
Proceedings of Machine Learning Research vol 107:246–268, 2020

Borrowing From the Future: An Attempt to Address Double Sampling

Yuhua Zhu YUHUAZHU@STANFORD.EDU
Department of Mathematics, Stanford University, Stanford, CA 94305

Lexing Ying LEXING@STANFORD.EDU

Department of Mathematics and ICME, Stanford University, Stanford, CA 94305

Abstract
For model-free reinforcement learning, one of the main challenges of stochastic Bellman residual
minimization is the double sampling problem, i.e., while only one single sample for the next state is
available in the model-free setting, two independent samples for the next state are required in order
to perform unbiased stochastic gradient descent. We propose new algorithms for addressing this
problem based on the idea of borrowing extra randomness from the future. When the transition ker-
nel varies slowly with respect to the state, it is shown that the training trajectory of new algorithms
is close to the one of unbiased stochastic gradient descent. Numerical results for policy evaluation
in both tabular and neural network settings are provided to confirm the theoretical findings.
Keywords: Reinforcement learning; Policy evaluation; Double sampling; Bellman residual mini-
mization; Stochastic gradient descent.

1. Introduction

Reinforcement learning (RL) has received a lot of attention following the recent successes,
such as AlphaGo and AlphaZero (Silver et al., 2016, 2017). At the center of RL is the problem
of optimizing Markov decision process (MDP), i.e., finding the optimal policy that maximizes the
return (Sutton and Barto, 2018). As a type of learning with minimal or no supervision, RL can be
more powerful than supervised learning and is often considered to be closer to the natural learning
process. On the other hand, as an optimization and control problem, RL is also significantly harder
with many practical challenges, such as long trajectories required for convergence, high dimensional
continuous state and action spaces, learning with limited and noisy samples, etc.

Background. This paper considers policy evaluation, also known as prediction, which is one of
the most basic problems of RL. In model-based RL, especially with small to medium-sized state
space, value iteration is commonly used in practice as it guarantees the convergence (Bertsekas
and Tsitsiklis, 1996). In model-free RL, the temporal difference (TD) algorithm (Sutton, 1988)
converges in the tabular setting as well as with linear approximation. However, the stability and
convergence of TD are not guaranteed when the nonlinear approximation is used (Boyan and Moore,
1995; Baird, 1995; Tsitsiklis and Van Roy, 1997). With the recent development and empirical
successes of deep neural networks (DNNs), it becomes even more important to understand and
stabilize nonlinear approximations.

One direction for stabilizing the nonlinear approximation is to formulate the policy evaluation as
a minimization problem rather than a fixed-point iteration; one such example is the Bellman residual
minimization (BRM) (Baird, 1995), which is sometimes also called Bellman error minimization
in the literature. However, BRM suffers from the so-called double sampling problem, i.e., at a

© 2020 Y. Zhu & L. Ying.

BORROWING FROM THE FUTURE

given state, two independent samples for the next state are required to perform unbiased stochastic
gradient descent (SGD). Such a requirement is often hard to fulfill in a model-free setting, especially
for continuous state space.

Related work. One way to avoid the double sampling problem in BRM is to consider the primal-
dual representation. This method turns the task into finding a saddle point of a minimax problem.
Such a method includes GTD (Sutton et al., 2008, 2009) and its variants (Bhatnagar et al., 2009;
Maei et al., 2010; Dai et al., 2017; Liu et al., 2015). However, the minimax problem can be less
stable than the original minimization problem when the maximum is taken over a non-concave
function. Therefore, a direct application of the primal-dual method to RL problem with nonlinear
function approximations and continuous state space might result in suboptimal performance (see
Section 2.2 and Figure 2 for details.)

Another approach for BRM chooses to solve the minimization problem directly. The stochastic
compositional gradient method (SCGD), proposed in (Wang et al., 2017, 2016), is a two time-scale
algorithm that addresses the double sampling problem in minimizing a function in the form of two
nested expectations. When dealing with the continuous state space, the performance of the SCGD
method is less clear because the minimizer SCGD found is not necessarily the fixed point of the
Bellman operator (see Section 2.2 for details.)

Contributions. In this paper, we revisit the Bellman residual minimization and develop two algo-
rithms to alleviate the double sampling problem. The key idea of the new algorithms is to borrow
extra randomness from the future. When the transition kernel varies slowly with respect to the state,
we show that the training trajectories of the proposed algorithms are statistically close to the one of
the unbiased SGD. The proposed algorithms are applied to the prediction problem (i.e., policy eval-
uation) in both the tabular and neural network settings to confirm the theoretical findings. We also
show that, for continuous state space, our method results in better performance than the primal-dual
method and SCGD. Though the discussion here focuses on policy evaluation, the same techniques
can be extended to Q-Learning (Watkins, 1989) or value iteration.

Organization. The rest of this paper is organized as follows. Section 2 introduces the key idea of
the proposed algorithms and a summary of the paper’s main results. A discussion of related work
is given in Section 2.2. Section 3 gives the details of the proposed algorithms. Section 4 bounds the
errors between the new algorithm and the accurate but unrealistic uncorrelated sampling algorithm.
Numerical results are given in Section 5 to confirm the theoretical findings and demonstrate the
efficiency of the new algorithms.

2. Models and key ideas

This paper considers both continuous and discrete state space models.

• In the continuous state space setting, we consider a discrete-time Markov decision process
(MDP) with continuous state space. The state space S ⊂ Rds is a compact set. Given a fixed
policy, we assume that the one-step transition P (s, s′) is prescribed by an unknown drift α(·)
and an unknown diffusion σ(·),

sm+1 = sm + α(sm)ε+ σ(sm)
√
εZm, Zm ∼ Normal(0, Ids×ds). (2.1)

247

BORROWING FROM THE FUTURE

When the state reaches the boundary, it follows a prescribed boundary condition. Here, we
choose to work with a stochastic differential equation (SDE) setting to simplify the presen-
tation of the algorithms and the theorems. The scalings ε and

√
ε of the drift and the noise

terms correspond to discretizing the SDE with the time step ε. However, both the algorithms
and theorems can be extended to more general cases. The real-valued immediate reward is
denoted by r(s, s′) for s, s′ ∈ S, and the discount factor γ is in (0, 1).

• In the discrete state space setting, S = {0, 1, . . . , n−1}. Given a policy, the transition matrix
P (s, s′) that represents the probability from state s to s′

P (s, s′) = P (sm+1 = s′|sm = s)

is assumed to vary slowly in both s and s′. The function r(s, s′) denotes the immediate reward
function from state s to s′, under the current policy. Finally, the discount rate γ is between 0
and 1.

Since we only consider the prediction problem here, the policy is considered fixed for the rest
of the paper. With these notations, the value function V (s) is the expected discounted return if the
policy is followed from state s,

V (s) = E

[∞∑
m=0

γtr(sm, sm+1)|s0 = s

]
. (2.2)

Let R(s) = E[r(sm, sm+1)|sm = s] be the immediate reward under the fixed policy, and T be the
Bellman operator defined as

TV (s) = R(s) + γE[V (sm+1)|sm = s]. (2.3)

The value function V (s) is the fixed point of the operator T.

2.1. Main ideas and results

Let us consider approximating the value function in a parameterized form V (s, θ) in model-free
RL. Here, the value function approximation can either be linear or nonlinear with respect to the
parameter θ. One way for computing the optimal parameter θ∗ is to perform gradient descent to the
so-called mean-square Bellman residual

min
θ

E (E [R(sm) + γV (sm+1; θ)− V (sm; θ)|sm])2 . (2.4)

This approach is thus called the Bellman residual minimization (BRM) in the literature. The
stochastic gradient descent of BRM is based on an unbiased gradient estimation of the objective
function (2.4), which requires two independent transitions from sm to sm+1. However, for model-
free RL, one does not know explicitly how the environment interacts with the agent. That is to say,
besides observing the agent’s trajectory {sm}Tm=0 under the given policy, one cannot generate sm+1

from sm because one does not know the drift and diffusion in (2.1) explicitly. Since the trajectory
{sm}Tm=0 provides only one simulation from sm to sm+1, there is no direct means to generate the
second copy. This is the so-called double sampling issue.

248

BORROWING FROM THE FUTURE

The main idea of this paper is to alleviate the double sampling issue by borrowing randomness
from the future: instead of requiring a new copy of s′m+1 starting from sm, we approximate it using
the difference between sm+2 and sm+1

s′m+1 ≈ sm + (sm+2 − sm+1).

When the derivatives of the drift and diffusion terms are under control, the difference between ∆sm
and ∆sm+1 is small, which makes the new s′m+1 statistically close to the distribution of the true
next state. We refer to the algorithm based on this idea the BFF algorithm, where BFF is short for
“borrowing from the future”.

Before diving into the algorithmic details, let us first summarize the main properties of the BFF
algorithm. When the derivatives of the implicit drift and diffusion terms are small, we are able to
show, in the continuous state space setting,

• The difference between the biased objective function in the BFF algorithm and the true ob-
jective function is only O(ε2) (Lemma 1);

• The equilibrium distribution of θ of the BFF algorithm differs from the unbiased SGD within
an error of order O(ε

2

η) (Theorem 3);

• The evolution of θ of the BFF algorithm differs statistically from the unbiased SGD only
within an error of O(1 + ε2

η)O(ε2) (Theorem 4).

Here η is the ratio of the learning rate over the batch size. Note that in order to have the error under
control, η cannot be too small. Intuitively, this is because: the algorithm minimizes a slightly biased
objective function, so if the optimization is done without any randomness, the solution will have
little overlap with the exact one.

Although the theoretical results only concern with the first case, we verify numerically in Sec-
tion 5 that the proposed algorithms perform well also in the discrete state space setting.

2.2. Discussion on related work

There are two other ways commonly used to solve the BRM problem. One is the SCGD method
proposed in (Wang et al., 2016), the goal of which is to solve the minimization problem in the form
of

min
θ

Ev[fv(Eω[gω(θ)])].

When V (s; θ) : S→ R|S| is in the vector form, one could set gsm+1 = R(sm)+γV (sm+1)−V (sm)
as a vector function in R|S|, and f =

∑
i g

2
i . Then the above minimization problem automatically

becomes
min
θ

E |E[R(sm) + γV (sm+1)− V (sm)|sm]|2 ,

which gives the fixed point of the Bellman operator T. According to Algorithm 1 in (Wang et al.,
2017), the basic SCGD updates the parameter θ in the following way,

yk+1 = yk + β (R(sm) + γV (sm+1; θk)− V (sm; θk)− yk) ;

θk+1 = θk − τ (γ∇θV (sm+1; θk)−∇θV (sm; θk)) yk+1.
(2.5)

where y ∈ R|S| is a vector.

249

BORROWING FROM THE FUTURE

When the state space S is continuous, V (s; θ) ∈ R is usually represented as a scalar function.
Note that simply set g = R(sm) + γV (sm+1) − V (sm) and f = g2 does not necessarily give the
fixed point of the Bellman operator because there is no conditional expectation of sm+1 on sm in
the objective function. So it is less clear how to apply SCGD to the case of the continuous state
space.

The second method is based on the primal-dual formulation. The GTD method proposed in
(Sutton et al., 2008) is later shown in (Liu et al., 2015) to a primal-dual algorithm for the mean-
squared temporal difference minimization problem. The primal-dual representation of the objective
function (2.4) is

min
θ

max
y∈R|S|

E
[
(E [R(sm) + γV (sm+1; θ)− V (sm; θ)|sm]) y(sm)− 1

2
y(sm)2

]
.

It is easy to check that for a fixed θ, the maximum over y gives the same objective function (2.4).
The SGD method for the above minimax problem is (2.5), which is the same as SCGD.

However, when the state space is continuous, y(·) usually is represented by a nonlinear function,
then the minimax problem becomes

min
θ

max
ω∈R|S|

E
[
(E [R(sm) + γV (sm+1; θ)− V (sm; θ)|sm]) y(sm;ω)− 1

2
y(sm;ω)2

]
, (2.6)

which makes the maximum problem non-concave. Solving the maximum problem over ω by
(stochastic) gradient descent will not necessarily give the objective function (2.4), which brings
in more instability to the performance of the primal-dual algorithm. (See Figure 2 in Section 5.1.)

To summarize, when compared with the other methods, BFF has an advantage for continuous
state space model-free RL problems. BFF also gives comparable results in discrete state space with
the above methods mentioned. However, BFF requires the smoothness assumption of the underlying
dynamics, while such an assumption is not necessary for applying the primal-dual method or the
SCGD.

3. Algorithms

This section describes the BFF algorithms in both the nonlinear approximation setting and the
tabular setting.

3.1. Algorithm with nonlinear approximation

Let us write the BRM (2.4) in an abstract form,

θ∗ = min
θ∈Ω

J(θ), J(θ) := E
[

1

2
(E [f(sm, sm+1; θ)|sm])2

]
, (3.1)

where Ω ⊂ Rd is a compact domain, and

f(sm, sm+1; θ) = R(sm) + γV (sm+1; θ)− V (sm; θ)

is the Bellman residual (sometimes also called Bellman error in the literature). Note that, when V
is approximated by a neural network with standard activation functions, the boundedness of θ and
sm implies that V is also bounded. Following (2.1), define

∆sm := sm+1 − sm = a(sm)ε+ σ(sm)
√
εZm. (3.2)

250

BORROWING FROM THE FUTURE

Suppose now that functions α(s) and σ(s) were known explicitly. SGD with uncorrelated sam-
ples at each state updates the parameter θ as follows

Algorithm 1 [Uncorrelated sampling] Given a trajectory {sm}Tm=0, at step k, randomly select
M elements from {0, · · · , T} to form the index subset Bk, generate a new s′m+1 from sm according
to (2.1), and update

θk+1 = θk −
τ

M

∑
m∈Bk

f(sm, sm+1; θk)∇θf(sm, s
′
m+1; θk),

where τ is the learning rate, and M is the batch size.

However, as we pointed out already, generating another s′m+1 is impractical as α(s) and σ(s) are
unknown in the model-free setting. Instead, the following Sample-cloning algorithm is sometimes
used.

Algorithm 2 [Sample-cloning] Given a trajectory {sm}Tm=0, at step k with τ,Bk,M the same
as in Algorithm 1, update

θk+1 = θk −
τ

M

∑
m∈Bk

f(sm, sm+1; θk)∇θf(sm, sm+1; θk).

Note that the gradient in the above algorithm is not an unbiased gradient of the objective function
in (3.1). In fact, it is an unbiased gradient of E

[
1
2E
[
f(sm, sm+1; θ)2|sm

]]
. We shall see in Section

5 that this algorithm fails to identify the true solution θ∗ even if the underlying drift and diffusion
terms are smooth.

Borrow from the future. Below we propose two algorithms that approximate the minimizer ef-
ficiently when the underlying drift term α(s) and diffusion term σ(s) change smoothly. Instead of
minimizing J(θ), the first algorithm minimizes Ĵ(θ),

min
θ∈Ω

Ĵ(θ), Ĵ(θ) :=
1

2
E [E [f(sm, sm+1; θ)|sm]E [f(sm, sm + ∆sm+1; θ)|sm]] (3.3)

where ∆sm+1 is defined as (3.2). The main idea is to approximate s′m+1 = sm+∆sm in Algorithm
1 with s′m+1 ≈ sm + ∆sm+1, i.e., creating another simulation of sm → sm+1 by borrowing
randomness from the future step sm+1 → sm+2. When ε is small, and the change of the drift
and the diffusion are small as well, we expect the approximation should be close to the unbiased
gradient. Due to the independence between ∆sm and ∆sm+1, we have

Ĵ(θ) =
1

2
E [f(sm, sm+1; θ)f(sm, sm + ∆sm+1; θ)] . (3.4)

From (3.4), one can directly apply SGD algorithm to update the parameter θ from the observed
trajectory {sm}Tm=0.

Algorithm 3 [BFF-loss] Given a trajectory {sm}Tm=0, at step k, τ,Bk,M are the same as in
Algorithm 1

θk+1 = θk −
τ

M

∑
m∈Bk

1

2
∇θ [f(sm, sm+1; θk)f(sm, sm + ∆sm+1; θk)] ,

where ∆sm+1 = sm+2 − sm+1.

251

BORROWING FROM THE FUTURE

An alternative algorithm is applying the same technique directly on the unbiased gradient of the
true objective function. We will show in Section 5 that the two new algorithms behave similarly in
practice.

Algorithm 4 [BFF-gradient] Given a trajectory {sm}Tm=0, at step k, τ,Bk,M are the same as
in Algorithm 1

θk+1 = θk −
τ

M

∑
m∈Bk

f(sm, sm+1; θk)∇θf(sm, sm + ∆sm+1; θk),

where ∆sm+1 = sm+2 − sm+1.

Although these new BFF algorithms are biased when compared with Algorithm 1, Section 4
proves that the bias of Algorithm 3 is small. More specifically, we show that the differences between
Algorithms 1 and 3 are all under control, in terms of the objective function, the evolution of SGD,
and the steady-state distribution.

3.2. Algorithms in the tabular setting

For tabular form, the value function V ∗ ∈ Rn satisfies the following Bellman equation,

V ∗ = T(V ∗) = r + γPV ∗.

In the discrete setting, the BRM becomes

V ∗ = argmin
v∈Rn

1

2
‖r + γPv − v‖2µ ,

where µ is the stationary distribution of the Markov chain. The gradient of the above objective
function can be written as

∇vJ = (γP − I)> diag(µ)(r + γPv − v). (3.5)

Since P appears twice in the above formula, in order to obtain an unbiased approximation of the
above gradient, we need two simulations from sm to sm+1. Given a trajectory {sm}Tm=1, choose a
state sm = i and the next state sm+1 = j. Assuming that the Markov chain reaches equilibrium,
such a choice is an unbiased estimate for diag(µ). If the transition matrix P were known, we could
generate a new state s′m+1 = sj′ and construct an unbiased estimation of ∇vJ : replacing the first
and second copies of P in (3.5) with P1 and P2 given as follows:

(P1)il =

{
1, l = j′

0, otherwise
, (P2)il =

{
1, l = j

0, otherwise
.

Equivalently, the unbiased estimate of the gradient can be written as

(∇vJ)i = −(ri + γvj − vi), (∇vJ)j′ = γ(ri + γvj − vi), (∇vJ)l = 0, ∀l 6= i, j′. (3.6)

However, in the setup of model-free RL, without knowing the transition matrix P , one needs
to approximate V ∗ based on the observed trajectory {sm}Tm=1 alone. The BFF idea s′m+1 ≈ sm +

252

BORROWING FROM THE FUTURE

(sm+2 − sm+1) can also be applied here to give rise to the two BFF algorithms in the tabular form.
Below are the pseudocodes for Algorithms 1-4 in the tabular form, where v is updated based on an
estimate G of the true gradient∇vJ ,

vk+1 = vk − ηGmk ,

where mk is randomly selected from {1, · · · , T} and Gm (dropping the k index for notation conve-
nience) is computed differently as follows in the four algorithms.

• Uncorrelated sampling: Assume sm = i, sm+1 = j, (same for the other three algorithms).
Generate a new s′m+1 by (5.6) and let j′ = s′m+1

(Gm)i = −(ri + γvj − vi), (Gm)j′ = γ(ri + γvj − vi), (Gm)l = 0, ∀l 6= i, j. (3.7)

The uncorrelated sampling algorithm gives an unbiased estimation of the loss function (3.5).
However, it is impractical for model-free RL.

• Sample-cloning:

(Gm)i = −(ri + γvj − vi), (Gm)j = γ(ri + γvj − vi), (Gm)l = 0, ∀l 6= i, j. (3.8)

• BFF-gradient: Let j′ = sm + (sm+2 − sm+1).

(Gm)i = −(ri + γvj − vi), (Gm)j′ = γ(ri + γvj − vi), (Gm)l = 0, ∀l 6= i, j. (3.9)

• BFF-loss: Let j′ = sm + (sm+2 − sm+1).

(Gm)i = −1

2
(ri + γvj − vi)−

1

2
(ri + γvj′ − vi), (Gm)j′ =

γ

2
(ri + γvj − vi),

(Gm)j =
γ

2
(ri + γvj′ − vi), (Gm)l = 0, ∀l 6= i, j, j′.

(3.10)

4. Error estimates

The aim of this section is to show that Algorithm 3 (BFF-loss) for the continuous state space
RL with underlying dynamics (2.1) is close to Algorithm 1 (uncorrelated sampling) statistically.

4.1. Difference between the objective functions

Let us introduce
J̃(θ) := Ĵ(θ)− J(θ). (4.1)

Notice that J̃(θ) = Ej̃(sm; θ) with

j̃(sm; θ) = E [f(sm, sm+1; θ)|sm]E [f(sm, sm + ∆sm+1; θ)− f(sm, sm + ∆sm; θ)|sm] . (4.2)

The following lemma shows that if the values and derivatives of the drift, diffusion, and nonlinear
approximation are bounded, then the difference between the two objective functions J(θ) and Ĵ(θ)
is smaller than Cε2, with the constant depending only on the size of α, σ, f and their derivatives
until the second order.

253

BORROWING FROM THE FUTURE

Lemma 1 For J̃ , j̃ defined in (4.1), (4.2), if
∥∥α(k)(·)

∥∥
L∞

, 0 ≤ k ≤ 3,
∥∥σ(l)(·)

∥∥
L∞

, 0 ≤ l ≤ 4 are
bounded, and

∥∥∂is2f(s1, s2; θ)
∥∥
L∞s1,s2

, 0 ≤ i ≤ 5 are also uniformly bounded for any θ, then for all

θ, one has ∥∥j̃(s, θ)∥∥
L∞s
≤ Cε2 + o(ε2),

J̃(θ) ≤ Cε2 + o(ε2),
(4.3)

for some constantC depending on
∥∥α(i)(·)

∥∥
L∞

,
∥∥σ(i)(·)

∥∥
L∞

,
∥∥∂is2f(s1, s2; θ)

∥∥
L∞s1,s2,θ

, 0 ≤ i ≤ 2.

The boundedness of the residual f is followed by the boundedness of R and V . Since we
assume that the state space S and the parameter space Ω are both compact, for parametric value
approximation, such as neural network, it is natural to assume R, V are bounded.
Proof See Appendix A.

4.2. Difference between the asymptotic distributions

In this section and Section 4.3, we assume the optimization region of (3.1) is a bounded con-
nected open subset Ω in Rd. This assumption is to guarantee the Poincare inequality. The updates of
the parameter θ of J(·) and θ̂ of Ĵ(·) by SGD according to Algorithms 1 and 3 can be approximated
by stochastic differential equations (SDEs) with η = τ

M (Li et al., 2017; Hu et al., 2017)

dθt = −∇J(θt)dt+
√
ηΣ

1
2 (θt)dBt;

dθ̂t = −∇
(
J(θ̂t) + J̃(θ̂t)

)
dt+

√
η
(

Σ(θ̂t) + Σ̃(θ̂t)
) 1

2
dBt,

where

Σ(θt) = V
[

1

2
(E [f(sm, sm+1; θ)|sm])2

]
;

Σ̃(θ̂t) = V
[

1

2
(E [f(sm, sm+1; θ)|sm])2 + j̃

]
− Σ(θ̂).

Here V represents the variance, and j̃ is defined in (4.2).
Therefore, the corresponding probability density functions p(t, θ), p̂(t, θ) of θt, θ̂t can be de-

scribed by (Pavliotis, 2014)

∂tp(t, θ) = ∇ ·
[
(∇J) p+

η

2
∇ · (Σp)

]
; (4.4)

∂tp̂(t, θ) = ∇ ·
[(
∇J +∇J̃

)
p̂+

η

2
∇ ·
(

(Σ + Σ̃)p̂
)]
, (4.5)

with the same initial data p(0, θ) = p̂(0, θ). We use the reflecting boundary condition on ∂Ω,(
∇Jp+

η

2
∇ · (Σp)

)
· n
∣∣∣
∂Ω

= 0,(
(∇J +∇J̃)p̂+

η

2
∇ · (Σ + Σ̃p̂)

)
· n
∣∣∣
∂Ω

= 0,
(4.6)

which means that θ will be reflected after hitting the boundary.

254

BORROWING FROM THE FUTURE

Besides, from the estimation we obtained in (4.3), we know that ∇J̃ ≤ O(ε2), and it is easy to
see that Σ̃ ≤ O(ε2) because

Σ̃(θ̂) =Σ(θ̂) + V[j̃] + E
[
j̃(E [f(sm, sm+1; θ)|sm])2

]
− E

[
j̃
]
E
[
(E [f(sm, sm+1; θ)|sm])2

]
− Σ(θ̂)

≤O(ε4) + C(θ̂)ε2 ≤ Cε2 + o(ε2).
(4.7)

Assumption 2 We assume both loss functions J(θ) and Ĵ(θ) satisfy the following:

-
∫
e−J(θ)dθ ≤ ∞, and

∫
e−Ĵ(θ)dθ ≤ ∞.

- The Frobenius norms of G = ‖H(J)‖L∞θ and Ĝ =
∥∥∥H(Ĵ)

∥∥∥
L∞θ

are bounded by a constant

M , where H represents the Hessian and L∞θ is taken element-wisely to the matrix.

The first assumption is to guarantee that the steady-state is well defined. The second assumption is
used to prove the boundedness of∇p̂ .

Theorem 3 Assume Σ ∼ O(1), Σ̃ are both constants, then there exist steady-state distributions
p∞, p̂∞ for (4.4), (4.5)

p∞(θ) =
1

Z
e−βJ(θ), p̂∞(θ) =

1

Ẑ
e−β̂(J(θ)+J̃(θ)), β =

2

ηΣ
, β̂ =

2

η(Σ + Σ̃)
,

where Z =
∫
e
−2J
ηΣ dθ, Ẑ =

∫
e
−2(J+J̃)

η(Σ+Σ̃) dθ are normalized constants. In addition,∥∥∥∥ p̂∞p∞
∥∥∥∥
L∞
≤ 1 +O

(
ε2

η

)
.

Theorem 3 implies the following:

- If the probability of the unbiased SGD (Algorithm 1) converging to the optimal θ∗ is p, then
the probability of Algorithm 3 is

(
1 +O(ε

2

η)
)
p.

- In order to make Algorithm 3 behaves similarly to the unbiased SGD, we have to let ε2

η be
small, which means we require ε to be small, but η to be larger than ε2. This makes sense
because we are minimizing a biased objective function, so if we do the biased SGD too
carefully, it will end up a worse minimizer of the true objective function.

Proof See Appendix B.

255

BORROWING FROM THE FUTURE

4.3. Difference between finite time distributions

Theorem 3 is about the asymptotic behavior of the algorithm. Now we will study the difference
between the two algorithms at a finite time. The following Poincare inequality of the probability
measure dµ = p∞dθ or dµ = p̂∞dθ in a bounded connected domain is valid for any

∫
hdµ = 0,∫

Ω
|∇h|2 dµ ≥ λ

∫
Ω
h2dµ, (4.8)

with a constant λ depending on dµ and Ω. Based on the above Poincare inequality, we can prove
the difference between the two algorithms, as shown in the following theorem. The difference is
measured in the following norm,

‖h‖2∗ =

∫
h2 1

p∞
dθ, (4.9)

where p∞ is defined in Theorem 3.

Theorem 4 Under Assumption 2 and the assumptions in Theorem 3, one has,

‖p(t, θ)− p̂(t, θ)‖2∗ ≤
(

1 +O

(
ε2

η

))
O(ε2). (4.10)

Theorem 4 tells us that the evolution of θ in Algorithm 3 differs from the unbiased SGD within
an error of

(
1 +O

(
ε2

η

))
O(ε2) .

Proof See Appendix C

5. Numerical Examples

Several numerical examples are presented here to demonstrate the performance of the proposed
algorithms. Recall that the goal of the prediction problem (i.e., policy evaluation) is to approximate
V (s) based on the trajectories.

5.1. Continuous state space

Consider a Markov decision process with a continuous state space S = {s ∈ (0, 2π]}. Suppose
that the transition probability is prescribed implicitly via the following dynamics

sm+1 = sm + α(sm)ε+ σ(sm)
√
εZm,

α(s) = 2 sin(s) cos(s), σ(s) = 1 + cos(s)2, ε = 0.1.
(5.1)

The immediate reward function is R(s) = (cos(2s) + 1), and the discount factor γ is 0.9.
A three-layer, fully connected neural network is used to approximate the value function V (s; θ).

The network has two hidden layers with cos as its activation function. Each hidden layer contains
50 neurons, i.e.,

V (s; θ) = V (x; {wi, bi}3i=1) = Lw3,b3 ◦ cos ◦Lw2,b2 ◦ cos ◦Lw1,b1((cos s, sin s)),

Lwi,bi(x) = wix+ bi, wi ∈ Rni−1×ni , bi ∈ Rni , n0 = 2, n1 = n2 = 50, n3 = 1.
(5.2)

256

BORROWING FROM THE FUTURE

0 1 2 3 4 5 6 7
4

5

6

7

8

9

10

11
V

Sample-cloning

BFF-gradient

BFF-loss

uncorrelated sampling (unrealistic)

V*

0 200 400 600 800 1000
-2

-1.5

-1

-0.5

0

0.5
Decay of the relative error in the log scale

Sample-cloning

BFF-gradient

BFF-loss

uncorrelated sampling (unrealistic)

Figure 1: Continuous state space: approximation with a 3-layer neural network with batch size 1000.

The optimal θ∗ is computed by Algorithms 1-4 based on a trajectory {sm}106

m=1 generated from (5.1).
The function f in Algorithms 1-4 refers to

f(sm, sm+1, θ) = R(sm) + γV (sm+1; θ)− V (sm; θ) (5.3)

in the value evaluation. The learning rate τ and the batch size M are set to be

τ = 0.1, M = 1000. (5.4)

Once the whole trajectory is recorded, we perform a random permutation and use batches of size
M = 1000 for training. In each experiment, the SGD algorithm runs for a single epoch with the
same initialization θ0 and randomly-permuted trajectory. The error ek at each step k is defined as the
squared L2 norm ‖V (·, θk)− V ∗(·)‖2, where the reference solution V ∗(s) is computed by running
Algorithm 1 for 10 epochs based on a longer trajectory {sm}107

m=1, with hyper-parameters τ = 0.01
andM = 1000. The left plot of Figure 1 shows the final V (s, θ) obtained by four different methods,
while the relative errors log10(ek/e0) in the log scale are summarized in the right plot. The plots
show that the Sample-cloning algorithm introduces a rather large error while the BFF algorithms
are much closer to the (impractical) uncorrelated sampling algorithm.

Next, We compare the BFF algorithm with the primal-dual algorithm, i.e., the mini-batch SGD
method for the objective function (2.6). The algorithm reads,

ωk+1 = ωk +
β

M

∑
sm∈Bk

(f(sm, sm+1, θk)∇ωy(sm;ωk)− y(sm;ωk)∇ωy(sm;ωk)) ,

θk+1 = θk −
τ

M

 ∑
sm∈Bk

∇θf(sm, sm+1, θk)y(sm;ωk+1)

 ,

(5.5)

with f, τ,M as in (5.3), (5.4) and β = 0.5. Each simulation uses the same initialization for θ0

and the same random permutation to the trajectory. The results are summarized in Figure 2. The
five dash curves in Figure 2 are the relative errors of the primal-dual algorithm with five different

257

BORROWING FROM THE FUTURE

random initializations of ω0, and among them, only one simulation converges within 1000 steps.
This is because the algorithm might be trapped at a suboptimal stationary point in the nonlinear
approximation setting.

0 100 200 300 400 500 600 700 800 900 1000
-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2
Decay of the relative error in the log scale

BFF-gradient

PD

PD

PD

PD

PD

Figure 2: Continuous state space: approximation with a 3-layer neural network with batch size 1000.

5.2. Discrete state space

Consider a Markov decision process with a discrete state space S = {i = 0, · · · , n − 1} for
n = 32. The transition matrix is the following,

Pi,i+1 =
1

2
− 1

5
sin

2πi

n
, when i = n− 1, i+ 1 = 0;

Pi,i−1 =
1

2
+

1

5
sin

2πi

n
, when i = 0, i− 1 = n− 1.

(5.6)

The immediate reward function is r ∈ Rn with ri = 1 + cos 2πi
n , and the discount rate is γ = 0.9.

The value function V ∗ ∈ Rn satisfies the following Bellman equation,

V ∗ = T(V ∗) = r + γPV ∗, (5.7)

and can be solved from (5.7). The numerical results are carried out both with the neural network
approximation and in the tabular setting.

Neural network approximation. The same neural network architecture is used as in (5.2) with
input s = 2πi

n for approximating the value function. We run Algorithms 1-4 and the primal-dual
algorithm (2.5) to approximate θ∗ based on a trajectory {sm}Tm=1, T = 4 × 106 simulated from
(5.6).

Figure 3 summarizes the results obtained from SGD with a single batch at the learning rate τ =
0.001 and β = 0.1 for the primal-dual algorithm (2.5). The same initialization for θ0 and random
permutation are used for all simulations. The initialization for y0 in the primal-dual algorithm is the

258

BORROWING FROM THE FUTURE

0 1 2 3 4 5 6 7
-5

0

5

10

15

20

25
V

Sample-cloning

BFF-gradient

BFF-loss

uncorralated sampling (unrealistic)

primal-dual

V*

0 0.5 1 1.5 2 2.5 3 3.5

10
6

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

Decay of the relative error in the log scale

Sample-cloning

BFF-gradient

BFF-loss

uncorralated sampling (unrealistic)

primal-dual

Figure 3: Discrete state space: approximation with a 3-layer neural network with batch size 1.

zero vector. The relative errors ek/e0, with ek defined as

ek =

√√√√n−1∑
i=0

(
V

(
2πi

n
, θk

)
− V ∗i

)2

,

are shown in the log scale on the right. The plots of Figure 3 demonstrate that the performance of the
two new algorithms (BFF-loss and BFF-gradient) are very similar. Although they are less accurate
than the uncorrelated case, the performance is much better than the Sample-cloning algorithm and
comparable to the primal-dual algorithm.

Tabular setting. The BFF algorithms proposed in Section 3.2 are used to approximate V ∗ in the
tabular form. In the experiments, τ = 0.1 and the SGD is run for 5 epochs. Again, we compare
the BFF with the primal-dual algorithm (2.5) (equivalent to the SCGD algorithm in this case) with
β = 0.5. In the tabular setting, V (s; θ) = Φ(s)>θ with θ ∈ RN and Φ(si) = ei ∈ RN , where {ei}
are the standard basis vectors of RN . The results summarized in Figure 4 shows that the BFF-loss
algorithm converges slightly faster than the primal-dual/SCGD algorithm, and both significantly
better than the Sample-cloning algorithm. Comparing with Figure 3, it seems that the neural network
approximation results in significantly faster error decay at the initial stage of the training.

Summary. The numerical experiments suggest that BFF algorithms significantly outperform the
Sample-cloning algorithm, as the theory predicted. For the continuous state space setting, the BFF
algorithm performs better than primal-dual algorithms. For the discrete state space setting, BFF is
comparable to the primal-dual algorithm and SCGD.

Acknowledgments

The work of L.Y. and Y.Z. is partially supported by the U.S. Department of Energy, Office of Sci-
ence, Office of Advanced Scientific Computing Research, Scientific Discovery through Advanced
Computing (SciDAC) program. The work of L.Y. is also partially supported by the National Science

259

BORROWING FROM THE FUTURE

0 1 2 3 4 5 6 7
2

4

6

8

10

12

14

16

18
V

Sample-cloning

BFF-loss

GTD/CSGD

V*

0 0.5 1 1.5 2

10
7

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0
Decay of the relative error in the log scale

Sample-cloning

BFF-loss

GTD/CSGD

Figure 4: Discrete state space: tabular approximation.

Foundation under award DMS-1818449. L.Y. thanks Mohammad Ghavamzadeh, Yuandong Tian,
and Amy Zhang for helpful discussions.

260

BORROWING FROM THE FUTURE

References

Leemon Baird. Residual algorithms: Reinforcement learning with function approximation. In
Machine Learning Proceedings 1995, pages 30–37. Elsevier, 1995.

Dimitri P Bertsekas and John N Tsitsiklis. Neuro-dynamic programming, volume 5. Athena Scien-
tific Belmont, MA, 1996.

Shalabh Bhatnagar, Doina Precup, David Silver, Richard S Sutton, Hamid R Maei, and Csaba
Szepesvári. Convergent temporal-difference learning with arbitrary smooth function approxi-
mation. In Advances in Neural Information Processing Systems, pages 1204–1212, 2009.

Justin A Boyan and Andrew W Moore. Generalization in reinforcement learning: Safely approxi-
mating the value function. In Advances in neural information processing systems, pages 369–376,
1995.

Bo Dai, Albert Shaw, Lihong Li, Lin Xiao, Niao He, Zhen Liu, Jianshu Chen, and Le Song.
Sbeed: Convergent reinforcement learning with nonlinear function approximation. arXiv preprint
arXiv:1712.10285, 2017.

Wenqing Hu, Chris Junchi Li, Lei Li, and Jian-Guo Liu. On the diffusion approximation of non-
convex stochastic gradient descent. arXiv preprint arXiv:1705.07562, 2017.

Qianxiao Li, Cheng Tai, et al. Stochastic modified equations and adaptive stochastic gradient algo-
rithms. In Proceedings of the 34th International Conference on Machine Learning-Volume 70,
pages 2101–2110. JMLR. org, 2017.

Bo Liu, Ji Liu, Mohammad Ghavamzadeh, Sridhar Mahadevan, and Marek Petrik. Finite-sample
analysis of proximal gradient TD algorithms. In UAI, pages 504–513. Citeseer, 2015.

Hamid R Maei, Csaba Szepesvári, Shalabh Bhatnagar, and Richard S Sutton. Toward off-policy
learning control with function approximation. In Proceedings of the 27th International Confer-
ence on Machine Learning (ICML-10), pages 719–726, 2010.

Grigorios A Pavliotis. Stochastic processes and applications: Diffusion processes, the Fokker-
Planck and Langevin equations, volume 60. Springer, 2014.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. Stochastic processes and application-
sature, 529(7587):484, 2016.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. Nature, 550(7676):354, 2017.

Richard S Sutton. Learning to predict by the methods of temporal differences. Machine learning, 3
(1):9–44, 1988.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

261

BORROWING FROM THE FUTURE

Richard S Sutton, Csaba Szepesvári, and Hamid Reza Maei. A convergent O(n) algorithm for
off-policy temporal-difference learning with linear function approximation. Advances in neural
information processing systems, 21(21):1609–1616, 2008.

Richard S Sutton, Hamid Reza Maei, Doina Precup, Shalabh Bhatnagar, David Silver, Csaba
Szepesvári, and Eric Wiewiora. Fast gradient-descent methods for temporal-difference learning
with linear function approximation. In Proceedings of the 26th Annual International Conference
on Machine Learning, pages 993–1000. ACM, 2009.

John N Tsitsiklis and Benjamin Van Roy. Analysis of temporal-diffference learning with function
approximation. In Advances in neural information processing systems, pages 1075–1081, 1997.

Mengdi Wang, Ji Liu, and Ethan Fang. Accelerating stochastic composition optimization. In Ad-
vances in Neural Information Processing Systems, pages 1714–1722, 2016.

Mengdi Wang, Ethan X Fang, and Han Liu. Stochastic compositional gradient descent: algorithms
for minimizing compositions of expected-value functions. Mathematical Programming, 161(1-
2):419–449, 2017.

Christopher John Cornish Hellaby Watkins. Learning from delayed rewards. 1989.

Appendix A. Proof of Lemma 1

Proof Let
δ(sm, θ) = E [f(sm, sm + ∆sm+1; θ)− f(sm, sm + ∆sm; θ)|sm] ,

then
j̃(sm, θ) = E [f(sm, sm+1; θ)| sm] δ(sm, θ); J̃(θ) =

1

2
E j̃(sm, θ). (A.1)

We first estimate the term δ(sm, θ). By Taylor expansion,

f(sm, sm + ∆sm+1; θ)− f(sm, sm + ∆sm; θ)

= [f(sm, sm + ∆sm+1; θ)− f(sm, sm; θ)]− [f(sm, sm + ∆sm − f(sm, sm; θ)]

=∂s2f(sm, sm; θ) (∆sm+1 −∆sm) +
1

2
∂2
s2f(sm, sm; θ)

(
∆s2

m+1 −∆s2
m

)
+

1

6
∂3
s2f(sm, sm; θ)

(
∆s3

m+1 −∆s3
m

)
+

1

24
∂4
s2f(sm, sm; θ)

(
∆s4

m+1 −∆s4
m

)
+

1

120

(
∂5
s2f(sm, sm + s′; θ)∆s5

m+1 − ∂5
s2f(sm, sm + s′′; θ)∆s5

m

)
,

for some s′ ∈ (0,∆sm+1), s′′ ∈ (0,∆sm). By the definition of ∆sm in (3.2), we have ∆s5
m,∆s

5
m+1 ≤

o(ε2), so the last term of the above equation is of order o(ε2). Therefore, one has,

δ(sm, θ) =
4∑
i=1

1

i!
∂is2f(sm, sm; θ)E

[
∆sim −∆sim+1|sm

]
+ o(ε2). (A.2)

262

BORROWING FROM THE FUTURE

The Taylor expansion of α(sm+1), σ(sm+1) can be represented by

α(sm+1) = α(sm) + α′(sm)∆sm +
1

2
α′′(sm)∆s2

m + o(ε),

σ(sm+1) = σ(sm) + σ′(sm)∆sm +
1

2
σ′′(sm)∆s2

m +
1

6
σ′′′(sm)∆s3

m + o(ε3/2),

(A.3)

which gives,

∆sm+1 −∆sm = (α(sm+1)− α(sm)) ε+ σ(sm)Zm+1

√
ε− σ(sm)Zm

√
ε

=

(
α′(sm)∆sm +

1

2
α′′(sm)∆s2

m

)
ε+ o(ε2)

+

(
σ(sm) + σ′(sm)∆sm +

1

2
σ′′(sm)∆s2

m +
1

6
σ′′′(sm)∆s3

m

)
Zm+1

√
ε− σ(sm)Zm

√
ε+ o(ε2).

Since E[h(sm)Zm|sm] = E[g(sm)Zm+1|sm] = 0 for any functions h, g, the last line of the above
equation vanishes after taking conditional expectation on sm. This implies,

E [∆sm+1 −∆sm|sm] = E
[(
α′(sm)∆sm +

1

2
α′′(sm)∆s2

m

)
ε|sm

]
+ o(ε2)

=E
[(
α′(αε+ σ

√
εZm) +

1

2
α′′(α2ε2 + 2ασε3/2Zm + σ2εZ2

m)

)
ε|sm

]
+ o(ε2)

=α′αε2 +
1

2
α′′σ2ε2 + o(ε2).

(A.4)

Here α, α′, σ refers to the function’s value at sm, similar for σ′, σ′′, ∂is2f . We omit (sm) when the
functions has its value at sm.

Using (A.3), one can estimate ∆sim+1 for i = 2, 3, 4 as follows,

∆s2
m+1 =α(sm+1)2ε2 + σ(sm+1)2Z2

m+1ε+ 2α(sm+1)σ(sm+1)Zm+1ε
3/2

=α2ε2 +
(
σ2 + (σ′)2∆s2

m + 2σσ′∆sm + σσ′′∆s2
m

)
Z2
m+1ε

+ 2
(
ασ + ασ′∆sm + α′σ∆sm

)
Zm+1ε

3/2 + o(ε2);

∆s3
m+1 =3α(sm+1)σ2(sm+1)Z2

m+1ε
2 + σ3(sm+1)Z3

m+1ε
3/2 + o(ε2)

=3ασ2Z2
t+1ε

2 + σ3(sm+1)Z3
m+1ε

3/2 + o(ε2);

∆s4
m+1 =σ4(sm+1)Z4

m+1ε
2 + o(ε2) = σ4Z4

m+1ε
2 + o(ε2).

Therefore,

E
[
∆s2

m+1 −∆s2
m|sm

]
=E

[(
σ′2∆s2

m + 2σσ′∆sm + σσ′′∆s2
m

)
ε|sm

]
+ o(ε2)

=E
[((

σ′2 + σσ′′
) (
σ2Z2

mε+ o(ε)
)

+ 2σσ′(αε+ σZm
√
ε)
)
ε|sm

]
+ o(ε2)

=
(
σ′2 + σσ′′

)
σ2ε2 + 2σσ′αε2 + o(ε2);

E
[
∆s3

m+1 −∆s3
m|sm

]
=o(ε2);

E
[
∆s4

m+1 −∆s4
m|sm

]
=o(ε2).

(A.5)

263

BORROWING FROM THE FUTURE

Hence, by inserting (A.4) and (A.5) into (A.2) gives,

δ(θ) =

[
∂s2f

(
α′α+

1

2
α′′σ2

)
+ ∂2

s2f
(
σ′2σ2 + σσ′′σ2 + 2σσ′α

)]
ε2 + o(ε2). (A.6)

As defined in (4.2) and (A.1), the completion of the proof is followed by,

j̃ =
1

2
E[f(sm, sm+1; θ)|sm]δ ≤ Cε2 + o(ε2);

J̃ = Ej̃ ≤ Cε2 + o(ε2).

Appendix B. Proof of Theorem 3

Proof We first observe

p̂∞

p∞
=
Z

Ẑ

e−β̂(J(θ)+J̃(θ))

e−βJ(θ)
=
Z

Ẑ
e−(β̂−β)J(θ)e−β̂J̃(θ) =

Z

Ẑ
e

Σ̃
η

2J(θ)

Σ(Σ+Σ̃) e
− J̃(θ)

η
2

(Σ+Σ̃) .

By the fact that Σ̃ ≤ O(ε2), J̃ ≤ O(ε2), we have∥∥∥∥ p̂∞p∞
∥∥∥∥
L∞
≤ Z

Ẑ
e
O
(
ε2

η

)
≤ Z

Ẑ

(
1 +O

(
ε2

η

))
.

Similarly, it is easy to see that Z
Ẑ
∼ (1 +O(ε2/η)) because,

Z

Ẑ
=

∫
Ω e
−βJdθ∫

Ω e
−βJe−(β̂−β)Je−β̂J̃dθ

=

∫
Ω e
−βJdθ∫

Ω e
−βJ

(
1 +O

(
ε2

η

))2
dθ

= 1 +O

(
ε2

η

)
.

Therefore, ∥∥∥∥ p̂∞p∞
∥∥∥∥
L∞
≤
(

1 +O

(
ε2

η

))2

≤ 1 +O

(
ε2

η

)
.

Appendix C. Proof of Theorem 4

Proof Letting h(t, θ) = p̂(t, θ)− p(t, θ) and subtracting (4.4) from (4.5) leads to

∂th =∇ ·
[
(∇J +∇J̃)p̂+

1

β̂
∇p̂
]
−∇ ·

[
∇Jp+

1

β
∇p
]

=∇ ·
[
∇Jh+

1

β
∇h
]

+∇ ·
[
∇J̃ p̂+

(
1

β̂
− 1

β

)
∇p̂
]

=∇ ·
[
p∞∇

(
h

p∞

)]
+∇ ·

[
∇J̃ p̂+

(
1

β̂
− 1

β

)
∇p̂
]
.

264

BORROWING FROM THE FUTURE

Multiply h
p∞ to the above equation, then integrate it over θ, one has,

1

2
∂t ‖h‖2∗ =

h

p∞

(
(∇J +∇J̃)p̂+

1

β̂
∇p̂
)
· n
∣∣∣∣
∂Ω

− h

p∞

(
∇Jp+

1

β
∇p
)
· n
∣∣∣∣
∂Ω

−
∫ [
∇
(
h

p∞

)]2

p∞dθ −
∫ [
∇J̃ p̂+

(
1

β̂
− 1

β

)
∇p̂
]
· ∇
(
h

p∞

)
dθ.

The first two terms on the RHS vanish because of the reflecting boundary condition (4.6). Since
∇J̃ , Σ̃ ≤ O(ε2) have been shown in Lemma 1 and (4.7), this leads to the two coefficients of the last
term can be bounded by

∥∥∥∇J̃∥∥∥
L∞
≤ C1ε

2, 1
β̂
− 1

β = ηΣ̃/2 ≤ C2ηε
2. Therefore, applying Young’s

inequality to the last term gives,∫ [
∇J̃ p̂+

(
1

β̂
− 1

β

)
∇p̂
]
· ∇
(
h

p∞

)
dθ

≤
∥∥∥∇J̃∥∥∥

L∞

∫ ∣∣∣∣p̂ · ∇(h

p∞

)∣∣∣∣ dθ +

(
1

β̂
− 1

β

)∫ ∣∣∣∣∇p̂ · ∇(h

p∞

)∣∣∣∣ dθ
≤1

2
C1ε

2

(
‖∇p̂‖2∗ +

∫ [
∇
(
h

p∞

)]2

p∞dθ

)
+

1

2
C2ηε

2

(
‖∇p̂‖2∗ +

∫ [
∇
(
h

p∞

)]2

p∞dθ

)
.

The third term can be bounded according to the Poincare Inequality (4.8), thus one has

1

2
∂t ‖h‖2∗

≤− λ

2
‖h‖2∗ −

1

2

∫ [
∇
(
h

p∞

)]2

p∞dθ +
ε2

2

(
C1 ‖p̂‖2∗ + C2η ‖∇p̂‖2∗ + (C1 + C2η)

∫ [
∇
(
h

p∞

)]2

p∞dθ

)

≤− λ

2
‖h‖2∗ +

ε2

2

(
C1 ‖p̂‖2∗ + ηC2 ‖∇p̂‖2∗

)
.

(C.1)

Since we only consider the case when ε << 1, so the coefficient of
∫ [
∇
(

h
p∞

)]2
p∞dθ, −(1 −

ε2(C1 + C2η))/2, is always negative, which gives the last inequality of the above estimates.
Therefore, as long as ‖p̂‖2∗ , ‖∇p̂‖

2
∗ are bounded, we can bound ‖h‖2∗ from (C.1). We prove the

boundedness of ‖p̂‖2∗ , ‖∇p̂‖
2
∗ in Lemma 5 and Lemma 6 in Appendix D and E. Then, we can bound

the last term of (C.1) by

ε2

2

(
C1 ‖p̂‖2∗ + ηC2 ‖∇p̂‖2∗

)
≤ C

2

∥∥∥∥ p̂∞p∞
∥∥∥∥
L∞

ε2,

for some constant C. Hence from (C.1), we have,

∂t

(
eλt ‖h‖2∗

)
≤ eλt

(
C

∥∥∥∥ p̂∞p∞
∥∥∥∥
L∞

ε2
)
,

eλt ‖h‖2∗ − ‖h(0)‖2∗ ≤
1

λ
(eλt − 1)C

∥∥∥∥ p̂∞p∞
∥∥∥∥
L∞

ε2.

265

BORROWING FROM THE FUTURE

Since p(0, θ) = p̂(0, θ), h(0, θ) = 0. Therefore,

‖h‖2∗ ≤
1

λ
(1− e−λt)C

∥∥∥∥ p̂∞p∞
∥∥∥∥
L∞

ε2 ≤
(

1 +O

(
ε2

η

))
O(ε2).

Appendix D.

Lemma 5 The solution to (4.5) is bounded

‖p̂‖2∗ ≤ C
∥∥∥∥ p̂∞p∞

∥∥∥∥
L∞

,

with some constant C related to the initial data.

Proof We first prove that the difference of p̂ and p̂∞ is exponentially decay. Define norm ‖g‖2∗̂ as
follows,

‖g‖2∗̂ =

∫
g2 1

p̂∞
dθ,

where p̂∞ is defined in Theorem 3. Let g = p̂− p̂∞, then g satisfies,

∂tg = ∇ ·
[
p̂∞∇

(
g

p̂∞

)]
. (D.1)

Multiplying g
p̂∞ , and integrating it over θ, after integration by parts, one has

1

2
∂t ‖g‖2∗̂ = −

∫
p̂∞
[
∇
(
g

p̂∞

)]2

dθ ≤ −λ ‖g‖2∗̂ ,

where the last inequality follows from the Poincare inequality (4.8) and the fact that
∫
gdθ = 1−1 =

0. Solve the above ODE, one has,

‖g(t)‖2∗̂ ≤ e
−2λt ‖g(0)‖2∗̂ (D.2)

Therefore, one can bound p̂ by

‖p̂‖2∗ =

∥∥∥∥∥p̂
√
p̂∞

p∞

∥∥∥∥∥
2

∗̂

≤
∥∥∥∥ p̂∞p∞

∥∥∥∥
L∞
‖p̂‖2∗̂ ≤

∥∥∥∥ p̂∞p∞
∥∥∥∥
L∞

(
‖p̂− p̂∞‖2∗̂ + ‖p̂∞‖2∗̂

)
≤
∥∥∥∥ p̂∞p∞

∥∥∥∥
L∞

(
e−2λt ‖g(0)‖2∗̂ + 1

)
.

(D.3)

266

BORROWING FROM THE FUTURE

Appendix E.

Lemma 6 The gradient of the solution to (4.5) is bounded

‖∇p̂‖2∗ ≤ C
∥∥∥∥ p̂∞p∞

∥∥∥∥
L∞

,

with some constant C related to the initial data.

Proof Similar to (D.3) in the proof of Lemma 5, it is sufficient to prove this Lemma if we get the
estimation for ‖∇g(t)‖2∗̂ with g = p̂− p̂∞, because

‖∇p̂‖2∗ ≤
∥∥∥∥ p̂∞p∞

∥∥∥∥
L∞

(
‖∇g‖2∗̂ + 1

)
(E.1)

First notice that reflecting boundary condition also holds for ∂θi p̂, that is,

∂θi

(
(∇J +∇J̃)p̂+

η

2
∇ · (Σ + Σ̃p̂)

)
· n
∣∣∣
∂Ω

= 0,

Then take ∂θi to (D.1), one has,

∂t∂θig = ∇ ·
[
p̂∞∇

(
∂θig

p̂∞

)]
+∇ ·

[
∇
(
∂θi Ĵ

)
g
]
.

Multiplying
∂θig

p̂∞ , and summing it over i, integrating it over θ gives

1

2
∂t ‖∇g‖2∗̂ = ∂θi

(
(∇J +∇J̃)g +

η

2
∇ · (Σ + Σ̃g)

)
· n
∣∣∣
∂Ω

−
∑
i

∫
p̂∞
[
∇
(
∂θig

p̂∞

)]2

dθ −
∑
i

∫ [
∇
(
∂θi Ĵ

)
g
]
· ∇
(
∂θig

p̂∞

)
dθ

≤− λ

2

∑
i

‖∂θig‖
2
∗̂ −

1

2

∑
i

∫
p̂∞
[
∇
(
∂θig

p̂∞

)]2

dθ

+
1

2

∑
i

∫ [
∇
(
∂θi Ĵ

)
g
]2 1

p̂∞
dθ +

1

2

∑
i

∫
p̂∞
[
∇
(
∂θig

p̂∞

)]2

dθ

≤− λ

2
‖∇g‖2∗̂ +

1

2

∑
i

∫ [
∇
(
∂θi Ĵ

)
g
]2 1

p̂∞
dθ ≤ −λ

2
‖∇g‖2∗̂ +

M

2
‖g‖2∗̂ ,

where the second assumption in Assumption 2 is applied to obtain the last inequality. Use the
estimation of ‖g‖2∗̂ in (D.2) to solve the above ODE,

∂t

(
eλt ‖∇g‖2∗̂

)
≤Meλt

(
e−2λt ‖g(0)‖2∗̂

)
≤Me−λt ‖g(0)‖2∗̂ ,

eλt ‖∇g‖2∗̂ − ‖∇g(0)‖2∗̂ ≤M ‖g(0)‖2∗̂
1

λ
(1− e−λt),

‖∇g‖2∗̂ ≤ e
−λt
(
‖∇g(0)‖2∗̂ +

M

λ
‖g(0)‖2∗̂

)
.

267

BORROWING FROM THE FUTURE

Therefore, by (E.1), one has

‖∇p̂‖2∗ ≤
∥∥∥∥ p̂∞p∞

∥∥∥∥
L∞

(
e−λt

(
‖∇g(0)‖2∗̂ +

M

λ
‖g(0)‖2∗̂

)
+ 1

)
.

268

	Introduction
	Models and key ideas
	Main ideas and results
	Discussion on related work

	Algorithms
	Algorithm with nonlinear approximation
	Algorithms in the tabular setting

	Error estimates
	Difference between the objective functions
	Difference between the asymptotic distributions
	Difference between finite time distributions

	Numerical Examples
	Continuous state space
	Discrete state space

	Proof of Lemma 1
	Proof of Theorem 3
	Proof of Theorem 4
	
	

