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Abstract

Predictive models are being increasingly used
to support consequential decision making at
the individual level in contexts such as pretrial
bail and loan approval. As a result, there is
increasing social and legal pressure to provide
explanations that help the affected individu-
als not only to understand why a prediction
was output, but also how to act to obtain a
desired outcome. To this end, several works
have proposed optimization-based methods to
generate nearest counterfactual explanations.
However, these methods are often restricted
to a particular subset of models (e.g., deci-
sion trees or linear models) and differentiable
distance functions. In contrast, we build on
standard theory and tools from formal verifica-
tion and propose a novel algorithm that solves
a sequence of satisfiability problems, where
both the distance function (objective) and pre-
dictive model (constraints) are represented as
logic formulae. As shown by our experiments
on real-world data, our algorithm is: i) model-
agnostic ({non-}linear, {non-}differentiable,
{non-}convex); ii) data-type-agnostic (het-
erogeneous features); iii) distance-agnostic
(`

0

, `
1

, `1, and combinations thereof); iv) able
to generate plausible and diverse counterfac-
tuals for any sample (i.e., 100% coverage);
and v) at provably optimal distances.

1 Introduction

Data-driven predictive models are ubiquitously being
used to support or even substitute humans in decision
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making in a wide variety of real-world contexts includ-
ing, e.g., selection process for hiring, loan approval, or
pretrial bail. However, as algorithmic methods are
increasingly used to make consequential decisions at
the individual-level – i.e., decisions that may have
significant consequences for the individuals they decide
about – the debate about their lack of transparency and
explainability becomes more heated. To make things
worse, while the verdict is still out as to what consti-
tutes a good explanation [Doshi-Velez and Kim, 2017,
Freitas, 2014, Kodratoff, 1994, Murdoch et al., 2019,
Lipton, 2018, Rudin, 2018, Rüping, 2006], there
already exists clearly defined legal requirements
for explanations in the context of consequential
decision making. For example, the EU General Data
Protection Regulation (“GDPR”) grants individuals the
right-to-explanation [Voigt and Von dem Bussche, ,
Wachter et al., 2017a], via requiring institutions to
provide explanations to individuals that are subject to
their (semi-)automated decision making systems.

A growing number of works on interpretable ma-
chine learning have recently focused on the defini-
tions of, and mechanisms for providing, good ex-
planations for predictor-based decision making sys-
tems. In the context of consequential decision
making, it is widely agreed that a good explana-
tion should provide answers to the following two
questions [Doshi-Velez and Kim, 2017, Gunning, 2019,
Wachter et al., 2017b]: (i) “why the model outputs a
certain prediction for a given individual? ”; and, (ii)
“what features describing the individual would need to
change to achieve the desired output? ”

Here, we focus on answering the second question,
or equivalently, on generating counterfactual expla-
nations. Of specific importance is the problem of
finding the nearest counterfactual explanation – i.e.,
identifying the set of features resulting in the de-
sired prediction while remaining at minimum dis-
tance from the original set of features describing the
individual. Existing approaches tackling this prob-
lem suffer from various limitations: they either pro-
pose solutions that are tailored to particular mod-
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Figure 1: Architecture Overview for Model-Agnostic Counterfactual Explanations (MACE)

els, e.g., decision trees [Tolomei et al., 2017]; rely on
classical optimization tools, thus being restricted to
convex predictive models and distances [Russell, 2019,
Ustun et al., 2019]; or, solve a relaxed version of the
original optimization problem using gradient-based ap-
proaches, thus being restricted to differentiable mod-
els and distance functions [Wachter et al., 2017b] and
lacking optimality guarantees. Additionally, it is im-
portant to consider that in the context of consequential
decision-making, the features describing individuals are
semantically meaningful and heterogeneous (i.e., mixed
continuous & discrete); and can either be acted upon
(e.g., bank account balance), or immutable and should
be safeguarded from change (e.g., sex, race). A good
explanation should account for these semantics (i.e., be
plausible1) to be useful for the individual, a requirement
that most existing approaches fail to address.

Our contributions. In this paper, we propose a
model-agnostic approach to generate nearest counter-
factual explanations, namely MACE, under any given
distance function (or convex combinations thereof);
while, at the same time, easily supporting additional
plausibility constraints. Moreover, our approach readily
encodes natural notions of distance for heterogeneous
feature spaces, which are common in consequential de-
cision making systems (e.g., loan approval) and consist
of mixed numerical (e.g., age and income) and nominal
features (e.g., gender and education level). To this end,
in MACE we map the nearest counterfactual problem
into a sequence of satisfiability (SAT) problems, by
expressing both the predictive model and the distance
function (as well as the plausibility and diversity con-
straints) as logic formulae. Each of these satisfiability
problems aims to verify if there exists a counterfac-
tual explanation at a distance smaller than a given
threshold, and can be solved using standard SMT (sat-
isfiability modulo theories) solvers. Moreover, we rely

1We emphasize that while our formulation for generating
counterfactuals seems similar to that of adversarial pertur-
bations (image domain), the goals are different: while our
goal is to provide actionable and plausible counterfactuals,
the goal of adversarial examples is to be imperceptible to
humans and hence plausible in the human-perception space,
but not in the data space.

on a binary search strategy on the distance threshold to
find an approximation to the nearest (plausible) coun-
terfactual with an arbitrary degree of accuracy, and a
lower bound on distance such that no counterfactual
provably exists at a smaller distance. Finally, once
nearest counterfactuals are found, diversity constraints
may be added to the satisfiability problems to find
alternative counterfactuals. The overall architecture of
MACE is illustrated in Figure 1.

Our experimental validation on real-world datasets
show that MACE not only achieves 100% cov-
erage by design, but also generates explanations
that are significantly closer than previous ap-
proaches [Tolomei et al., 2017, Ustun et al., 2019]. We
also provide qualitative examples showcasing the flexi-
bility of our approach to generate actionable counter-
factuals by extending our plausibility constraints to
restrict changes to a subset of (non-immutable) fea-
tures. The Python implementation of our algorithms
and the datasets used in our experiments are available
at https://github.com/amirhk/mace.

2 First-order predicate logic

In this section, we briefly recall basic concepts of first-
order predicate logic, which MACE builds upon. We
distinguish between function symbols (for instance, ad-
dition + and multiplication ⇥) and predicate symbols
(for instance, equality = or lesser than <). Function
symbols are used to build expressions, and predicate
symbols are used to build atomic formulae. Exam-
ples of valid expressions are x, x + 2, (�x) + 2 and
(x+2)⇥ (y+3). Examples of valid atomic formulae are
e < e0, e  e0 or e = e0. A (quantifier-free) formula is
a Boolean combination of atomic formulae. That is, a
formula is built from atomic formulae using conjunction
^, disjunction _, and negation ¬. Formulae have an
interpretation over their intended domain. For instance,
a formula about real-valued expressions has a natural
interpretation as a subset of Rn, where n denotes the
number of variables that appear in the formula. The in-
terpretation is obtained by mapping every variable into
a value, e.g., a real number. For example, (2, 1) belongs
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in the interpretation of (x+ 2)⇥ (y + 3)  x⇥ y + 16

since the mapping x 7! 2, y 7! 1 assigns true because
16  18. We say that a formula is satisfiable if its
interpretation as a subset of Rn is non-empty.

The satisfiability problem consists in checking
whether or not a formula is satisfiable. Sat-
isfiability problems can be verified automati-
cally using satisfiability modulo theories (SMT)
solvers like Z3 [de Moura and Bjørner, 2008]
or CVC4 [Barrett et al., 2011]. We refer
to [Kroening and Strichman, 2008] for an exposi-
tion of the basic algorithms used by SMT solvers. For
the purpose of the next sections, it suffices to assume
a given satisfiability oracle SAT. For our experiments,
we use off-the-self SMT solvers to realize the oracle.
We use SMT solvers as black-box, but it is interesting
to note that our formulae fall in the linear fragment of
the theory of reals (i.e. all formulae that only contain
expressions of degree 1 when viewed as multi-variate
polynomials over variables), which can be decided
efficiently using the Fourier-Motzkin algorithm.

3 Counterfactual spaces for predictive

models

This section defines a logical representation of coun-
terfactual explanations for predictive models, which
are functions mapping input feature vectors x 2 X
into decisions y 2 {0, 1}. 2 Given a predictive model
f : X ! {0, 1}, we can define the set of counter-
factual explanations for a (factual) input ˆ

x 2 X as
CFf (ˆx) = {x 2 X | f(x) 6= f(ˆx)}. In words, CFf (ˆx)

contains all the inputs x for which the model f returns
a prediction different from f(ˆx). We also remark that
CFf (ˆx) is the set of preimages of 1� f(ˆx) under f .

For a broad class of predictive models, it is possible to
construct counterfactual formulae capturing member-
ship in CFf . We do so by computing the characteris-
tic formula �f of the model. For a predictive model
f : X ! {0, 1}, and pair of input and output values
x and y, the characteristic formula �f verifies that
�f (x, y) is valid if and only if f(x) = y. Thus, given
a factual input ˆ

x with f(ˆx) = ŷ and �f we define the
counterfactual formula as

�
CFf (ˆx)

(x) = �f (x, 1� ŷ) (1)

Intuitively, the formula on the right hand side of (1)
says that “x is a counterfactual for ˆ

x if either f(ˆx) = 0

and f(x) = 1, or f(ˆx) = 1 and f(x) = 0”. It is
thus clear from the definition that an input x sat-
isfies �

CFf (ˆx)
if and only if x 2 CFf(ˆx). Moreover,

2While here we assume binary predictor models, i.e.,
classifiers, our approach generalizes to regression problems
where y 2 R and more generally any other output domain.

(1) shows that, to construct counterfactual formulae
�
CFf (ˆx)

, we only require the characteristic formulae
of the corresponding predictive models, �f , and the
value of ŷ. To obtain such characteristic formulae
we assume that predictive models are represented by
programs in a core programming language with assign-
ments, conditionals, sequential composition, syntacti-
cally bounded loops and return statements. This al-
lows us to use techniques from the program verification
literature. Specifically, we use the so-called predicate
transformers [Dijkstra, 1968, Hoare, 1969, Floyd, 1993,
Flanagan and Saxe, 2001]. The description of the gen-
eral procedure is provided in Appendix A. For ease of
exposition, we illustrate the construction of character-
istic formulae through two examples, a decision tree
and a multilayer perceptron.

As a first example, consider the decision tree from
Figure 2a which takes as input (x

1

, x
2

, x
3

) 2 {0, 1}2 ⇥
R and returns a binary output in {0, 1}. Figure 2b
provides the programming language description of this
decision tree. To construct a formula representing the
function f(x) = y computed by this tree we first build a
clause for each leaf in the tree by taking the conjunction
of all the conditions encountered in the path from the
root to the leaf. For example, the clause corresponding
to the leftmost leaf on the tree in Figure 2a is (x

1

= 1^
x
3

> 0^ y = 0). Once all these clauses are constructed,
the characteristic formula �f (x, y) corresponding to
the full tree is obtained by taking the conjunction of
all said clauses, as shown in Figure 2c.

As a second example we consider a feed-forward neural
network with one hidden layer followed by a ReLU
activation function, as depicted in Figure 3a. This
model implements a function f : R3 ! {0, 1}, where
the binary decision is taken by thresholding the value
of the last hidden node. The programming language
representation of this model is given in Figure 3b. In
this case, the characteristic formula predicates over
inputs x, output y and program variables zi and z̃i
for each hidden node i representing the values on that
node before and after the non-linear ReLU transfor-
mation, respectively. The characteristic formula is a
conjunction, and each conjunct corresponds to one in-
struction of the program. For example, for the leftmost
hidden node in the first layer of the network in Fig-
ure 3a the variable z

1

is associated with the clause
(z

1

= x
1

� x
2

); and the variable z̃
1

corresponds to the
value of z

1

after the ReLU, which can be written as
the disjunction (z̃

1

= z
1

^ z
1

� 0) _ (z̃
1

= 0 ^ z
1

< 0).
For the output node – in this case, z

3

– we introduce a
pair of clauses representing the thresholding operation,
i.e. (y = 1 ^ z

3

� 0) _ (y = 0 ^ z
3

< 0). Taking the
conjunction of the formulas for each node we obtain
the characteristic formula in Figure 3c.
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1

^ z
1
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1
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1
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2
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Figure 3: Multilayer perceptron: model, program and characteristic formula

4 Finding the nearest counterfactual

Based on the counterfactual space CFf (ˆx) defined in
the previous section, we would like to produce counter-
factual explanations for the output of a model f on a
given input ˆ

x by trying to find a nearest counterfactual,
which is defined as:

ˆ

x

⇤ 2 argmin
x2CFf (ˆx)

d(x, ˆx) . (2)

For the time being, we assume that a notion of distance
between instances, d, is given. For convenience, and
without loss of generality, we also assume that d takes
values in the interval [0, 1].

4.1 Main algorithm

Our goal now is to leverage the representation of
CFf (ˆx) in terms of a logic formula to solve (2). To
this end, we map the optimization problem in (2) into
a sequence of satisfiability problems, which can be ver-
ified or refuted by standard SMT solvers. We do so
by first converting the expression d(x, ˆx)  �, where
� 2 [0, 1], into a logic formula �d,ˆx(x, �), which is valid
if and only if d(x, ˆx)  �. We assume here that the
distance d function is expressed by a program in the
same language that we used to represent the models in
Section 3. In particular, we can leverage the procedure
detailed in Appendix A to automatically construct �d,ˆx.
Then, both the counterfactual formula �

CFf (ˆx)
(x) and

the distance formula �d,ˆx(x, �) are combined into the
logic formula:

�
ˆx,�(x) = �

CFf (ˆx)
(x) ^ �d,ˆx(x, �) ,

which is satisfiable if and only if there exists a counter-
factual x 2 CFf (ˆx) such that d(x, ˆx)  �. To check
whether the above formula is satisfiable we use the
satisfiability oracle SAT( (x)) which returns either an
instance x such that  (x) is valid, or “unsatisfiable” if
no such x exists.

Note that, while the oracle SAT allows us to verify
if there exist counterfactual explanations at distance
smaller or equal than a given threshold �, solving opti-
mization (2) requires finding a nearest counterfactual.
To do so, we apply a binary search strategy on the
distance threshold � 2 [0, 1] that allows us to find ap-
proximately nearest counterfactuals with a pre-specified
degree of accuracy. This is implemented in Algorithm 1,
which for an accuracy parameter ✏ > 0 makes at most
O(log(1/✏)) calls to SAT and returns a counterfactual
ˆ

x✏ 2 CFf (ˆx) such that d(ˆx✏, ˆx)  d(ˆx⇤, ˆx) + ✏, where
ˆ

x

⇤ is some solution of the optimization problem in (2).
This mild dependence on the accuracy ✏ allows Al-
gorithm 1 to trade-off finding arbitrarily accurate so-
lutions of (2) with the number of calls made to the
satisfiability oracle. Note that Algorithm 1 may also ac-
count for potential plausibility or diversity constraints
(refer to next section for further details).

We remark here our approach to find nearest counter-
factuals is agnostic to the details of the model and
distance being used; the only requirement is that they
must be expressable in a fairly general programming
language. As a consequence, we can handle a wide va-
riety of predictive models, including both differentiable
– such as, logisitic regression and multilayer percep-
tron – and non-differentiable predictive models – e.g.,
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Algorithm 1: Binary Search for Nearest Counterfac-
tuals with Satisfiability Oracle
Input: Factual ˆx, counterfactual formula �

CFf (ˆx)
,

distance formula �d,ˆx, constraints formula
�g,ˆx, accuracy ✏

Output: Counterfactual ˆx✏, distance �
max

= d(ˆx✏, ˆx),
lower bound �

min

on (2)
Let �

min

 0 and �
max

 1

while �
max

� �
min

> ✏ do
Let �  �

min

+�
max

2

Let �
ˆx,�(x) �

CFf (ˆx)
(x) ^ �d,ˆx(x, �) ^ �g,ˆx

Let x SAT(�
ˆx,�)

if x is “unsatisfiable” then
Let �

min

 �
else

Let ˆ

x✏  x and �
max

 �

return ˆ

x✏, �min

, �
max

decision trees and random forest– as well as a wide
variety of distance functions (refer to next section for
further details). Moreover, the bound �

min

returned
by Algorithm 1 provides a certificate that any solution
ˆ

x

⇤ to (2) must satisfy d(ˆx⇤, ˆx) > �
min

. This is because
whenever SAT( (x)) returns “unsatisfiable” it does so
by internally constructing a proof that the formula
 (x) is not valid.

4.2 Distance, Plausibility, and Diversity

Next we discuss additional criteria in the form of logic
clauses that guide the satisfiability problem towards
generating a counterfactual explanation with desired
properties.

Distance. We first discuss several forms for the dis-
tance function d(ˆx, ˆx✏) that can be used to define the
notion of nearest counterfactual. To this end, we first
remark that in consequential decision making the input
feature space X = X

1

⇥ · · ·⇥XJ is often heterogeneous
– for example, gender is categorical, education level is
ordinal, and income is a numerical variable. We de-
fine an appropriate distance metric for every kind of
variable in the input feature space of the model as:

�j(xj , x̂j) =

8
><

>:

|xj � x̂j |/Rj if xj is numerical
I[xj 6= x̂j ] if xj is categorical
|xj � x̂j |/Rj if xj is ordinal

,

where Rj corresponds to the range of the feature xj

and is used to normalize the distances for all input
features, such that �j : Xj ⇥ Xj ! [0, 1] for all j, inde-
pendently on the feature type. By defining the distance
vector � = (�

1

, · · · , �J) (being J the total number of
input features), one can now write the distance between

instances as:

d(ˆx, ˆx✏) = ↵||�||
0

+ �||�||
1

+ �||�||1 , (3)

where || · ||p is the p-norm of a vector, and ↵,�, � � 0

such that3 (↵+�)/J+� = 1. Intuitively, 0-norm is used
to restrict the number of features that changes between
the initial instance ˆ

x and the generated counterfactual
ˆ

x✏; the 1-norm is used to restrict the average change
distance between ˆ

x and ˆ

x✏; and 1-norm is used to
restrict maximum change across features. Any distance
of this type can easily be expressed as a program.

Plausibility. Up to this point, we have only consid-
ered minimum distance as the only requirement for
generating a counterfactual. However, this might result
in unrealistic counterfactuals, such as e.g., decrease
the age or change the gender of a loan applicant. To
avoid unrealistic counterfactuals, one may introduce
additional plausibility constraints in the optimization
problem in Eq. (2). This is equivalent to adding a con-
junction in the constraint formula �g,ˆx in Algorithm 1
that accounts for any additional plausibility formulae
�p, which ensure that: i) each feature in the counter-
factual should be data-type and data-range consistent
with the training data; and ii) only actionable fea-
tures [Ustun et al., 2019] are changed in the resulting
counterfactual.

First, since here we are working with heterogeneous
feature spaces, we require all the features in the coun-
terfactual to be consistent in both the data-types (cat-
egorical, ordinal, etc.) and the data-ranges with the
training data. In particular, if a categorical (ordinal)
feature is one-hot (thermometer) encoded to be used as
input to the predictive model, e.g., a logistic regression
classifier, we make sure that the generated counterfac-
tual provides a valid one-hot vector (thermometer) for
such feature. Likewise, for any numerical feature we
ensure that its value in the counterfactual falls into
observed range in the original data used to train the
predictive model.

Moreover, to account for a non-actionable/immutable
feature xj , i.e., a feature whose value in the counter-
factual explanation should match its initial value, we
set �p to be (xj = x̂j). Similarly, we account for vari-
ables that only allow for increasing values by setting
�p = (xj � x̂j).

Diversity. Finally, one might be interested in generat-
ing a (small) set of diverse counterfactual explanations
for the same instance ˆ

x. To this end, we iteratively call
Algorithm 1 with a constraints formula �v that includes

3Constraints on the distance hyperparameters ensure
that the overall distance d(ˆx, ˆx✏) 2 [0, 1]. To this end,
since max || · ||0 = max || · ||1 = J,max || · ||1 = 1, the
hyperparameters must satisfy (↵+ �)/J + � = 1.
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Table 1: Comparison of approaches for generating counterfactual explanations, based on the supported model
types, data types, distance types, plausibility constraints (actionability, data type/range consistency), and optimal
distance guarantees.

Approach Models Data types Distances Plausibility Optimal Distance

Proposed (MACE) tree, forest, lr, mlp heterogeneous `p 8 p X X
Minimum Observable (MO) - heterogeneous `p 8 p X x
Feature Tweaking (FT) tree, forest heterogeneous `p 8 p x x
Actionable Recourse (AR) lr numeric, binary `1, `1 x6 x

diversity clauses to ensure that the newly generated
explanation is substantially different from all the previ-
ous ones. We can encode diversity by forcing that the
distance between every pair of counterfactual explana-
tions is greater than a given value. For example, we can
take4�v =

V
i

�W
j2J(xj 6= x̂i

✏,j

�
to restrict repetitive

counterfactuals by enforcing subsequent counterfactu-
als to have 0-norm distance at least 1 from all previous
counterfactuals.

5 Experiments

In this section, we empirically demonstrate the main
properties of MACE compared to existing approaches.

Datasets. We evaluate MACE at generating counter-
factual explanations on three real-world datasets in the
context of loan approval (Adult [Adult data, 1996] and
Credit [Yeh and Lien, 2009] datasets) and pretrial bail
(COMPAS dataset [Larson et al., 2016]). All the three
datasets present heterogeneous input spaces.

Baselines. We compare the performance of
MACE at generating the nearest counterfactual ex-
planations with: the Minimum Observable (MO)
approach [Wexler et al., 2019], which searches in
the dataset for the closest sample that flips
the prediction; the Feature Tweaking (FT) ap-
proach [Tolomei et al., 2017], which searches for the
nearest counterfactual lying close to the decision bound-
ary of a Random Forest; and the Actionable Recourse
(AR) [Ustun et al., 2019], which solves a mixed integer
linear program to obtain counterfactual explanations
for Linear Regression models. Table 1 summarizes the
main properties of all the considered approaches to
generate counterfactuals.

Metrics. To assess and compare the performance
of the different approaches, we recall the criteria of
good explanations for consequential decisions: i) the
returned counterfactual should be as near as possible
to the factual sample corresponding to the individual’s
features; ii) the returned counterfactual must be plau-
sible (refer to Section 4.2). Hence, we quantitatively
compare the performance of MACE with the above

4
ˆ

x

i
✏,j is the j-th dimensions of the i-th counterfactual.

approaches in terms of i) the normalized distance �;
and ii) coverage ⌦ indicating the percentage of factual
samples for which the approach generates plausible (in
type and range) counterfactuals.

Experimental set-up. We consider as predic-
tive models decision trees, random forest, logis-
tic regression, and multilayer perceptron, which we
train on the three datasets using the Python li-
brary scikit-learn [Pedregosa et al., 2011], with de-
fault parameters.5 Furthermore, to demonstrate
the off-the-shelf flexibility in the various setups
described, we build MACE atop the open-source
PySMT library [Gario and Micheli, 2015] with the Z3
[de Moura and Bjørner, 2008] backend. In Appendix
C.2, we provide a thorough empirical evaluation of the
computational cost of the off-the-shelf PySMT solver –
including run-time comparisons between MACE and
other baselines, – as well as a discussion on the choice of
✏ trading-off arbitrarily accurate solutions of (2) with
the number of calls made to the satisfiability oracle.

For each combination of approach, model, dataset, and
distance, we generate the nearest counterfactual expla-
nations for a held-out set of 500 instances classified
as negative by the corresponding model. Here we con-
sider the `

0

, `
1

, `1 norms as a measure of distance to
identify the nearest counterfactuals. Unfortunately, we
found that FT not once returned a plausible counter-
factual. As a consequence, we modified the original
implementation of FT, to ensure that the generated
counterfactuals are plausible. The resulting Plausible
Feature Tweaking (PFT) projects the set of candidate
counterfactuals into a plausible domain before select-
ing the nearest counterfactual amongst them. This
was not possible for AR because the approach only
returns a single counterfactual, with no avail if it is not
plausible.6

Coverage and distance results. Table 2 shows the

5For the multilayer perceptron, we used two hidden lay-
ers with 10 neurons each to avoid overfitting. See Appendix
B.1 for model selection details.

6 Importantly, Actionable Recourse does support ac-
tionability and data-range plausibility, however, it lacks
support for data-type plausibility – Appendix B.3 describes
the failure points of AR, as reported by the authors.
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Table 2: Coverage ⌦ computed on N = 500 factual samples. For comparison, ⌦MACE = ⌦MO = 100% always, by
definition and by design, respectively. Cells are shaded when tests are not supported. Higher % is better.

Adult Credit COMPAS
`0 `1 `1 `0 `1 `1 `0 `1 `1

tree PFT 0% 0% 0% 68% 68% 68% 74% 74% 74%
forest PFT 0% 0% 0% 99% 99% 99% 100% 100% 100%
lr AR 18% 0.4% 100% 100% 100% 100%

Table 3: Percentage of improvement in distances, computed as 100 ⇤ E[1� �MACE/�Other]. N = ⌦MACE \ ⌦Other
factual samples. Cells are shaded when tests are not supported. The higher the %, the better the improvement.

Adult Credit COMPAS
`0 `1 `1 `0 `1 `1 `0 `1 `1

tree

MACE (✏ = 10

�3) vs MO 47% 80% 70% 67% 66% 47% 1% 5% 5%
MACE (✏ = 10

�5) vs MO 47% 81% 72% 67% 96% 94% 1% 5% 5%
MACE (✏ = 10

�3) vs PFT 53% 87% 85% 14% 56% 54%
MACE (✏ = 10

�5) vs PFT 53% 97% 96% 15% 55% 54%

forest

MACE (✏ = 10

�3) vs MO 51% 81% 69% 68% 61% 38% 1% 6% 6%
MACE (✏ = 10

�5) vs MO 51% 82% 71% 68% 97% 96% 1% 6% 6%
MACE (✏ = 10

�3) vs PFT 53% 84% 81% 4% 28% 27%
MACE (✏ = 10

�5) vs PFT 53% 96% 96% 4% 28% 27%

lr

MACE (✏ = 10

�3) vs MO 62% 92% 86% 80% 82% 80% 3% 8% 6%
MACE (✏ = 10

�5) vs MO 62% 93% 88% 80% 82% 81% 3% 6% 6%
MACE (✏ = 10

�3) vs AR 3% 89% 39% 67% 10% 38%
MACE (✏ = 10

�5) vs AR 5% 91% 42% 71% 10% 38%

mlp MACE (✏ = 10

�3) vs MO 60% 92% 91% 77% 85% 91% 1% 3% 3%
MACE (✏ = 10

�5) vs MO 60% 93% 93% 77% 96% 96% 1% 3% 3%

coverage ⌦ of all the approaches based only on data-
range and data-type plausibility. Note that, since by
definition both MACE and MO have 100% coverage, we
have not depicted these values in the table. In contrast,
PFT fails to return counterfactuals for roughly 15% of
the Credit and COMPAS datasets, while both PFT and
AR achieve minimal coverage on the Adult dataset.7
Focusing on those factual samples for which PFT and
AR return plausible counterfactuals, we are able to com-
pute the relative distance reductions achieved when us-
ing MACE as compared to other approaches, as shown
in Table 3 (additionally, Figure 4 in Appendix B shows
the distribution of the distance of the generated plausi-
ble counterfactual for all models, datasets, distances,
and approaches). Here, we observe that MACE results
in significantly closer counterfactual explanations than
competing approaches, with an average decrease in dis-
tance of 70.2% for Adult, 75.4% for Credit, and 21.1%
for COMPAS. As a consequence, the counterfactuals
generated by MACE would require significantly less
effort on behalf of the affected individual in order to
achieve the desired prediction.

Plausibility contraints. While performing a quali-
tative analysis of generated counterfactuals we observed
that many of them require changes in features that are

7The Adult dataset comprises a realistic mix of integer,
real-valued, categorical, and ordinal variables common to
consequential scenarios; further details in Appendix B.2.

often protected by law such as, age, race, and gen-
der [Barocas and D. Selbst, 2016]. As an example, for
a trained random forest, the counterfactuals generated
by both the MACE and MO approaches required indi-
viduals to change their age. Worse yet, for a substantial
portion of the counterfactuals, a reduction in age was
required, which is not even possible. To further study
this effect, we regenerate counterfactual explanations
for those samples for which age-change was required,
with an additional plausibility constraint ensuring that
the age shall not change (results with constraints to
ensure non-decreasing age are shown in Appendix C.3).
The results presented in Table 4 show interesting re-
sults. First, we observe that the additional plausibility
constraint for the age incurs significant increases in the
distance of the nearest counterfactual – being, as ex-
pected, more pronounced for the `

1

and the `1 norms,
since the `

0

norm only accounts for the number of fea-
tures that change in the counterfactual but not for how
much they change. For the `

0

norm, as expected, we
find that for the 66 factual samples (i.e., 13.2%⇥ 500)
for which the unrestricted MACE required age-change,
the addition of the no-age-change constraint results
in counterfactuals at very similar distance. In fact,
of the newly generated counterfactuals, 8/66 only re-
quire a change in Occupation, and 19/66 only require
a change in Capital Gains, therefore remaining at the
same distance as the original counterfactual. In con-
trast, for the `

1

and the `1 norms we find that the
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Table 4: Percentage of factual samples for which the nearest counterfactual sample requires a change in age for a
random forest trained on the Adult dataset, and the corresponding increase in distance to nearest counterfactual
when restricting the approaches not to change age: 100⇥ E[�restr./�unrestr. � 1]. Lower % is better.

`0 `1 `1
% age-change rel. dist. increase % age-change rel. dist. increase % age-change rel. dist. increase

MACE (✏ = 10

�5) 13.2% 9.0% 20.4% 100.3% 84.4% 32.8%
MO 78.8% 50.9% 92.0% 245.7% 95.6% 193.3%

Table 5: A diverse set of generated counterfactuals is
presented for an individual from the Credit dataset.

Latest
Bill

Latest
Payment

University
Degree

Will default
next month?

Factual $370 $40 some yes
CF #1 $368 $1448 some no
CF #2 $0 $1241 some no
CF #3 $0 $390 graduate no

restricted counterfactual incurs a significant increase
in the distance (cost) with respect to the unrestricted
counterfactual. These results suggest that the predic-
tions of the random forest trained on the Adult data
are strongly correlated to the age, which is often legally
and socially considered as unfair. This suggests that
counterfactuals found with MACE may assist in qualita-
tively ascertaining if other desiderata, such as fairness,
are met [Doshi-Velez and Kim, 2017, Weller, 2017].

Diversity constraints. Finally, we present a situa-
tion where MACE can be used to generate counterfac-
tuals under both plausibility and diversity constraints.
Consider a loan borrower from the Credit dataset iden-
tified with the following features8: John is a married
male between 40-59 years of age with “some” univer-
sity degree. Financially, over the last 6 months, John
has been struggling to make payments on his bank
loan. Given his circumstances, a logistic regression
model trained on the historical dataset has predicted
that John will default on his loan next month. To
prevent this default, the bank uses MACE (`

1

distance,
✏ = 10

�3) to generate the diverse suggestions in Table
5, via successive runs of Algorithm 1. Each new run
augments the constraints formula (already including
plausibility constraints on his age, sex, and marital sta-
tus) with an additional clause enforcing `

0

diversity as
discussed in Section 4.2. The returned counterfactuals
(of which only 3 are shown), present John with diverse
courses of action: either reduce spending and make a
lump-sum payment on the debt (CF #2) or continue
spending the same as before, but make an even larger
payment to account for continued expenditures (CF
#1). Alternatively, providing documents confirming
a graduate degree would put John in a low-risk (no

8Complete feature list in Appendix C.4

default) bracket (CF #3). We invite the reader to
imagine parallels to the above situation for Adult and
COMPAS datasets.

6 Conclusions

In this work, we have presented a novel approach for
generating counterfactual explanations in the context
of consequential decisions. Building on theory and tools
from formal verification, we demonstrated that a large
class of predictive models can be compiled to formulae
which can be verified by standard SMT-solvers. By
conjuncting the model formula with formulae corre-
sponding to distance, plausibility, and diversity con-
straints, we demonstrated on three real-world datasets
and four popular predictive models that the proposed
method not only achieves perfect coverage, but also
generates counterfactuals at more favorable distances
than existing optimization-based approaches. Further-
more, we showed that the proposed method can not
only provide explanations for individuals subject to
automated decision making systems, but also inform
system administrators regarding the potentially unfair
reliance of the model on protected attributes.

There are a number of interesting directions for fu-
ture work. First, MACE can naturally be extended
to support counterfactual explanations for multi-class
classification models, as well as regression scenarios.
Second, extending the multi-faceted notion of plausi-
bility defined in Section 4.2 (actionability, data type-
/range consistency, which focus on individual features),
it would be interesting to account for statistical correla-
tions and unmeasured confounding factors among the
features when generating counterfactual explanations
(i.e., realizability). Third, we would like also to explore
how different notions of diversity may help generating
meaningful and useful counterfactuals. Finally, in our
experiments we noticed that the running time of MACE
directly depends on the efficiency of the SMT solver. As
future work we aim to make the proposed method more
scalable on large models by investigating recent ideas
that have been developed in the context of formal veri-
fication of deep neural networks [Huang et al., 2017,
Katz et al., 2017, Singh et al., 2019] and optimiza-
tion modulo theories [Nieuwenhuis and Oliveras, 2006,
Sebastiani and Tomasi, 2012].
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