong direction.
On the other hand, if €, is set too low, then it slows down
learning, because the per-objective action distribution is
only allowed to deviate by a tiny amount from the current
policy, and the updated policy is obtained via supervised
learning on the combination of these action distributions.

A Distributional View on Multi-Objective Policy Optimization

Humanoid run

policy network
layer sizes (400, 400, 300)
take tanh of action mean? no
minimum variance 1078

critic network(s)

layer sizes (500, 500, 400)

take tanh of action? no
MPO
KL-constraint on policy mean, 3, 5%x1073
KL-constraint on policy covariance, Sx 107¢
training
Adam learning rate 2x1074
Adam e 1078
Shadow Hand
MPO
actions sampled per state 30
default € 0.01
Sawyer
MPO
actions sampled per state 15
training
target network update period 100

Table 3. Hyperparameters for humanoid, Shadow Hand, and
Sawyer experiments that differ from the defaults in Table 2.

Eventually the learning will converge to more or less the
same policy though, as long as €, is not set too high.

Unequal Preference. When there is a difference in pref-
erences across objectives, the relative scale of € is what
matters. The more the relative scale of ey, is compared to ¢,
the more influence objective k has over the policy update,
compared to objective /. And in the extreme case, when
€; is near-zero for objective [, then objective [will have
no influence on the policy update and will effectively be
ignored. We explored this briefly in Sec. 5.1 and Fig. 4.

One common example of unequal preferences is when we
would like an agent to complete a task, while minimiz-
ing other objectives—e.g., an action norm penalty, “pain”
penalty, or wrist force-torque penalty, in our experiments.
In this case, the € for the task objective should be higher
than that for the other objectives, to incentivize the agent to
prioritize actually doing the task. If the € for the penalties
is too high, then the agent will care more about minimiz-
ing the penalty (which can typically be achieved by simply
taking no actions) rather than doing the task, which is not
particularly useful.

The scale of €, has a similar effect as in the equal preference

Condition Settings

Humanoid run (one seed per setting)
scalarized MPO wiask = 1 — Wpenalty
Wpenalty € linspace(0, 0.15, 100)
€task — 0.1
€penalty € linspace(107°,0.15, 100)

MO-MPO

Humanoid run, normal vs. scaled (three seeds per setting)

scalarized MPO wiask = 1 — Wpenalty

Wpenay € {0.01,0.05,0.1}
€ask = 0.1

€penalty S {001, 005, 01}

Shadow Hand touch and turn (three seeds per setting)

MO-MPO

scalarized MPO wsk = 1 — Wpenalty

Wpenalty € linspace(0, 0.9, 10)

€task — 001

€penalty € linspace(0.001,0.015, 15)

Shadow Hand orient (ten seeds per setting)

MO-MPO

scalarized MPO wiouch = Wheight = Worientation —]-/3
MO-MPO

€touch = €height = Eorientation = 0.01

Table 4. Settings for €, and weights. (linspace(z, y, z) denotes a
set of z evenly-spaced values between x and y.)

case. If the scale of ¢ is too high or too low, then the same
issues arise as discussed for equal preferences. If all ¢
increase or decrease in scale by the same (moderate) factor,
and thus their relative scales remain the same, then typically
they will converge to more or less the same policy. This
can be seen in Fig. 5 (right), in the Deep Sea Treasure
domain: regardless of whether €gpe is 0.01, 0.02, or 0.05,
the relationship between the relative scale of €yeqqure and
€ime to the treasure that the policy converges to selecting is
essentially the same.

A.2. Deep Sea Treasure

In order to handle discrete actions, we make several mi-
nor adjustments to scalarized MPO and MO-MPO. The
policy returns a categorical distribution, rather than a Gaus-
sian. The policy is parametrized by a neural network, which
outputs a vector of logits (i.e., unnormalized log probabil-
ities) of size |A|. The KL constraint on the change of this
policy, S, is 0.001. The input to the critic network is the
state concatenated with a four-dimensional one-hot vector
denoting which action is chosen (e.g., the up action corre-
sponds to [1,0,0,0]"). Critics are trained with one-step
temporal-difference error, with a discount of 0.999. Other
than these changes, the network architectures and the MPO
and training hyperparameters are the same as in Table 2.

A Distributional View on Multi-Objective Policy Optimization

Humanoid Mocap

Scalarized VMPO
KL-constraint on policy mean, 3,, 0.1
KL-constraint on policy covariance, = 107>
default e 0.1
initial temperature 7 1
Training
Adam learning rate 1074
batch size 128

unroll length (for n-step return, Sec. D.1) 32

Table 5. Hyperparameters for the humanoid mocap experiments.

A.3. Humanoid Mocap

For the humanoid mocap experiments, we used the follow-
ing architecture for both MO-VMPO and VMPO: for the
policy, we process a concatentation of the mocap reference
observations and the proprioceptive observations by a two
layer MLP with 1024 hidden units per layer. This reference
encoder is followed by linear layers to produce the mean
and log standard deviation of a stochastic latent variable.
These latent variables are then concatenated with the propri-
oceptive observations and processed by another two layer
MLP with 1024 hidden units per layer, to produce the action
distribution. For VMPO, we use a three layer MLP with
1024 hidden units per layer as the critic. For MO-VMPO
we use a shared two layer MLP with 1024 hidden units per
layer followed by a one layer MLP with 1024 hidden units
per layer per objective. In both cases we use k-step returns
to train the critic with a discount factor of 0.95. Table 5
shows additional hyperparameters used in our experiments.

B. Experimental Domains

We evaluated our approach on one discrete domain (Deep
Sea Treasure), three simulated continuous control domains
(humanoid, Shadow Hand, and humanoid mocap), and one
real-world continuous control domain (Sawyer robot). Here
we provide more detail about these domains and the objec-
tives used in each task.

B.1. Deep Sea Treasure

Deep Sea Treasure (DST) is a 11x10 grid-world domain,
the state space S consists of the « and y position of the agent
and the action space A is {up, right, down, left}. The
layout of the environment and values of the treasures are
shown in Fig. 8. If the action would cause the agent to
collide with the sea floor or go out of bounds, it has no
effect. Farther-away treasures have higher values. The
episode terminates when the agent collects a treasure, or
after 200 timesteps.

Figure 8. Deep Sea Treasure environment from Vamplew et al.
(2011), with weights from Yang et al. (2019). Treasures are labeled
with their respective values. The agent can move around freely
in the white squares, but cannot enter the black squares (i.e., the
ocean floor).

There are two objectives, time penalty and treasure value.
A time penalty of —1 is given at each time step. The agent
receives the value of the treasure it picks up as the reward
for the treasure objective. In other words, when the agent
picks up a treasure of value v, the reward vector is [—1, v];
otherwise it is [—1, 0].

B.2. Shadow Hand

Our robot platform is a simulated Shadow Dexterous Hand
(Shadow Robot Company, 2020) in the MuJoCo physics
engine (Todorov et al., 2012). The Shadow Hand has five
fingers and 24 degrees of freedom, actuated by 20 motors.
The observation consists of joint angles, joint velocities, and
touch sensors, for a total of 63 dimensions. Each fingertip
of our Shadow Hand has a 4 x4 spatial touch sensor. This
sensor has three channels, measuring the normal force and
the x and y-axis tangential forces, for a sensor dimension of
4x4x 3 per fingertip. We simplify this sensor by summing
across spatial dimensions, resulting in a 1 x1x 3 observation
per fingertip.

In the touch task, there is a block in the environment that is
always fixed in the same pose. In the turn task, there is a dial
in the environment that can be rotated, and it is initialized to
a random position between —30° and 30°. The target angle
of the dial is 0°. The angle of the dial is included in the
agent’s observation. In the orient task, the robot interacts
with a rectangular peg in the environment; the initial and
target pose of the peg remains the same across episodes.
The pose of the block is included in the agent’s observation,
encoded as the xyz positions of four corners of the block
(based on how Levine et al. (2016) encodes end-effector
pose).

A Distributional View on Multi-Objective Policy Optimization

Figure 9. These images show what task completion looks like for
the touch, turn, and orient Shadow Hand tasks (from left to right).

0

| |
N

pain penalty

|
=)

o

2 4 6
impact force

Figure 10. In the fouch and turn Shadow Hand tasks, the pain
penalty is computed based on the impact force, as plotted here. For
low impact forces, the pain penalty is near-zero. For high impact
forces, the pain penalty is equal to the negative of the impact force.

B.2.1. BALANCING TASK COMPLETION AND PAIN

i

In the touch and turn tasks, there are two objectives, “pain’
penalty and task completion. A sparse task completion re-
ward of 1 is given for pressing a block with greater than 5N
of force or turning a dial to a fixed target angle, respectively.
In both tasks, the episode terminates when the agent com-
pletes the task; i.e., the agent gets a total reward of either
0 or 1 for the task completion objective per episode. The
Pareto plots for these two tasks in the main paper (Fig. 6)
show the discounted task reward (with a discount factor of
v = 0.99), to capture how long it takes agents to complete
the task.

The “pain” penalty is computed as in (Huang et al., 2019). It
is based on the impact force m(s, s"), which is the increase
in force from state s to the next state s’. In our tasks, this is
measured by a touch sensor on the block or dial. The pain
penalty is equal to the negative of the impact force, scaled
by how unacceptable it is:

Tpain(5,a,8") = —[1 —ax(m(s,s'))|m(s,s"), (6)

where ay(+) € [0, 1] computes the acceptability of an impact
force. a)(+) should be a monotonically decreasing function,
that captures how resilient the robot and the environment
are to impacts. As in (Huang et al., 2019), we use

ax(m) = sigmoid(A1(—m + A2)), (7

with A = [2,2] . The relationship between pain penalty
and impact force is plotted in Fig. 10.

height objective orientation objective

reward

o
3
t

7.00 725 0 2
Zpeg d(O, 9])(35/)

Figure 11. In the orient Shadow Hand task, the height and orienta-
tion objectives have shaped rewards, as plotted here.

B.2.2. ALIGNED OBJECTIVES

In the orient task, there are three non-competing objectives:
touching the peg, lifting the peg to a target height, and ori-
enting the peg to be perpendicular to the ground. The target
z position and orientation is shown by the gray transparent
peg (Fig. 9, right-most); note that the x and y position is
not specified, so the robot in the figure gets the maximum
reward with respect to all three objectives.

The touch objective has a sparse reward of 1 for activat-
ing the peg’s touch sensor, and zero otherwise. For the
height objective, the target z position is 7cm above the
ground; the peg’s z position is computed with respect to
its center of mass. The shaped reward for this objective
is 1 — tanh(50|2arget — Zpeg|). For the orientation objec-
tive, since the peg is symmetrical, there are eight possible
orientations that are equally valid. The acceptable target
orientations (Qargec and the peg’s orientation gy, are denoted
as quaternions. The shaped reward is computed with respect
to the closest target quaternion, as
min 1 — tanh(2"d(q, gpeg))
q teargel

where d(-) denotes the £2-norm of the axis-angle equivalent
(in radians) for the distance between the two quaternions.
Fig. 11 shows the shaping of the height and orientation
rewards.

B.3. Humanoid

We make use of the humanoid run task from Tassa et al.
(2018).%8 The observation dimension is 67 and the action
dimension is 21. Actions are joint accelerations with min-
imum and maximum limits of —1 and 1, respectively. For
this task there are two objectives:

e The original task reward given by the environment. The
goal is is to achieve a horizontal speed of 10 meters per
second, in any direction. This reward is shaped: it is
equal to min(h/10, 1) where h is in meters per second.
For this objective we learn a Q-function.

8This task is available at github.com/deepmind/dm_control.

A Distributional View on Multi-Objective Policy Optimization

e Limiting energy usage, by penalizing taking high-
magnitude actions. The penalty is the ¢2-norm of the
action vector, i.e, Tpenaiy(@) = —||al|2. For this ob-
jective, we do not learn a Q-function. Instead, we
compute this penalty directly to evaluate a given action
in a state-independent way during policy optimization.

B.4. Humanoid Mocap

The motion capture tracking task used in this paper was
developed by Hasenclever et al. (2020). We use a simulated
humanoid adapted from the “CMU humanoid” available at
dm_control/locomotion (Merel et al., 2019). We adjusted
various body and actuator parameters to be more comparable
to that of an average human. This humanoid has 56 degrees
of freedom and the observation is 1021-dimensional.

This motion capture tracking task is broadly similar to previ-
ous work on motion capture tracking (Chentanez et al., 2018;
Peng et al., 2018; Merel et al., 2019). The task is associated
with an underlying set of motion capture clips. For this
paper we used roughly 40 minutes of locomotion motion
capture clips from the CMU motion capture database.’

At the beginning of a new episode, we select a frame uni-
formly at random from all frames in the underlying mocap
data (excluding the last 10 frames of each clip). The simu-
lated humanoid is then initialized to the pose of the selected
frame.

The observations in this environment are various propriocep-
tive observations about the current state of the body as well
as the relative target positions and orientations of 13 differ-
ent body parts in the humanoid’s local frame. We provide
the agent with the target poses for the next 5 timesteps.

The choice of reward function is crucial for motion capture
tracking tasks. Here we consider five different reward com-
ponents, each capturing a different aspect of the similarity
of the pose between the simulated humanoid and the mocap
target. Four of our reward components were initially pro-
posed by Peng et al. (2018). The first reward component is
based on the difference in the center of mass:

2
Tcom = €XP (_10”pcom — Peom||))
where peom and pf are the positions of the center of mass
of the simulated humanoid and the mocap reference, re-
spectively. The second reward component is based on the
difference in joint angle velocities:

rvet = exp (—0.1]|qver — @i11%)

where gy and ¢! are the joint angle velocities of the simu-

lated humanoid and the mocap reference, respectively. The

°This database is available at mocap.cs.cmu.edu.

third reward component is based on the difference in end-
effector positions:

Tapp = €XP (_4O||papp - p;%fp||2))

where pqp, and piy are the end effector positions of the
simulated humanoid and the mocap reference, respectively.
The fourth reward component is based on the difference in

joint orientations:

T'quat = €XP (_2HQquat S) qael;;t||2))

where © denotes quaternion differences and qqua and q;iit

are the joint quaternions of the simulated humanoid and the
mocap reference, respectively.

Finally, the last reward component is based on difference in
the joint angles and the Euclidean positions of a set of 13
body parts:

=€

1
Tuune = 1= 5= (1[bpos = sl + l|apes = Ghosll1),

where by, and b;%fs correspond to the body positions of the
simulated character and the mocap reference and g5, and

q;‘f)fs correspond to the joint angles.

We include an early termination condition in our task that is
linked to this last reward term. We terminate the episode if
€ > 0.3, which ensures that 7y, € [0, 1].

In our MO-VMPO experiments, we treat each reward com-
ponent as a separate objective. In our VMPO experiments,
we use a reward of the form:

1 1
= —Trunc + = (0.17com + Aryer + 0.1575pp + 0.65rqua)

2 2
®)

varying A as described in the main paper (Sec. 6.3).

B.5. Sawyer

The Sawyer peg-in-hole setup consists of a Rethink Robotics
Sawyer robot arm. The robot has 7 joints driven by series
elastic actuators. On the wrist, a Robotiq FT 300 force-
torque sensor is mounted, followed by a Robotiq 2F85 par-
allel gripper. We implement a 3D end-effector Cartesian
velocity controller that maintains a fixed orientation of the
gripper. The agent controls the Cartesian velocity setpoints.
The gripper is not actuated in this setup. The observations
provided are the joint positions, velocities, and torques, the
end-effector pose, the wrist force-torque measurements, and
the joint velocity command output of the Cartesian con-
troller. We augment each observation with the two previous
observations as a history.

In each episode, the peg is initalized randomly within an
8x8x8 cm workspace (with the peg outside of the hole).

https://github.com/deepmind/dm_control/tree/master/dm_control/locomotion
http://mocap.cs.cmu.edu

A Distributional View on Multi-Objective Policy Optimization

The environment is then run at 20 Hz for 600 steps. The
action limits are £0.05 m/s on each axis. If the magnitude
of the wrist force-torque measurements exceeds 15 N on
any horizontal axis (x and y axis) or 5 N on the vertical axis
(z axis), the episode is terminated early.

There are two objectives: the task itself (inserting the peg),
and minimizing wrist force measurements.

The reward for the task objective is defined as

Tinsertion = IMax (0'2Tapproach7 Tinserled) &)
Tapproach = S(ppeg7popening) (10
Tinserted = Taligned S(Pgeg»Pgomm) (11)
Taligned = pgeyg - p(a):};fning < d/2 (12)

where pP°¢ is the peg position, p°P"i"¢ the position of the
hole opening, p®™ the bottom position of the hole and d
the diameter of the hole.

s(p1,p2) is a shaping operator

tanh(v/1
2D oy~ pall). (13

s(p1,p2) = 1 — tanh?(
which gives a reward of 1 — [if p; and p5 are at a Euclidean
distance of €. Here we chose lypproach = 0.95, €approach =
0.01, linserted = 0.5, and €jpgerea = 0.04. Intentionally, 0.04
corresponds to the length of the peg such that rigereq = 0.5
if pPee = popening - Aq a result, if the peg is in the approach
POSition, Tinserted 1S dOminant OVer 7approach 1N Tingertion -

Intuitively, there is a shaped reward for aligning the peg
with a magnitude of 0.2. After accurate alignment within
a horizontal tolerance, the overall reward is dominated by
a vertical shaped reward component for insertion. The hor-
izontal tolerance threshold ensures that the agent is not
encouraged to try to insert the peg from the side.

The reward for the secondary objective, minimizing wrist
force measurements, is defined as

Torce = — || F |1, (14)

where F' = (F,, F,, F,) are the forces measured by the
Wrist sensor.

C. Algorithmic Details
C.1. General Algorithm Description

We maintain one online network and one target network for
each Q-function associated to objective k, with parameters
denoted by ¢y, and ¢, respectively. We also maintain one
online network and one target network for the policy, with
parameters denoted by 6 and 6, respectively. Target net-
works are updated every fixed number of steps by copying

parameters from the online network. Online networks are
updated using gradient descent in each learning iteration.
Note that in the main paper, we refer to the target policy
network as the old policy, mog.

We use an asynchronous actor-learner setup, in which ac-
tors regularly fetch policy parameters from the learner and
act in the environment, writing these transitions to the re-
play buffer. We refer to this policy as the behavior policy
throughout the paper. The learner uses the transitions in
the replay buffer to update the (online) Q-functions and the
policy. Please see Algorithms 2 and 3 for more details on
the actor and learner processes, respectively.

Algorithm 2 MO-MPO: Asynchronous Actor

1: given (N) reward functions {ry(s,a)}i_,, T steps per
episode

2: repeat

3 Fetch current policy parameters 8 from learner

4: // Collect trajectory from environment

50 T={}

6: fort=20,...,Tdo

7 ar ~ o (-|st)

8 // Execute action and determine rewards

9: r=[ri(st,at),...,rn(st, at)]

10: T <= T U{(8¢t,a¢, 7, mo(ar|s:))}

11: end for

12: Send trajectory 7 to replay buffer

13: until end of training

C.2. Retrace for Multi-Objective Policy Evaluation

Recall that the goal of the policy evaluation stage (Sec. 4.1)
is to learn the Q-function Qy, (s, a) for each objective k,
parametrized by ¢. These Q-functions are with respect
to the policy moq. We emphasize that it is valid to use any
off-the-shelf Q-learning algorithm, such as TD(0) (Sutton,
1988), to learn these Q-functions. We choose to use Retrace
(Munos et al., 2016), described here.

Given a replay buffer D containing trajectory snippets
7 = {(s0,a0,70,81),---,($T,a7, 7T, ST+1)}, Where 7,
denotes a reward vector {7 (s, a;)}_, that consists of a
scalar reward for each of IV objectives, the Retrace objective
is as follows:

H;in E.wp [(Qzet(st, as) — Qg (51, at))2] , (15)

with

J

T
(s, a1) = Qg (s1,a1) + Z’Yj_t< H Cz>5j,

j=t z=t+1
5j = ’I’k(S]‘, aj) + ’)/V(Sj+1) — QA(% (Sj, a]‘) 5
V(Sj-i-l) = Eﬂold(a\strl)[Q(ﬁ;C (Sj+1’ CL)] .

A Distributional View on Multi-Objective Policy Optimization

Algorithm 3 MO-MPO: Asynchronous Learner

1: given batch size (L), number of actions (M), (N) Q-functions,
(N) preferences {ex o1, policy networks, and replay buffer
D

2: initialize Lagrangians {nx}n_; and v, target networks, and
online networks such that g, = 7 and Qd>§c = Q¢

3: repeat

4: repeat o

5: /l Collect dataset {s*,a"’, Q) }L J]f N where

6: Il s ~D,a" ~ 7o (als’), and Q) = Qg (s",a")

7:

8: // Compute action distribution for each objective

9: fork=1,..., Ndo

ij
10: Oy, < Vi M€r + Mk Z log (Z] =+ exp (Qk))
11: Update 7y based on dy,
o ij

12: q; x exp(%)

13: end for

14:

15: // Update parametric policy with trust region

16: /I sg denotes a stop-gradient o

17: O0r < —Vo Zf Z;M ZkN q;) log me(a™|s*)

18: +s2(v) (8 = LF KL(mor (als") || ma(als’)) ds)
19 8 Vor(B=5F KL(mo(als') | muo) (als')) ds)
20: Update g based on d-
21: Update v based on d,,
22:
23: // Update Q-functions
24: fork=1,..., Ndo)
25: 8¢y, < Vs, Z(st,at)GTN'D (Q¢k (s¢,at) — th)
26: with Q%" as in Eq. 15
27: Update ¢ based on dg,
28: end for
29:

30: until fixed number of steps
31: // Update target networks

32: e’ :7T97Q¢k,/ :Q¢k
33: until convergence

The importance weights cj, are defined as
Tod(G|s
c, = min (1, 70101(:| Z)> ,

(azls)
where b(a.|s,) denotes the behavior policy used to col-
lect trajectories in the environment. When j = ¢, we set

(Hi:tJrl CZ) =L

We also make use of a target network for each Q-function
(Mnih et al., 2015), parametrized by ¢, which we copy
from the online network ¢y, after a fixed number of gradient
steps on the Retrace objective (15).

C.3. Policy Fitting

Recall that fitting the policy in the policy improvement
stage (Sec. 4.2.2) requires solving the following constrained

optimization:

Tnew —argmaXZ/ /qk (als)logmg(als)dads

s.t./u(s) KL(moa(als) || me(als)) ds < 8. (16)

We first write the generalized Lagrangian equation, i.e.

L(6,v) Z/ /qk als)logmg(als)dads (17)
(3= [(o) Kmaals) | mo(als)) ds)

where v is the Lagrangian multiplier. Now we solve the
following primal problem,
max min L(6,v).
6 v>0
To obtain the parameters 0 for the updated policy, we solve
for v and 0 by alternating between 1) fixing v to its current
value and optimizing for 8, and 2) fixing @ to its current
value and optimizing for v. This can be applied for any
policy output distribution.

For Gaussian policies, we decouple the update rules to op-
timize for mean and covariance independently, as in (Ab-
dolmaleki et al., 2018b). This allows for setting different
KL bounds for the mean (3,,) and covariance (8x), which
results in more stable learning. To do this, we first separate
out the following two policies for mean and covariance,

w4 (als) = N (a3 16 (5), To,.,(5))
75 (als) = N (a3 ,1,(5), Zo(s))

Policy 7y (a|s) takes the mean from the online policy net-
work and covariance from the target policy network, and
policy 75 (a|s) takes the mean from the target policy net-
work and covariance from online policy network. Now our
optimization problem has the following form:

(18)

19)

maXZ/ /qk als)(logﬂg(a\s)ﬂg(a\s)) dads

s.t. /u(s) KL(7o(als) || my (als)) ds < S,

/M(s) KL(moa(als) | 75(als)ds < Bs. (20)

S

As in (Abdolmaleki et al., 2018b), we set a much smaller
bound for covariance than for mean, to keep the exploration
and avoid premature convergence. We can solve this op-
timization problem using the same general procedure as
described above.

A Distributional View on Multi-Objective Policy Optimization

C.4. Derivation of Dual Function for

Recall that obtaining the per-objective improved action dis-
tributions ¢ (als) in the policy improvement stage (Sec.
4.2.1) requires solving a convex dual function for the tem-
perature 7, for each objective. For the derivation of this
dual function, please refer to Appendix D.2 of the original
MPO paper (Abdolmaleki et al., 2018b).

D. MO-V-MPQO: Multi-Objective On-Policy
MPO

In this section we describe how MO-MPO can be adapted
to the on-policy case, in which a state-value function V()
is learned and used to estimate the advantages for each
objective. We call this approach MO-V-MPO.

D.1. Multi-objective policy evaluation in the on-policy
setting

In the on-policy setting, to evaluate the previous policy
Told» We use advantages A(s, a) estimated from a learned
state-value function V' (s), instead of a state-action value
function (s, a) as in the main text. We train a separate
V -function for each objective by regressing to the stan-
dard n-step return (Sutton, 1988) associated with each ob-
jective. More concretely, given trajectory snippets 7 =
{(s0,a0,70), .., (sT,ar,rr)} where r; denotes a reward
vector {ry(s¢, at) HY_, that consists of rewards for all N ob-
jectives, we find value function parameters ¢ by optimizing
the following objective:

N
min 3B, (G (se,a0) = V()2 @D
1k

k=1
Here G;T)(st, a;) is the T-step target for value function
k, which uses the actual rewards in the trajectory and
bootstraps from the current value function for the rest:

T T-1 - -

G (se,a0) = 75 5 (e, ar) + 4T VI (sir).
The advantages are then estimated as A;™(s;,a;) =

G (e, ae) — VI (s0).

D.2. Multi-objective policy improvement in the
on-policy setting

Given the previous policy mo4(a|s) and estimated advan-
tages {A;*(s,a)}r=1,..,n associated with this policy for
each objective, our goal is to improve the previous policy.
To this end, we first learn an improved variational distribu-
tion g (s, a) for each objective, and then combine and distill
the variational distributions into a new parametric policy
Tnew (@] $). Unlike in MO-MPO, for MO-V-MPO we use the
joint distribution g (s, a) rather than local policies g (als)
because, without a learned ()-function, only one action per
state is available for learning. This is a multi-objective vari-

ant of the two-step policy improvement procedure employed
by V-MPO (Song et al., 2020).

D.2.1. OBTAINING IMPROVED VARIATIONAL
DISTRIBUTIONS PER OBJECTIVE (STEP 1)

In order to obtain the improved variational distributions
qr(s,a), we optimize the RL objective for each objective
Akl

max/ qr(s,a) Ak(s,a)dads (22)

qk

s.t. KL(gk (s, @) |poa(s, a)) < e,

where the KL-divergence is computed over all (s, a), € de-
notes the allowed expected KL divergence, and po(s, a) =
1(8)moia(als) is the state-action distribution associated with
Told-

As in MO-MPO, we use these ¢, to define the preferences
over objectives. More concretely, €5 defines the allowed con-
tribution of objective k to the change of the policy. There-
fore, the larger a particular e, is with respect to others, the
more that objective k is preferred. On the other hand, if
€ = 0 is zero, then objective k£ will have no contribution to
the change of the policy and will effectively be ignored.

Equation (22) can be solved in closed form:
Nk ’

where the temperature 7 is computed based on the con-
straint €5 by solving the following convex dual problem

ar (s, a) o< pou(s, a) exp

N = argmin {Wk €L+ 24)
Nk
A
Nk log/ Pold (S, @) €Xp (M) da ds} .
S,a ’r}

)

We can perform the optimization along with the loss by
taking a gradient descent step on 7, and we initialize with
the solution found in the previous policy iteration step. Since
7y, must be positive, we use a projection operator after each
gradient step to maintain 7, > 0.

Top-k advantages. As in Song et al. (2020), in practice
we used the samples corresponding to the top 50% of ad-
vantages in each batch of data.

D.2.2. FITTING A NEW PARAMETRIC POLICY (STEP 2)

We next want to combine and distill the state-action distribu-
tions obtained in the previous step into a single parametric
policy mew(als) that favors all of the objectives according
to the preferences specified by €. For this we solve a su-
pervised learning problem that fits a parametric policy as
follows:

A Distributional View on Multi-Objective Policy Optimization

N
Thew = Argmax E / qr(s,a)logm(als) dads
0 s,a
k=1

s.t./ KL(mou(als) || me(als))ds < B, (25)

where 6 are the parameters of our function approximator
(a neural network), which we initialize from the weights of
the previous policy 7,4, and the KL constraint enforces a
trust region of size J that limits the overall change in the
parametric policy, to improve stability of learning. As in
MPO, the KL constraint in this step has a regularization
effect that prevents the policy from overfitting to the local
policies and therefore avoids premature convergence.

In order to optimize Equation (25), we employ Lagrangian
relaxation similar to the one employed for ordinary V-
MPO (Song et al., 2020).

E. Multi-Objective Policy Improvement as
Inference

In the main paper, we motivated the multi-objective policy
update rules from an intuitive perspective. In this section, we
show that our multi-objective policy improvement algorithm
can also be derived from the RL-as-inference perspective. In
the policy improvement stage, we assume that a ()-function
for each objective is given, and we would like to improve
our policy with respect to these Q-functions. The deriva-
tion here extends the derivation for the policy improvement
algorithm in (single-objective) MPO in Abdolmaleki et al.
(2018a) (in appendix) to the multi-objective case.

We assume there are observable binary improvement events,
{Ry}}_,, for each objective. Rj, = 1 indicates that our
policy has improved for objective k, while R = 0 indicates
that it has not. Now we ask, if the policy has improved with
respect to all objectives, i.e., { Ry = 1}@’:1, what would the
parameters @ of that improved policy be? More concretely,
this is equivalent to the maximum a posteriori estimate for

{Rr = 1}]kV=1:

IH;%ng(Rl =1,R=1,...,Ry=1)p0), (26)

where the probability of improvement events depends on 6.
Assuming independence between improvement events Ry,
and using log probabilities leads to the following objective:

N
mélxkz_l log pe (R = 1) + log p(0) . (27)

The prior distribution over parameters, p(8), is fixed during
the policy improvement step. We set the prior such that 7g

stays close to the target policy during each policy improve-
ment step, to improve stability of learning (Sec. E.2).

We use the standard expectation-maximization (EM) algo-
rithm to efficiently maximize Zi\;l log pg (R, = 1). The
EM algorithm repeatedly constructs a tight lower bound in
the E-step, given the previous estimate of € (which corre-
sponds to the target policy in our case), and then optimizes
that lower bound in the M-step. We introduce a variational
distribution ¢y (s, a) per objective, and use this to decom-
pose the log-evidence Zszl log pe(Ry = 1) as follows:

N

> logpe(Ri = 1) (28)

k=1

N
= >~ KL(ge(s.) | po(s, al Rx = 1)) -
k=1

KL(qx(s,a) || pe(Rr = 1,5,a)).

M=

>
Il

1

The second term of this decomposition is expanded as:

=

> KL(gr(s,a) | pe(Ry = 1,5,a)) (29)
=1

pB(Rk - 1787a):|

I
WE

Eqk(&a) |:10g

Pt qk(s; a)
N
=1
= By [log p(Ry |5»G)W9(G\S)M(S)} 7
b1 me Qk(Sa a)

where p(s) is the stationary state distribution, which is as-
sumed to be given in each policy improvement step. In
practice, p(s) is approximated by the distribution of the
states in the replay buffer. p(Ryx = 1|s, a) is the likelihood
of the improvement event for objective k, if our policy chose
action a in state s.

The first term of the decomposition in Equation (28) is
always positive, so the second term is a lower bound on
the log-evidence Zszl logpe(Rr = 1). me(als) and

_ ax(s,a)

ar(als) = Zie5
In the E-step, we estimate g (a|s) for each objective k by
minimizing the first term, given @ = 0’ (the parameters of
the target policy). Then in the M-step, we find a new 6 by
fitting the parametric policy to the distributions from first
step.

are unknown, even though p(s) is given.

E.1. E-Step

The E-step corresponds to the first step of policy improve-
ment in the main paper (Sec. 4.2.1). In the E-step, we
choose the variational distributions {qj(a|s)}i_; such that

the lower bound on Zgil logpe(Ry, = 1) is as tight as

A Distributional View on Multi-Objective Policy Optimization

possible when 8 = @', the parameters of the target policy.
The lower bound is tight when the first term of the decompo-
sition in Equation (28) is zero, so we choose gy to minimize
this term. We can optimize for each variational distribution
qx independently:

ar(als) = argmin B, | KL(a(als) | pe (s, a| Rx = 1))]
q

— argmin B, (o) | KL(a(als) || 7o (als)) -
q

IEq(uL|s) Ing(Rk = 1|S,Cl)):| :
(30)

We can solve this optimization problem in closed form,
which gives us

_ 7o (als)p(Rx =15, a)
wlal) = [7o (als) p(Ry, = 1]s,a)da

This solution weighs the actions based on their relative
improvement likelihood p(Ry = 1|s, a) for each objective.
We define the likelihood of an improvement event Ry, as

p(Ri = 1]s,a) x exp (M) ,
Ak

where o, is an objective-dependent temperature parameter
that controls how greedy the solution g (al|s) is with respect
to its associated objective Q (s, a). For example, given a
batch of state-action pairs, at the extremes, an ¢y, of zero
would give all probability to the state-action pair with the
maximum Q-value, while an oy, of positive infinity would
give the same probability to all state-action pairs. In order
to automatically optimize for oy, we plug the exponential
transformation into (30), which leads to

axlals) = asgma [(s) [a(els)Qu(s,)dads=
an [1) KLlalals) | 7o (als)) ds. 3D

If we instead enforce the bound on KL divergence as a hard
constraint (which we do in practice), that leads to:

avlals) = argmax [5(s) [g(als)Qu(s.0) dads (32

q

st. [n(s) KL(alals) | mor(als)) ds < .

where, as described in the main paper, the parameter €y,
defines preferences over objectives. If we now assume that
gr(als) is a non-parametric sample-based distribution as in
(Abdolmaleki et al., 2018b), we can solve this constrained

optimization problem in closed form for each sampled state
s, by setting

a(als) o 7o/ (als) exp (Q’“f;‘”) SENEE)

where 7, is computed by solving the following convex dual
function:

Mk = argmin neg -+ (34)

n/u(s) log/7r9/(a\s) exp (Qk(;’a)) dads.

Equations (32), (33), and (34) are equivalent to those given
for the first step of multi-objective policy improvement in
the main paper (Sec. 4.2.1). Please see refer to Appendix
D.2 in (Abdolmaleki et al., 2018b) for details on derivation
of the dual function.

E.2. M-Step

After obtaining the variational distributions ¢ (a|s) for
each objective k, we have found a tight lower bound for
lele log pg(Ry = 1) when 8 = 6’. We can now obtain
the parameters 6 of the updated policy 7g(a|s) by optimiz-
ing this lower bound. After rearranging and dropping the
terms in (27) that do not involve 6, we obtain

0" :arglenaXZ/,u(s)/qk(aB) log mg(als) dads
+ log p(0).

This corresponds to the supervised learning step of policy
improvement in the main paper (Sec. 4.2.2).

For the prior p(@) on the parameters 6, we enforce that the
new policy mg(als) is close to the target policy mg (a|s).
We therefore optimize for

N
0" :argmaXZ/u(s)/qk(a|s) log mg(als) dads
-

s.t./,u(s) KL(mg (als) || me(als)) ds < 5.

Because of the constraint on the change of the parametric
policy, we do not greedily optimize the M-step objective.
See (Abdolmaleki et al., 2018b) for more details.

