
Selective Dyna-Style Planning Under Limited Model Capacity

A. Parameter Sweep Strategy
To determine the best-performing hyper-parameter setting,
we evaluate each configuration using 10 independent runs
initialized with a different random seed, leading to as many
learning curves. We averaged the learning curves and
summed the second half of the averaged learning curves to
obtain a single number representing the performance of the
particular configuration. If the best-performing parameter
setting falls on the boundary of the range of tested values for
any hyper-parameter, we widened the range until this was
not true. We evaluated the best-performing configuration
using 30 additional runs, each initialized with a different
random seed. We report the average learning curve, along
with its standard error. In all experiments, the resolution
of the reported curves is 2,000 steps: we log the average
returns of the most recent 20 episodes every 2,000 steps.

B. Baseline Algorithms
B.1. Deep Q-Networks (DQN)

We estimate DQN’s action-value function using a fully con-
nected neural network with ReLU activations. We repeat
all experiments with four different fully connected neural
network architectures: 1 hidden layer with 64 hidden units,
1 hidden layer with 128 hidden units, 2 hidden layers with
64 hidden units each, and 2 hidden layers with 128 hidden
units each. For each network architecture, we determine
the best setting for the step-size, the batch size, and the
replay memory size by sweeping over possible parameter
configurations. For DQN baseline, the range of values for
the parameter sweep, and the configuration of the rest of the
hyper-parameters are presented in Table 1.

B.2. Model-Based Value Expansion (MVE)

We implement MVE by extending the DQN algorithm with
the model-based policy evaluation technique described in
Figure 1 of the main paper. We instantiate MVE with a
deterministic model learned using the squared error loss.
We assume the reward signal to be known; that is, we only
learn the dynamics function. We study the effect of model
capacity by progressively reducing the size of the neural
network used for model learning. In particular, we use
four variants of a single hidden layer neural network, which
vary only in the number of hidden units: 128 hidden units,
64 hidden units, 16 hidden units, and 4 hidden units. In
all cases, we learn the model online using the experience
gathered in the replay buffer: at every time-step, alongside
the MVE value function update, we separately sample a
batch of transitions to update the model.

Once we have identified the best hyper-parameter config-
uration for the DQN baselines which vary in their value
function architecture, we keep the same hyper-parameter

configuration for their MVE extensions, and only sweep
over the model learning rate for each of the four model ar-
chitectures. The range of values for the parameter sweep,
and the configuration of the rest of the hyper-parameters are
presented in Table 2.

C. Selective Model-based Value Expansion:
Additional Details and Results

Learned Variance Implementation Details: We modify
the base neural networks for the dynamics function to output
the diagonal covariances alongside the mean next-state vec-
tor. We enforce the positivity constraint on the covariances
by passing the corresponding output through the softplus
function log(1 + exp(·)); and, for numerical stability, we
also add a small constant value of 10−6 to the predicted
covariances (Lakshminarayanan et al., 2017). The model is
optimized using the loss function

L(s,a,s)(θ) = [µθ(s, a)− s′]TΣ−1θ (s, a)[µθ(s, a)− s′]
+ log det Σθ(s, a),

where Σθ(s, a) is assumed to be diagonal. For input (si, ai),
σ2(si, ai) is the trace of Σθ(si, ai). The range of values for
the parameter sweep, and the configuration of the rest of the
hyperparameters are presented in Table 3.

Additional Results for Selective MVE with Learned
Variance. We present Acrobot results for the value func-
tion network architectures with a single hidden layer and
64 hidden units (Figure 10-12), with 2 hidden layers and
64 hidden units each (Figure 13-15), and with a 2 hidden
layer with 128 hidden units each (Figure 16-18). All re-
ported curves are obtained by averaging 30 runs; the shaded
regions represent the standard error. These results are con-
sistent with the discussion in the main paper and provide
additional evidence for the utility of learned variance for
selective planning. For instance, they suggest that selective
planning is useful even when the value function itself has
restricted capacity—the network with only 64 hidden units,
for example.

Selective MVE with ensemble variance. The ensemble-
based selective MVE is exactly like the learned-variance
variant except for one difference: the uncertainty, σ(s, a),
is the variance of the predictions made by the individual
members of the ensemble. (We add the components of the
variance vector to obtain a single number.) The range of
values for the parameter sweep, and the configuration of the
rest of the hyperparameters are presented in Table 4.
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Figure 10. The effect of model capacity on MVE’s performance with the value function network consisting of a single hidden layer and
64 hidden units.
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Figure 11. Results of selective MVE (τ = 0.1) for the value function network consisting of a single hidden layer and 64 hidden units.

D. Regression Example: Additional Details
and Results

In Section 4’s regression experiment, we use Adam opti-
mizer (Kingma & Ba, 2015) for all the methods. We set the
batch size to 16. We consider the learning rates 0.01, 0.001,
and 0.0001. We use ReLU activations for non-linearities,
and initialize the networks with Glorot initialization (Glorot
& Bengio, 2010).

For Monte Carlo dropout, we set the dropout probability
p = 0.1. To obtain the variance, we perform 10 stochastic
forward passes.

For the ensemble method, we use an ensemble of 10 neural
networks. All networks in the ensemble are trained using
the squared-error loss.

For randomized prior functions with bootstrapping, we train
each member of the ensemble on a bootstrapped dataset
generated from the original dataset by randomly sampling
with replacement.

For heteroscedastic regression, we train separate neural
networks for the mean and the variance, and optimize
them jointly using the loss from Equation 1 (main paper).
While we change the capacity of the mean network across
the three regimes (large network, medium-sized network,
and small network), we restrict the variance network to be
small—a single hidden layer with 64 hidden units—in all
three regimes.

For each uncertainty method, every configuration is eval-
uated using 5 independent runs initialized with a different
random seed. While the results remain consistent across the
independent runs, we present results for a single run chosen
randomly. We present results for additional configurations
of the learning rate in Figure 19-20.
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Figure 12. Effect of τ on the performance of Selective MVE with the value function network consisting of a single hidden layer and 64
hidden units.
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Figure 13. The effect of model capacity on MVE’s performance with the value function network consisting of 2 hidden layers with 64
hidden units each.
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Figure 14. Results of selective MVE (τ = 0.1) with value function network of consisting of 2 hidden layers with 64 hidden units each.
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Figure 15. Effect of τ on the performance of Selective MVE with the value function network consisting of hidden layers with 64 hidden
units each.
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Figure 16. The effect of model capacity on MVE’s performance with the value function network consisting of 2 hidden layers with 128
hidden units each.
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Figure 17. Results of selective MVE (τ = 0.1) with the value function network consisting 2 hidden layers with 128 hidden units each.
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Figure 18. Effect of τ on the performance of Selective MVE with the value function network consisting of 2 hidden layers with 128
hidden units each.

Table 1. DQN hyperparameters used in the experiments. The step-size, the batch size, and the replay memory size were determined by
sweeping over the range specified in the respective rows.

Hyperparameter Values

Optimizer RMSProp
Step-size (α) 0.03, 0.01, 0.003, 0.001, 0.0003, 0.0001
Batch size 16, 32, 64
Replay memory size 10000, 20000, 50000
Target network update frequency 256 environment steps
Training frequency 1 update for every environment step
Exploration rate (ε) 0.1
Discount factor (γ) 1.0

Table 2. MVE specific hyperparameters. For each simulated trajectory length (rollout length), the model learning step-size (β) was
determined by sweeping over the range specified in the respective row.

Hyperparameter Values

Optimizer Adam
Model learning step-size (β) 0.1, 0.01, 0.001, 0.0001
Batch size 16
Loss function Homoscedastic (MSE)
Model learning frequency 1 update for every environment step
Simulated trajectory length 2, 3, 4
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Table 3. Hyperparameters for Selective-MVE. Model learning step-size (β) was determined by sweeping over the range specified in the
respective row.

Hyperparameter Values

Optimizer Adam
Model learning step-size (β) 0.1, 0.01, 0.001, 0.0001
Batch size 16
Loss function Heteroscedastic
Model learning frequency 1 update for every environment step
Simulated trajectory length 4
Softmax temperature (τ ) 0.1

Table 4. Hyperparameters for ensemble-based Selective MVE in Acrobot. Model learning step-size (β) was determined by sweeping over
the range specified in the respective row.

Hyperparameter Values

Optimizer Adam
Model learning step-size (β) 0.1, 0.01, 0.001, 0.0001
Batch size 16
Loss function Homoscedastic (MSE)
Model learning frequency 1 update for every environment step
Simulated trajectory length 4
Softmax temperature (τ ) 0.1
Number of networks 5
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Figure 19. Regression results for the learning rate 0.01.
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Figure 20. Regression results for the learning rate 0.0001.


