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1 Theorem 1: Proof

Theorem 1. Supposing D is the data generation distribution and Q is the querying distribution, if the loss
¢ is symmetric, L-Lipschitz; Yh € H is at most H-Lipschitz function and underlying labeling function h* is
d(N)-(D, Q) Joint Probabilistic Lipschitz, then the expected risk w.r.t. D can be upper bounded by:

Bp(h) < Ro(h) + L(H + )W1i(D, Q) + Lo(A)

1.1 Notations

We define the hypothesis h : X — ) = [0, 1] and loss function £ : Y x ) — R, then the expected risk w.r.t.
Dis Rp(h) = Egupl(h(x), h*(x)) and empirical risk Rp(f) = ~ Zfil L(h(x;),y;). We assume the loss ¢
is symmetric, L-Lipschitz and bounded by M.

1.2 Transfer risk
The first step is to bound the the gap Rp(h) — Rg(h):

Rp(h) — Rq(h) < |Rp(h) — Ro(h)| = |Ex~pl(h(x), h*(x)) — Ex~ol(h(x), h*(x))|

= \/ ((h(x), h*(2))d(D — Q)| )
€N

From the Kantorovich - Rubinstein duality theorem and combing Eq. (1), for any distribution coupling
~v € II(D, Q), we have:

= I/ (£(h(2p), h*(2p)) — U(h(zQ), h*(xQ)))d(zp, 20)]
QxQ
S/Q QIf(h(ﬂva),h*(xD)) —U(h(xg), h*(xg))|dy(xp, x0)
< /Q . [(h(zp), W (xp)) — €(h(zD), h*(xg))| + [(h(xp), K (x)) — £(h(zo), M (x0))|dY(xp, o)
Since we assume / is symmetric and L-Lipschitz, then we have:

<L )~ agltrnag) +L [ |hap) - hagldrepag) @)
Qx0 Qx0
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From Eq.(2) the risk gap is controlled by two terms, the property of labeling function and property of
predictor. Moreover, we assume the learner is H-Lipschitz function, then we have:

<L W(en) - W (o)ld(an,zo) + LH | llep - sollad(vp.co)
QxQ QxQ

Labeling function assumption As mentioned before, the goodness of the underlying labeling function
decides the level of risk. [1] formalize the such a property as Probabilistic Lipschitz condition in AL, in
which relaxes the condition of Lipschitzness condition and formalizes the intuition that under suitable feature
representation the probability of two close points having different labels is small [2]. We adopt the joint
probabilistic Lipschitz property, which is coherent with [3].

Definition 1. The labeling function h* satisfies $(\)-(D, Q) Joint Probabilistic Lipschitz if supp(Q) C
supp(D) and for all \ > 0:

Pap.wo)r Il (@) = h*(20)| > Allzp — oll2] < ¢(X) €)

Where ¢(\) reflects the decay rate. [1] showed that the faster the decay of ¢(\) with X\ — 0, the nicer the
distribution and the easier it is to learn the task.

Combining with Eq.(3), the labeling function term can be decomposed and upper bounded by:
<L [ 3 o)~ 1ol < Al ~ wall) i (0) ~ 1 (7o)l (v 7o)
+ L/QXQ L{[B* (@) — h* (@) > Ao — wollo}h* (@) — h*(20)|dy (b, 7o)
< LA/ lzp — zgll2dy(2p, 20) + Lo(N)
QxQ

The first term is upper bounded through the probability of this event at most 1 and second term adopts the
definition of Joint Probabilistic Lipschitz with restricting the output space h*(-) € [0, 1]. Plugging in the
aforementioned results, we have:

< L(H +)) / llep ~ sl (wp.a0) + Lo

Since this inequality satisfies with any distribution coupling -, then it is also satisfies with the optimal coupling,
w.r.t. the Wasserstein-1 distance with the cost function ¢5 distance: || - ||2. Then we have:

Ro(h) — Ro(h) < L(H + \) igf/

Qx

. lzp — zgll2dy(zp, 20) + LP(A)

Finally we can derive:
Rp(h) < Rgo(h)+ L(H + \)W1(D, Q) + Lo(\) 4)

2 Corollary 1: Proof

2.1 Basic statistical learning theory
According to the standard statistical learning theory such as [4], wh.p. 1 — /2, Vh € H we have:

Rp(h) < Rp(h) + 2LRady (h) + £1(5, N) (5)

Where Rady (h) = Esp~E,n[sup, + Zf\il o;h(z;)] is the expected Rademacher complexity with Rady (h) =

O( /%) and k1 (0, N) = O(\/@) is the confidence term.

In the Active learning, the goal is to control the generalization error w.r.t. (D, h*), thus from Eq.5 we have:

Rp(h) < (Rp(h) — Ro(h)) + Ro(h) + 2LRady, (k) + k1 (6, Ny)



Combining with Eq.(4), we have
Rp(h) < Ro(h) + L(H + \)Wi(D, Q) + Lo(\) + 2LRady, (h) + #1(5, Ny)

In general we have finite observations (Supposing we have the sample i.i.d. sampled from query distribution Q)
with Dirac distribution: D = + vazl §{xi} and Q = N%; vaz‘ll 6{x’} with N, < N. Several recent works
show the concentration bound between empirical and expected Wasserstein distance such as [5, 6]. We just
adopt the conclusion from [6] and apply to bound the empirical measures in Wasserstein-1 distance.

Lemma 1. [6] [Definition 3,4] Given a measure 1, on X, the (e, T)-covering number on a given set S C X is:
Ne(p, 7) := inf{N(S) : u(S) > 1 -7}

and the (e, v)-dimension is:
_ log Ne(ps€)

de(/’[’?T): _loge

Then the upper Wasserstein-1 dimensions can be defined as:

d5(p) = inf{s € (2,400) : limsup dc(p, e 2) < s}

e—0

Lemma 2. [6][Theorem 1, Proposition 20] For p = 1 and s > d} (), there exists a positive constant C with
probability at least 1 — §, we have:

1 1
Ha) < —1/s il il
Wiy, in) <CN™V/5 4 S5 log(é)

Since s > 2 thus the convergence rate of Wasserstein distance is slower than O(N~'/2), also named as
weak convergence. Then according to the triangle inequality of Wasserstein-1 distance, we have:

Wi(D, Q) < Wi(D,D) + Wi(D, Q) < Wi(D,D) + Wi (D, Q) + W1 (Q, Q) (6)

Combing the conclusion with Lemma 2, there exist some constants (Cg, sq) and (Cy, s,) we have with
probability 1 — 0/2:

- , _1/s /1. 2 |1 /1
Wi (D, Q) < Wi(D, Q) + CyN /¢ + CuN /5 + 210g(6)(\/;+ Fq) (7

Combining Eq.7 and Eq.5, we have

Rp(h) < Ro(h) + L(H + \)W1(D, Q) + Lé(\) + 2LRad, (h) + (3, N, N,)
Where (0, N, Ny) = O(N~Vsa 4 Nq_l/s" + 4/ log(l\l/é) + 4/ logl(vlq/&))

3 Computing H-divergence and Wasserstein distance

3.1 H divergence

d#(D1,D3) We can discuss the discrepancy with different values of p, since D3 C D; then we have
xo € [a+b,2a — b]:
1. If p < zy — b, then the area of mis-classification will be (2a — p) + 2b. If we select p = xg — b, then the
optimal mis-classification area will be 2a + 2b — zg > 2a + 2b — 2a + b = 3b

2. If p € [xg—b, zo+D], then the area of mis-classification will be (2a —p)+ (p— (2o —b)) = 2a+b—xz¢ >
2a+b—2a+b=2b

3. If p > ¢ + b, then the area of mis-classification will be 2b 4+ max(0, 2a — p), if we select p > 2a, then
the optimal mis-classification area will be 2b.

Then the minimal mis-classification area is 2b, corresponding the optimal risk T-?—b then dy (D1, D3) = GL_H)



d#(D1,Ds) We can discuss the discrepancy with different values of p, since Dy C Dy, then we have
xo € la+b/2,2a —b/2):

1. If p < —xg — b/2, then the mis-classification area will be a + max (0, p 4+ a) + 2b with optimal value
2a+b/2 —xog+2b > a+ 20b;

2. Ifp € [—xo—b/2, —xo+b/2], then the mis-classification area will be p— (—z¢—b/2)+(—a—p)+a+b =
2o+ 3b/2 > a + 2b;

3. If p € [—x0 + b/2, 20 — b/2], then the mis-classification area will be b + a;

4. If p € [wo — b/2, ¢ + b/2], then the mis-classification area will be b + p — (g — b/2) + (2a — p) =
20+ 3b/2 —x9 > 2a+b/2—2a+b/2+b=2b

5. If p > xo + b/2, then the mis-classification area will be 2b + max(0, 2a — p) > 2b

o . . . . . . . . b b
Then the minimal mis-classification area is 2b, corresponding the optimal risk -7, then d(D1,Ds) = Pt

From the previous example dy (D1, D2) = dy (D1, D3), we show the H divergence is not good metric for
measuring the representative in the data space. Since we want the query distribution more diverse spread in the
space, then H may not be a good indicator.

3.2 Wasserstein-1 distance

We can also estimate the distribution distance through Wasserstein-1 metric. From [7] we have:

1
WiPQ) = [ 1F1(2) - G @)la:
0
where F'(z) and G(z) is the CDF (cumulative density function) of distribution P and Q, respectively.

CDF of Dl, D2 and Dg

1.
i(z—l—Qa) —2a <2< —qa
Fi(z) =13 —a<z<a
iz a<z<2a
2a(z—1) 0<z<1/2
Fil ) = [Fad  a=1p2
2az 1/2<2z<1
2.
w(z+mo+b/2)  —wg—b/2<2< —xg+b/2
Fy(z) =414 —z29+b/2<2< 29 —b/2
5z =20 +3b/2) x0—b/2<z2<20+b/2
2bz — xg — b/2 0<z<1/2
Fyl(z) =S [—wo+b/2,20 —b/2] z=1/2
2bz + z0 — 3b/2 1/2<z<1
3.

1
Fs(z) = Q—b(zfx0+b) z € [xg — b,xo + b

Fyl(z) =2bz+ 29— b 2 €0,1]



Computing W, (D1, Ds) According to the definition, we can compute

1/2 b 1 3
W1 (D1, D) :/ |2a(z—1)—2bz—$0—f|dz+/ [2az — 2bz — xo + =b|dz
0 2 1/2 2

We firstly compute f01/2 12a(z — 1) — 2bz — x — £|dz, since 2a(z — 1) — 2bz — 29 — & < 0 for z € [0,1/2]
(since —a — b — xg — b/2 < 0. Then we have:

1/2 b 1/2 b
/ [2a(z — 1) — 2bz — xg — §|dz: {—2a(z—1)+2bz+x0—|—§}dz

0 0
TR

Then we compute the second part:
! 3
/ |2az — 2bz — xg + =b|dz
1/2 2

Z

0 1

{(zo — §b) —2(a—b)z}dz + / {2(a —b)z — xo + §b}dz
1/2 2 o 9

1 3

= 50— gbf - ;(:ro - gb) +5(a-b)

with zg = Ig(;ibb/f. Therefore we can compute the wasserstein-1 distance between distribution D; and Ds:

1
= (1}0 —_

3, 3
2p2 _ op 1 2
=1 b)* —xo+2b+ -a

2 2

With g € [a + b/2,2a — b/2]. If we take zg = 2a — b/2, we can get the maximum:

3 b
max W1(D1,D3) = —a— =
Zo 2 2

Computing W, (D1, D3) According to definition, we can compute

1/2 1
W1 (Dy,D3) = / |2a(z — 1) —2bz—x0—|—b|dz—|—/ |2az — 2bz — xo + bldz
0 1/2

We firstly compute f01/2 |2a(z — 1) — 2bz — xg + bldz, since 2(a — b)z — 2a — xo + b < 0 for z € [0,1/2].
(easy to verify: 2(a — b)z —2a —x9 +b < (a — b) — 2a —x9 + b = —a — z¢ < 0), then

1/2 1/2
/ [2a(z — 1) —2bz—x0+b|dz:/ (o +2a —b) — 2(a — b)zdz
0 0

1 1 3 1
= §(x0+2afb)f Z(afb) = ZaerObe
Then we compute the second term f11/2 [2az — 2bz — xo + b|dz, we define zy = 2‘?27:2) and we can verify that
zo € [1/2,1], then this term can be decomposed as we can rewrite it as:

/ZO —2(a—b)z + (xg — b)dz + / 2(a —b)z — (xg — b)dz
1

/2 Z0

= (z0 — b)" _§(l‘0—b)+

T 2a-b) 2 (a—0)

W | ot

To— 2
Then W1(Dy, D3) = (Z(Z_bb)) —3(xo—b)+3(a—b)+izg+3a-t = ﬁ(xo —b)? — o+ 2a =

ﬁ(xo —b)2 — 20 + 2a since ¢ € [a + b, 2a — b], then we have:

(2o — b)? a?

2a—py TVTHE gy e

min W1 (Dy,Ds) =
zo



. 2
We can verify: ﬁ +a—b> %a — % when a > b, then we have:

min Wy (Dl, Dg) > max Wi (Dh DQ)
xo o

which means in Wasserstein-1 distance metric, the diversity of two distribution can be much better measured.

4 Developing loss in deep batch active learning
We have the original loss:

Jmin max B, ) popl(h(e ) + (B plo(@)] — B, poplo(@)])-

Since f), B and D are Dirac distributions, then we have:

L41—B > g(h(x’y))+u<L4l—UZg(x)_L41—B . 9(@)

(z,y)€LUB z€D zeLUB

— iy X )ty Y AGy)

(zy)el (z,y?)EB
1 1 1 1
(g 296+ g S o) — g D 9@) — g D 9l)
zel zelU zel z€B
_ 1 1 \
" L+B ) f(h(x,y)) + LT—B Z Aﬁ(h(x,y ))
(z,y)eL (z,y?)eB
1 1 1 1
+'u(L—|—U Q(I)—(7L+B—m)zg($))—L+BZQ(I)
zel zel zeB
1 1 1 1
(z,y)EL zeU zel

Training Stage

g X ey - 7223 o)

(z,y?)€B z€B

Querying Stage

We note that z € D means enumerating all samples from the observations (empirical distribution).

5 Redundancy trick: Computation

“(L+1U§j g(x)—(LiB—HlU)%g(w))

_ M(lzﬂljmezﬁ g(x) (1%1 - Hlv)igg(w))
- ,/(% % g(x) - %(HZ[ - 1)% %g(x))
:,/([1]% g(m)—}y?lji%g(@)

®)



6 Uniform Output Arrives the Minimal loss

For the abuse of notation, we suppose the output of classifier h(z,-) = [p1,...

S K pi = 1. Then we tried to minimize

min
p,A>0 4
i=1

K
min Z —logp;
P
i=1

By applying the Lagrange Multiplier approach, we have

K

K
—logpi + A _pi—1)

i=1

Then we do the partial derivative w.r.t. p;, then we have Vi:

bi

—1
7+)\:0 — Di

A

,pK] = p with p; > 0 and

Given Zfil p; = 1, then we can compute p; = % arriving the minimial, i.e the uniform distribution.

7 Experiments

7.1 Dataset Descriptions

Dataset #Classes | Train + Validation | Test | Initially labelled | Query size | Image size
Fashion-MNIST [8] 10 40K + 20K 10K 1K 500 28 x 28
SVHN [9] 10 40K + 33K 26K 1K 1K 32 x 32
CIFARI10 [10] 10 45K + 5K 10K 2K 2K 32 x 32
STL10* [11] 10 8K + 1K 4K 0.5K 0.5K 96 x 96

Table 1: Dataset descriptions

*We used a variant instead of the original STL.10 dataset with arranging the training size to 8K (each class
800) and validation 1K and test 4K. We do not use the unlabeled dataset in our training or test procedure.

7.2 Implementation details

FashionMNIST For the FashionMNIST dataset, we adopted the LeNet5 as feature extractor, then we used
two-layer MLPs for the classification (320-50-relu-dropout-10) and critic function (320-50-relu-dropout-1-

sigmoid).

SVHN, CIFAR10 We adopt the VGG16 with batch normalization as feature extractor. then we used two-layer
MLPs for the classification (512-50-relu-dropout-10) and critic function (512-50-relu-dropout-1-sigmoid).

STL10 We adopt the VGG16 with batch normalization as feature extractor. then we used two-layer MLPs for
the classification (4096-100-relu-dropout-10) and critic function (4096-100-relu-dropout-1-sigmoid).

7.3 Hyper-parameter setting

* We set the initial learning rate as 0.01, then at 50% epoch we decay to le-3, after 75% epoch we decay to
le-4.
** The mixture coefficient means the convex combination coefficient in the two uncertainty based approach.

Dataset Ir Momentum | Mini-Batch size | p Selection coefficient | Mixture coefficient™*
Fashion-MNIST | 0.01* 0.5 64 le-2 5 0.5
SVHN 0.01* 0.5 64 le-2 5 0.5
CIFARI10 0.01* 0.3 64 le-2 10 0.5
STL10 0.01* 0.3 64 le-3 10 0.5

Table 2: Hyper-parameter setting




‘ Random LeastCon ‘ Margin Entropy KMedian ‘ DBAL Core-set DeepFool ‘ WAAL
1K | 58.03+2.81 | 57.93£1.62 | 57.81+2.19 | 57.40+£1.75 | 57.62+2.5 | 58.01+2.75 | 58.14+2.19 | 58.19+£2.4 | 72.29+1.16
1.5K | 66.81£1.02 | 64.24+2.49 | 65.61+2.5 | 66.37£0.62 | 67.13+2.87 | 66.53£2.5 | 68.79£1.99 | 66.21+1.78 | 76.994+1.05
2K | 71.21£2.35 | 68.36£1.09 | 70.05£2.77 | 69.70+0.88 | 71.574+0.79 | 69.77+0.93 | 71.22+1.38 | 70.14+1.32 | 79.854+0.49
2.5K | 73.1242.1 | 71.68£1.67 | 72.74£1.55 | 71.60£1.42 | 73.844+0.98 | 72.604+0.60 | 72.61£1.16 | 71.774+1.49 | 81.08+0.68
3K | 75.80+0.64 | 75.03+1.56 | 76.55+£1.01 | 74.84+£1.29 | 75.79+£0.44 | 74.75£1.04 | 73.77+£1.74 | 73.69£1.21 | 82.04£0.58
3.5K | 77.34+0.67 | 77.73£1.04 | 78.99+1.11 | 76.66+1.26 | 77.444+0.97 | 75.86+1.02 | 75.10+1.11 | 74.004+0.71 | 82.7440.79
4K | 78.68+0.41 | 79.26+£0.47 | 81.77+£0.51 | 79.004+0.24 | 77.974+0.65 | 77.02+0.42 | 76.28 +0.98 | 74.934+2.05 | 83.254+0.62
4.5K | 79.584+0.47 | 80.08+0.82 | 82.324+0.47 | 79.89+0.78 | 79.49+0.7 | 77.90+0.58 | 77.30+0.61 | 76.64+0.97 | 83.96+0.54
5K | 80.02+0.45 | 81.32+0.64 | 83.89+0.84 | 80.85+0.87 | 79.97+0.59 | 78.87+0.58 | 78.344+0.37 | 77.24+0.69 | 84.45+0.45
5.5K | 80.93+0.33 | 83.21+£0.42 | 84.87+£0.18 | 82.26+0.77 | 81.11+0.41 | 79.47£29 | 78.42+0.66 | 77.72+0.57 | 85.20+0.44
6K | 81.30+0.25 | 84.50£0.73 | 85.52+0.27 | 83.66+0.98 | 81.86+£0.6 | 80.43+0.76 | 79.66+£0.34 | 78.994+0.33 | 85.994+0.43
Table 3: Result of FashionMNIST (Average = std)

Random LeastCon ‘ Margin ‘ Entropy ‘ KMedian ‘ DBAL ‘ Core-set DeepFool WAAL
1K | 63.97£2.04 | 63.40+2.16 | 63.10+2.3 | 63.494+2.79 | 63.50£2.53 | 63.76+0.73 | 63.90£1.07 | 63.62+2.34 | 75.18+1.41
2K | 75.85+1.16 | 74.86+£2.44 | 7527+ 1.7 | 72.78+3.15 76.17+3.2 77.07+1.57 77.9£1.25 76.29+1.62 | 80.69+2.00
3K | 80.83+ 1.04 | 81.87+0.64 | 80.9+£2.22 | 80.88+ 1.26 | 81.36+ 1.29 | 81.17+ 1.72 | 81.7 +0.84 | 80.92+ 0.79 | 83.89+ 2.08
4K | 82.70+1.18 | 84.00+£0.88 | 83.10+1.38 | 83.19+0.95 | 83.41+1.58 | 83.95+1.87 84.81£1.3 83.79+£0.64 | 86.82+1.11
5K | 85.104+0.73 | 85.68+£0.94 | 85.02+1.1 | 84.75+0.83 | 84.93+0.94 | 86.34+1.1 86.52+0.95 | 85.32+0.58 | 88.71+1.08
6K | 86.20+0.48 | 87.23+0.97 | 87.53+0.63 | 87.514+0.50 | 87.04+0.45 | 87.61+0.72 | 88.00 £0.44 | 87.02+0.64 | 89.71+0.83

Table 4: Result of SVHN (Average =+ std)

Random LeastCon ‘ Margin ‘ Entropy ‘ KMedian ‘ DBAL ‘ Core-set DeepFool WAAL
2K | 46.33£3.18 | 46.43+3.17 | 46.69+3.87 | 46.79+3.62 | 46.53+3.39 | 46.48+3.11 | 46.384+4.03 | 46.544+3.77 | 55.00£0.40
4K | 56.33+3.40 | 53.264+3.84 | 55.524+2.69 | 53.13+2.99 | 53.58+2.57 | 56.18+2.37 | 56.09+3.89 | 54.48+1.62 | 62.32+0.36
6K | 59.63+4.17 | 59.00+ 2.19 | 63.05+ 1.78 | 62.63+ 1.29 | 61.254+1.76 | 62.48+ 1.38 | 59.56 + 1.17 | 60.80+ 0.70 | 66.67+ 0.60
8K | 62.854+3.37 | 66.46£1.33 | 66.44+1.85 | 65.23£1.89 | 63.73+1.34 | 65.84+0.78 | 65.844+1.27 | 64.87+1.98 | 69.33+1.47
10K | 68.134+2.53 | 68.91+£1.10 | 69.86+0.24 | 69.72+1.53 | 68.924+2.33 | 68.94+1.96 | 69.114+0.80 | 69.394+0.47 | 72.39+1.21
12K | 70.41£1.02 | 71.90+1.35 | 72.254+0.68 | 71.58+0.77 | 72.65+0.64 | 72.25+1.24 | 72.60 +0.79 | 71.17+£1.03 | 75.114+0.49

Table 5: Result of CIFAR10 (Average + std)
‘ Random ‘ LeastCon ‘ Margin Entropy ‘ KMedian ‘ DBAL ‘ Core-set ‘ DeepFool ‘ WAAL
0.5K | 41.78+2.42 | 41.69+£3.22 | 41.81+£2.27 | 41.124+1.67 | 41.24+1.41 | 41.30£1.45 | 41.41+£2.30 | 41.824+2.67 | 47.01£1.09
1K | 48.24+1.37 | 47.05+1.42 46.7+0.85 46.38+£2.31 | 46.45+1.11 | 47.45+£3.71 | 47.584+2.06 | 45.15+0.74 | 52.474+1.62
1.5K | 51.784+2.5 | 50.87+ 1.24 | 50.44+2.57 | 50.24+ 1.21 | 49.91+£1.74 | 52.53+1.29 | 51.2 £ 1.63 | 48.64+2.43 | 57.254+1.78
2K | 56.52+1.78 | 56.254+1.58 | 55.54£1.09 | 55.15+£2.13 | 54.924+2.19 | 57.54+1.70 | 58.13+1.57 | 54.26+2.40 | 60.08+1.63
2.5K | 58.42+£1.42 | 58.49+2.05 | 57.62+1.42 | 57.81+£2.87 | 57.87+£1.51 | 59.254+2.89 | 57.66£1.79 | 57.05+£2.53 | 62.58+1.44
3K | 61.13+£1.67 | 60.804+2.64 | 59.42+1.49 | 60.88+0.72 | 60.004+0.65 | 62.11£1.65 | 61.02 £0.48 | 59.74+1.74 | 65.424+1.33
Table 6: Result of STL10 (Average =+ std)
7.4 Detailed results with numerical values
We report the accuracy in the form of percentage (%), showing in Tab. 3, 4, 5, 6.
8 Ablation study
In this part, we will conduct H-divergence based adversarial training for the parameters of DNN.
Inin max > h(,y) = Z log(g(x)) + Z log(1 — g(x))) )
(z,y)EL zelU zeL

Where the g is defined as the discriminator function !. In the adversarial training, the discriminator parameter
aims at discriminating the empirical unlabeled and labeled data via the binary classification, while the feature

I'This notation is slightly different from the critic function [12]
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Figure 1: Empirical performance on STL10, over five repetitions.

‘ Random ‘ LeastCon ‘ Margin ‘ Entropy ‘ KMedian ‘ DBAL ‘ Core-set ‘ DeepFool ‘ WAAL
2K | 49.85+0.32 | 50.00+1.81 49.84£2.28 | 49.92+1.08 | 49.314+2.76 | 49.58+1.05 | 49.87+4.03 | 49.85+1.36 | 55.004+0.40
4K | 56.63+3.27 | 59.11+0.85 | 61.934+2.12 | 59.15+0.41 | 60.6+0.72 | 58.55+1.99 | 60.97+1.62 | 58.80+2.59 | 62.324+0.36
6K | 62.30+ 2.54 | 63.15+£ 2.21 | 63.04+ 1.98 | 63.74+0.94 | 64.73+1.37 | 63.82+2.33 | 6495+ 1.66 | 64.80+ 1.4 | 66.67+ 0.60
8K | 66.97+0.76 | 64.324+2.58 | 68.30+1.02 | 67.67+1.04 | 65.98+£1.45 | 66.65+1.00 | 67.54+2.16 | 67.65+1.27 | 69.33+1.47
10K | 69.23+1.97 | 69.74+2.52 | 69.98+0.25 | 69.92+1.17 | 70.95+1.93 | 69.96+1.74 | 70.62+0.74 | 70.55+0.80 | 72.39+1.21
12K | 71.78+1.34 | 71.60+£1.25 | 71.56+£1.53 | 72.90+£1.37 | 72.56+1.39 | 73.53+1.71 | 71.83 £1.20 | 71.86+£0.33 | 75.11+0.49

Table 7: Ablation study of CIFAR10 (Average =+ std)
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Figure 2: Ablation study in SVHN: the baselines are all trained by leveraging the unlabeled information through
‘H-divergence.

extractor parameter aims at not being correctly classified. By this manner, the unlabeled dataset will be used for
constructing a better feature representation in the adversarial training. As for the query part, we directly used
baseline strategies. The numerical values will show in Tab. 7. Moreover, we also evaluated the ablation study
for the SVHN dataset, showing in Tab. 8 and Fig. 2.



‘ Random LeastCon Margin Entropy KMedian DBAL Core-set DeepFool WAAL

1K | 68.34+0.96 | 70.3£1.75 | 68.88£1.19 | 68.94+1.17 | 68.38+£0.92 | 68.54+3.65 | 69.29+£0.71 | 70.14+1.84 | 75.18+1.41
2K | 76.63+3.14 | 75.21+2.45 | 74.55+3.16 | 73.554+2.49 | 78.35£1.63 | 76.97+1.19 77.17£1.8 76.74£2.15 | 80.69+2.00
3K | 80.36£0.46 | 80.14+1.66 | 78.66+ 1.54 | 76.10+£ 1.46 | 79.164+ 1.47 | 78.99+ 1.57 | 79.87 £ 0.33 | 80.10£ 1.27 | 83.894 2.08
4K | 82.62+1.15 | 82.81+0.66 | 83.13+1.01 | 83.27+0.18 | 82.89+0.73 | 82.65£1.61 | 84.33+0.72 | 83.47+0.74 | 86.82+1.11
5K | 84.2740.77 | 85.594+0.74 | 84.36+0.75 | 86.15+0.23 | 85.10£0.57 | 84.1840.25 | 86.74+0.34 | 84.75+0.57 | 88.71%£1.08
6K | 85.364+0.36 | 86.444+0.93 | 86.15+0.89 | 86.72 +0.66 | 87.21£0.52 | 86.77+1.26 | 87.31£0.71 | 85.42 £0.55 | 89.71+0.83

Table 8: Ablation study of SVHN (Average + std)

References

[1] Ruth Urner, Sharon Wulff, and Shai Ben-David. Plal: Cluster-based active learning. In Conference on
Learning Theory, pages 376-397, 2013.

[2] Ruth Urner and Shai Ben-David. Probabilistic lipschitzness a niceness assumption for deterministic labels.
In NIPS 2013, 2013.

[3] Nicolas Courty, Rémi Flamary, Amaury Habrard, and Alain Rakotomamonjy. Joint distribution optimal
transportation for domain adaptation. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems 30, pages
3730-3739. Curran Associates, Inc., 2017.

[4] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine learning. MIT
Press, 2018.

[5] Frangois Bolley, Arnaud Guillin, and Cédric Villani. Quantitative concentration inequalities for empirical
measures on non-compact spaces. Probability Theory and Related Fields, 137(3-4):541-593, 2007.

[6] Jonathan Weed and Francis Bach. Sharp asymptotic and finite-sample rates of convergence of empirical
measures in wasserstein distance. arXiv preprint arXiv:1707.00087, 2017.

[7] Larry Wasserman. Lecture note: Statistical methods for machine learning, 2019.

[8] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. 2017.

[9] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading digits
in natural images with unsupervised feature learning. 2011.

[10] Alex Krizhevsky et al. Learning multiple layers of features from tiny images. Technical report, Citeseer,
2009.

[11] Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised feature
learning. In Proceedings of the fourteenth international conference on artificial intelligence and statistics,
pages 215-223, 2011.

[12] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. arXiv preprint arXiv:1701.07875,
2017.

10



