
Amir-Hossein Karimi, Gilles Barthe, Borja Balle, Isabel Valera

A Background on programming

language and program verification

Programs We assume given a set of function sym-
bols with their arity. For simplicity, we consider the
case where operators are untyped and have arity 0 (con-
stants), 1 (unary functions), and 2 (binary functions).
We let c, c

1

, and c
2

range over constants, unary func-
tions and binary functions respectively. Expressions
are built from function symbols and variables. The set
of expressions is defined inductively by the following
grammar:

e ::= x variable
| c constant
| c

1

(e) unary function
| c

2

(e
1

, e
2

) binary function

We next assume given a set of atomic predicates. For
simplicity, we also consider that predicates have arity
1 or 2, and let P

1

and P
2

range over unary and binary
predicates respectively. We define guards using the
following grammar:

b ::= P
1

(e) unary predicate
| P

2

(e
1

, e
2

) binary predicate
| b

1

&b
2

conjunction
| b

1

|| b
2

disjunction
| ¬b negation

We next define commands. These include assignments,
conditionals, bounded loops and return expressions.
The set of commands is defined inductively by the
following grammar:

c ::= skip no-op
| x := e assignment
| c

1

; c
2

sequential composition
| if b then c

1

else c
2

conditionals
| for (i = 1, . . . , n) do c for loop
| return e return statement

We assume that programs satisfy a well-formedness
condition. The condition requires that return ex-
pressions have no successor instruction, i.e. we
do not allow commands of the form return e; c or
if b then c; return e else c0; c00. This is without loss of
generally, since commands can always be transformed
into functionally equivalent programs which satisfy the
well-formedness condition.

Single assignment form Our first step to construct
characteristic formulae is to transform programs in an
intermediate form that is closer to logic. Without loss of
generality, we consider loop-free commands, since loops
can be fully unrolled. The intermediate form is called a
variant of the well-known SSA form [Rosen et al., 1988,

Cytron et al., 1991] from compiler optimization. Con-
cretely, we transform programs into some weak form
of single assignment. This form requires that every
non-input variable is defined before being used, and
assigned at most once during execution for any fixed
input. The main difference with SSA form is that we do
not use so-called �-nodes, as we require that variables
are assigned at most once for any fixed input. More
technically, our transformation can be seen as a compo-
sition of SSA transform with a naive de-SSA transform
where �-nodes are transformed into assignments in the
branches of the conditionals.

Path formulae and characteristic formulae Our
second step is to define the set of path formulae. Infor-
mally, a path formula represents a possible execution of
the program. Fix a distinguished variable y for return
values. Then the path formulae of a command c is
defined inductively by the clauses:

PFz:=e(y) = {z = e}
PFc

1

;c
2

(y) = {�
1

^ �
2

| �
1

2 PFc
1

(y)^
�
2

2 PFc
2

(y)}
PF

if b then c
1

else c
2

(y) = {b ^ �
1

| �
1

2 PFc
1

(y)} [
{¬b ^ �

2

| �
2

2 PFc
2

(y)}
PFreturn e(y) = {y = e}

The characteristic formula �c of a command c is then
defined as: _

�2PFc(y)

�

One can prove that for every inputs x
1

, . . . , xn, the
formula �y(x1

, . . . , xn, v) is valid iff the execution of
c on inputs x

1

, . . . , xn returns v. Note that, strictly
speaking, the formula �y contains as free variables the
distinguished variable y, the inputs x

1

, . . . , xn of the
program, and all the program variables, say z

1

. . . zm.
However, the latter are fully defined by the characteris-
tic formula so validity of �y(x1

, . . . , xn, v) is equivalent
to validity of 9z

1

. . . zm. �y(x1

, . . . , xn, v).

Model-Agnostic Counterfactual Explanations for Consequential Decisions

B Experiment Details

In this section we provide further details on the detasets
and methods used in or experiments, together with
some additional results.

B.1 Model Selection

To demonstrate the flexibility of our approach,
we explored four different differentiable and non-
differentiable model classes, i.e., decision tree, ran-
dom forest, logistic regression and multilayer percep-
tron (MLP). As the main focus of our work is to
generate counterfactuals for a broad range of already
trained models, we opted for models’ parametrization
that result in good performance on the considered
datasets (e.g., default parameters). For instance, for
the MLP, we opted for two hidden layers with 10 neu-
rons, since it present better performance in the Adult
dataset (%82.52/%81.94 training/test accuracy) than
other architectures with hidden = {100}(default) and
hidden = {100, 100} which result in %81.69/%81.06
and %81.51/%80.82 training/test accuracy, respectively.
We leave the exploration of other datasets (larger fea-
ture spaces), more complex models (deeper MLPs) and
other SMT solvers as future work.

B.2 Datasets

Here we detail the different types of variables present
in each dataset. We used the default features for
the Adult and COMPAS datasets, and applied the
same preprocessing used in [Ustun et al., 2019] for
the Credit dataset. All samples with missing data
were dropped. We remark that we have relied on
broadly studied datasets in the literature on fair-
ness and interpretability of ML for consequential de-
cision making. For instance, the Credit dataset [34]
(n = 29, 623, d = 14) has been previously studied by
the Actionable Recourse work [29], and the Adult [1]
(n = 45, 222, d = 12, d(one-hot) = 51) and COMPAS
[18] (n = 5, 278, d = 5, d(one-hot) = 7) have been pre-
viously used in the context of fairness in ML [Joseph
et al., 2016; Zafar et al., 2017; Agarwal et al. 2018].

Adult (n = 45, 222, d = 12, d(one-hot) = 51):

• Integer: Age, Education Number, Hours Per Week

• Real: Capital Gain, Capital Loss

• Categorical: Sex, Native Country, Work Class,
Marital Status, Occupation, Relationship

• Ordinal: Education Level

Credit (n = 29, 623, d = 14, d(one-hot) = 20):

• Integer: Total Overdue Counts, Total Months
Overdue, Months With Zero Balance Over Last 6
Months, Months With Low Spending Over Last 6
Months, Months With High Spending Over Last
6 Months

• Real: Max Bill Amount Over Last 6 Months, Max
Payment Amount Over Last 6 Months, Most Re-
cent Bill Amount, Most Recent Payment Amount

• Categorical: Is Male, Is Married, Has History Of
Overdue Payments

• Ordinal: Age Group, Education Level

COMPAS (n = 5, 278, d = 5, d(one-hot) = 7):

• Integer: -

• Real: Priors Count

• Categorical: Race, Sex, Charge Degreee

• Ordinal: Age Group

B.3 Handling Mixed Data Types

While the proposed approach (MACE) naturally han-
dles mixed data types, other approaches do not. Specif-
ically, the Feature Tweaking method generates counter-
factual explanations for Random Forest models trained
on non-hot embeddings of the dataset, meaning that
the resulting counterfactuals will not have multiple cat-
egories of the same variable activated at the same time.
However, because this method is only restricted to
working with real-valued variables, the resulting coun-
terfactual is must undergo a post-processing step to en-
sure integer-, categorical-, and ordinal-based variables
are plausible in the counterfactual. The Actionable Re-
course method, on the other hand, explanations for Lo-
gistic Regression models trained on one-hot embeddings
of the dataset, hence requiring additional constraints to
ensure that multiple categories of a categorical variable
are not simultaneously activated in the counterfactual.
While the authors suggest how this can be supported
using their method, their open-source implementation
converts categorical columns to binary where possible
and drops other more complicated categorical columns,
postponing to future work. Furthermore, the authors
state that the question of mutually exclusive features
will be revisited in later releases 9. Moreover, ordinal
variables are not supported using this method. The
overcome these shortcomings, the counterfactuals gen-
erated by both approaches is post-processed to ensure
correctness of variable types by rounding integer-based
variables, and taking the maximally activated category
as the counterfactual category.

9
https://github.com/ustunb/actionable-recourse/

blob/master/examples/ex_01_quickstart.ipynb

Amir-Hossein Karimi, Gilles Barthe, Borja Balle, Isabel Valera

C Additional Results

C.1 Comprehensive Distance � Results

Following the presentation of coverage ⌦ results in
Table 2 and relative distance � improvement (reduction)
in Table 3 of the main body, in Figure 4 we present
the complete distribution of counterfactual distances
upon termination of Algorithm 1. Importantly, we see
that in all setups (approaches ⇥ models ⇥ norms ⇥
datasets), MACE results are at least as good as any
other approach (MO, PFT, AR).

C.2 Quality vs Complexity

In the main text and in the previous section, we con-
sidered distance comparisons upon termination of Al-
gorithm 1; in this section we explore the effect of the
accuracy parameter ✏ jointly on quality (distance �)
and complexity (run-time ⌧) during execution of Algo-
rithm 1. Importantly, the number of calls made to the
SAT solver follows O(log(1/✏)), where ✏ is the desired
the accuracy term, i.e., orders of magnitude more accu-
racy only cost linearly more SAT calls. The run-time of
each call to the SAT solver is governed by a number of
parameters, including the implementation details of the
SAT solver10, the compute hardware11, among other
factors. Clearly, a higher desired accuracy (i.e., ✏ ! 0)
will result in closer counterfactuals (� 2 [�

⇤, �⇤ + ✏]) at
the cost of higher run-time (higher ⌧), while leaving the
coverage ⌦ unchanged (remaining at 100%, by design).
Figure 5 depicts the average counterfactual distance
and average run-time against the number of calls to
the SAT solver, confirming the intuition above: not
only does MACE always achieve a lower counterfactual
distance12 upon termination, in many cases an early
termination of MACE generates closer counterfactuals
while also being less computationally demanding.

In addition to studying the quality vs complexity trade-
off against number of calls to the SAT solver, in Ta-
ble 6 we compare final run-times (in seconds) upon-
termination of Algorithm 1 for various setups. The
results show that MACE takes less than 5 seconds for lo-
gistic regression; between 5 and 60 seconds for decision
trees and random forests; and between one minute and
three hours for the multilayer perceptron (outliers were
not excluded in computed mean runtimes). In contrast,

10This is assumed beyond the scope of the pa-
per; we built MACE atop the open-source PySMT
library [Gario and Micheli, 2015] with the Z3
[de Moura and Bjørner, 2008] backend to demonstrate its
model-agnostic support of off-the-shelf models.

11All tests were conducted using one X86_64 Xeon(R)
CPU @ 2.60GHz, and 8GB memory.

12Reminder: lower distance is more desirable, as it speci-
fies the least change required of the individual’s features.

competing approaches (MO, PFT, AR) require at most
30 seconds to generate a counterfactual explanation,
when possible (note that the coverage for AR and PFT
is often significantly below 100%, and only MACE is
able to generate counterfactuals for the multilayer per-
ceptron; MO requires access to the training data as it
searches through the training set for a counterfactual).
We believe that this difference is compensated (at least
for the decision tree, the random forest, and the logistic
regression classifiers) by the main properties of MACE
compared to previous works, i.e.: i) model-agnostic
({non-}linear, {non-}differentiable, {non-}convex); ii)
data-agnostic (heterogeneous features); iii) provable
closeness guarantees; and iv) 100% coverage, even
under plausibility and diversity constraints. Regard-
ing the results on MLPs, we are well aware of prior
work that develops efficient SMT-based methods for
verifying large deep neural networks (see formal veri-
fication of deep neural networks [Huang et al., 2017,
Katz et al., 2017, Singh et al., 2019] and optimiza-
tion modulo theories [Nieuwenhuis and Oliveras, 2006,
Sebastiani and Tomasi, 2012]); indeed we plan to lever-
age state-of-the-art tools to improve the efficiency of our
implementation, in particular for MLP-based models.
With the current implementation of MACE, our main
goal was to explore the use of off-the-shelf SMT-solvers
already available in Python to generate counterfactu-
als in a broad range of settings, justifying our lesser
emphasis on efficiency.

In practice the choice of epsilon should reflect the de-
sired distance granularity from the operator, the num-
ber and range of attributes in the data space, and the
decided upon distance norm. For example, using the `

0

norm, which tracks the number of attributes changed,
the lowest achievable distance granularity is 1/J where
J is the data dimensionality. Therefore, choosing any
✏ < 1/J is sufficient and will result in the optimal coun-
terfactual for this choice of distance metric. As another
example, for the continuous `

1

norm, too much gran-
ularity may result in a lack of trust for the end-user –
consider the adult dataset with account balance feature
with range R = $50, 000; choosing a fine granularity
may result in a counterfactual that suggests that only
a few dollars change in the account balance can flip
the prediction (e.g., result in the approval of a loan).
It is important to point out that this phenomenon is
not a fault of the counterfactual generating method
(i.e., MACE), but of the robustness of the underlying
classifier and its decision boundary. While such an
explanation may not be favorable for an end-user, it
may assist a system administrator or model designer
to assay the robustness and safety of their model prior
to deployement.

Model-Agnostic Counterfactual Explanations for Consequential Decisions

Table 6: Wall-clock time (seconds) for computing the nearest counterfactual explanation (without constraints).
N = ⌦MACE \ ⌦Other factual samples; cells are shaded for unsupported tests. Lower run-time is better. The
run-time for MACE depends on O(log(1/✏)), i.e., orders of magnitude more accuracy only cost linearly more
run-time. These results should be considered along Tables 2, 3 comparing coverage ⌦ and distance �.

Adult Credit COMPAS
`
0

`
1

`1 `
0

`
1

`1 `
0

`
1

`1

tree

MACE (✏ = 10

�1) 5.65± 2.18 3.01± 0.74 3.47± 0.93 3.48± 1.25 3.44± 1.70 2.39± 0.64 2.41± 1.06 1.22± 0.36 1.62± 0.78
MACE (✏ = 10

�3) 17.59± 4.87 9.58± 3.05 10.43± 2.98 15.84± 4.78 7.55± 3.44 4.44± 2.20 7.07± 2.09 5.72± 1.28 4.99± 1.89
MACE (✏ = 10

�5) 35.32± 14.07 20.35± 6.34 20.44± 9.55 25.47± 8.71 18.46± 6.24 10.58± 6.36 13.49± 6.44 9.22± 4.21 10.76± 4.60
MO 1.04± 0.26 0.85± 0.27 0.87± 0.22 0.53± 0.15 0.64± 0.26 0.54± 0.23 0.15± 0.07 0.12± 0.06 0.16± 0.07
PFT 1.45± 0.42 1.50± 0.36 1.91± 0.79 0.12± 0.05 0.13± 0.06 0.12± 0.05

forest

MACE (✏ = 10

�1) 27.98± 9.48 17.68± 4.82 19.05± 6.11 28.12± 9.31 21.88± 10.04 21.47± 11.07 8.07± 3.36 3.18± 1.15 3.52± 1.93
MACE (✏ = 10

�3) 69.19± 15.76 55.79± 15.78 52.31± 15.39 57.29± 26.69 40.75± 17.85 26.21± 11.71 15.05± 5.15 10.75± 3.03 8.53± 3.55
MACE (✏ = 10

�5) 89.81± 28.99 84.89± 35.14 78.49± 23.85 107.83± 52.32 90.04± 38.02 72.38± 37.77 33.26± 9.79 19.95± 10.03 17.22± 7.90
MO 1.14± 0.35 0.98± 0.25 0.94± 0.36 0.80± 0.27 0.80± 0.35 0.80± 0.28 0.16± 0.06 0.17± 0.08 0.15± 0.07
PFT 13.41± 7.09 10.46± 4.67 11.79± 6.51 1.93± 0.81 2.11± 1.07 1.83± 0.87

lr

MACE (✏ = 10

�1) 0.85± 0.29 0.66± 0.26 0.74± 0.29 0.33± 0.15 1.17± 1.79 0.49± 0.30 0.21± 0.10 0.19± 0.10 0.22± 0.11
MACE (✏ = 10

�3) 2.22± 0.86 3.55± 1.50 5.15± 3.51 0.87± 0.20 10.57± 8.14 6.11± 3.51 0.52± 0.18 0.31± 0.12 0.54± 0.20
MACE (✏ = 10

�5) 2.73± 0.73 6.60± 3.01 13.32± 6.70 1.19± 0.56 25.10± 21.67 16.21± 8.84 0.84± 0.22 0.72± 0.28 0.77± 0.21
MO 7.52± 1.91 6.62± 1.73 5.73± 1.14 1.86± 0.82 1.41± 0.53 1.69± 0.79 0.30± 0.22 0.25± 0.12 0.25± 0.11
AR 2.05± 0.45 1.86± 0.03 0.72± 0.15 0.66± 0.07 0.07± 0.01 0.06± 0.01

mlp

MACE (✏ = 10

�1) 2586± 4523 8070± 5995 5091± 6616 1743± 4171 3432± 5615 10309± 10088 59± 53 158± 135 90± 90
MACE (✏ = 10

�3) 4187± 9899 34101± 29853 7094± 10919 1703± 5889 3304± 4944 8689± 11638 79± 55 180± 139 122± 103
MACE (✏ = 10

�5) 5888± 9760 44470± 30907 19712± 14117 1901± 4892 4736± 5080 11129± 9773 100± 56 257± 168 203± 149
MO 6.66± 2.17 6.61± 1.96 6.40± 1.60 2.02± 2.09 2.43± 0.41 1.90± 0.83 0.35± 0.12 0.45± 0.10 0.32± 0.09

Table 7: Percentage of factual samples for which the nearest counterfactual sample requires a reduction in age for
a random forest trained on the Adult dataset, and the corresponding increase in distance to nearest counterfactual
when restricting the approaches not to reduce age: 100⇥ E[�restr./�unrestr. � 1].

`0 `1 `1
% age-red. rel. dist. increase % age-red. rel. dist. increase % age-red. rel. dist. increase

MACE (✏ = 10

�5) 3.6% 0% 7.4% 61.3% 34.2% 13.9%
MO 24.6% 29.7% 34.6% 94.6% 34.2% 66.6%

C.3 Additional Constrained Results

Following the study of counterfactuals that change or
reduce age (Section 5), we regenerate counterfactual
explanations for those samples for which age-reduction
was required, with an additional plausibility constraint
ensuring that the age shall not decrease. The results
presented in Table 7 show interesting results. Once
again, we observe that the additional plausibility con-
straint for the age incurs significant increases in the dis-
tance of the nearest counterfactual – being, as expected,
more pronounced for the `

1

and the `1 norms. For the
`
0

norm, we find that for the 18 factual samples (i.e.,
3.6%⇥ 500) for which the unrestricted MACE required
age-reduction, the addition of the no-age-reduction
constraint results in counterfactuals at the same dis-
tance, while suggesting a change in work class (5/18)
or education level (4/18) instead of changing age.

C.4 Details on diverse counterfactuals
example

In the main body, we described a scenario where a
logistic regression model had predicted that a loan
borrower, John, would default on his loan. Here is

john’s complete feature list: John is a married male
between 40-59 years of age with some university degree.
Over the last 6 months, Max Bill Amount = 500.0, Max
Payment Amount = 60.0, Months With Zero Balance
= 0.0, Months With Low Spending = 0.0, Months With
High Spending = 1.0. Furthermore, John has a history
of overdue payments, his Most Recent Bill Amount =
370.0, and his Most Recent Payment Amount = 40.0

Amir-Hossein Karimi, Gilles Barthe, Borja Balle, Isabel Valera

Figure 4: Comparison of approaches for generating unconstrained counterfactual explanations for a (top to
bottom) trained decision tree, random forest, logistic regression, and multilayer perceptron model.
Here the distribution of distance � is shown upon termination of Algorithm 1; lower distance is better. For each
bar, N = 500⇥ ⌦ from Table 2, and absent bars refer to ⌦ = 0. In all setups, MACE results are at least as good
as any other approach.

Model-Agnostic Counterfactual Explanations for Consequential Decisions

Figure 5: Comparison of approaches for generating unconstrained counterfactual explanations for a (top to
bottom) trained decision tree, random forest, logistic regression, and multilayer perceptron model.
Here the average distance � and run-time ⌧ is shown during execution of Algorithm 1 (i.e., over number of calls
to the SAT solver); lower distance and lower run-time is better. Other approaches (MO, PFT, AR) would only be
shown as a single point on these plots, and therefore we repeat their results over all values of the x-axis for ease
of comparison against MACE. Results are averaged over all plausible counterfactuals (N = 500⇥ ⌦ from Table
2,). As expected, Algorithm 1 terminates after different number of iterations depending on the factual instance;
this explains the observed larger variance in results for higher number of iterations. These results confirm our
intuition: not only does MACE always achieve a lower counterfactual distance upon termination, in many cases
an early termination of MACE generates closer counterfactuals while also being less computationally demanding.

