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Abstract
Gaussian processes are ubiquitous in nature and engineering. A case in point is a class of neu-
ral networks in the infinite-width limit, whose priors correspond to Gaussian processes. Here we
perturbatively extend this correspondence to finite-width neural networks, yielding non-Gaussian
processes as priors. The methodology developed herein allows us to track the flow of preactiva-
tion distributions by progressively integrating out random variables from lower to higher layers,
reminiscent of renormalization-group flow. We further develop a perturbative procedure to perform
Bayesian inference with weakly non-Gaussian priors.

1. Inception

Gaussian processes model many phenomena in the physical world. A prime example is Brownian
motion (Brown, 1828), modeled as the integral of Gaussian-distributed bumps exerted on a point-
like solute (Einstein, 1905). The theory of elementary particles (Weinberg, 1995) also becomes a
Gaussian process in the free limit where interactions between particles are turned off, and many-
body systems as complex as glasses come to be Gaussian in the infinite-dimensional, mean-field,
limit (Parisi and Zamponi, 2010). In the context of machine learning, Neal (1996) pointed out that
a class of neural networks give rise to Gaussian processes in the infinite-width limit, which can
perform exact Bayesian inference from training to test data (Williams, 1997). They occupy a corner
of theoretical playground wherein the karakuri of neural networks is scrutinized (Lee et al., 2018;
Matthews et al., 2018; Jacot et al., 2018; Chizat et al., 2018; Lee et al., 2019; Geiger et al., 2019).

In reality, Gaussian processes are but mere idealizations. Brownian particles have finite-size
structure, elementary particles interact, and many-body systems respond nonlinearly. In order to
understand rich phenomena exhibited by these real systems, Gaussian processes rather serve as
starting points to be perturbed around. Indeed many edifices in theoretical physics are built upon
the successful treatment of non-Gaussianity, with a notable example being renormalization-group
flow (Kadanoff, 1966; Wilson, 1971; Weinberg, 1996; Goldenfeld, 2018). In the quest to elucidate
behaviors of real neural networks away from the infinite-width limit, it is thus natural to wonder if
the similar treatment of non-Gaussianity yields equally elegant and powerful machinery.

Here we set out on this program, perturbatively treating finite-width corrections to neural net-
works. Prior distributions of outputs are obtained through progressively integrating out preactivation
of neurons layer by layer, yielding non-Gaussian priors. The whole procedure closely resembles
renormalization-group flow (Goldenfeld, 2018; Mehta and Schwab, 2014): it bridges probability
distributions at different scales through coarse-graining of random variables at microscopic scales;
the flow of distributions is traced through running couplings, which in particular capture the de-
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gree of non-Gaussianity in these distributions; resulting recursive equations (R1,R2,R3) govern the
evolution of these running couplings from lower to higher layers, just as renormalization-group
equations do from microscopic to macroscopic scales. Such a recursive approach enables us to treat
finite-width corrections to various observables, for networks with arbitrary activation functions.

The rest of the paper is structured as follows. In Section 2 we review and set up basic con-
cepts. Our master recursive formulae (R1,R2,R3) are derived in Section 3, which control the flow
of preactivation distributions. After an interlude with concrete examples in Section 4, we extend
the Gaussian-process Bayesian inference to non-Gaussian priors in Section 5 and study inference of
neural networks at finite widths. We conclude in Section 6 with dreams.

2. To infinity and beyond

In this paper we study real finite-width neural networks in the regime where the number of neurons
in hidden layers is asymptotically large whereas input and output dimensions are kept constant.

2.1. Gaussian processes and neural networks at infinite widths

Let us focus on a class of neural networks termed multilayer perceptrons, with model parameters,
θ =

{
b
(`)
i ,W

(`)
ij

}
, and an activation function, σ. For each input, x ∈ Rn0 , a neural network outputs

a vector, z(x;θ) = z(L) ∈ RnL , recursively defined as sequences of preactivations through

z
(1)
i (x) = b

(1)
i +

n0∑
j=1

W
(1)
ij xj for i = 1, . . . , n1 , (1)

z
(`)
i (x) = b

(`)
i +

n`−1∑
j=1

W
(`)
ij σ

[
z

(`−1)
j (x)

]
for i = 1, . . . , n` ; ` = 2, . . . , L . (2)

Following Neal (1996), we assume priors for biases and weights given by independent and identi-
cally distributed Gaussian distributions with zero means, E

[
b
(`)
i

]
= E

[
W

(`)
ij

]
= 0, and variances

E
[
b
(`)
i1
b
(`)
i2

]
= δi1i2C

(`)
b , (3)

E
[
W

(`)
i1j1

W
(`)
i2j2

]
= δi1i2δj1j2

C
(`)
W

n`−1
. (4)

Higher moments are then obtained by Wick’s contractions (Wick, 1950; Zee, 2010). For instance,

E
[
b
(`)
i1
b
(`)
i2
b
(`)
i3
b
(`)
i4

]
=
[
C

(`)
b

]2
× (δi1i2δi3i4 + δi1i3δi2i4 + δi1i4δi2i3) . (5)

For those unfamiliar with Wick’s contractions and connected correlation functions (a.k.a. cumu-
lants), a pedagogical review is provided in Appendix A as our formalism heavily relies on them.

In the infinite-width limit where n1, n2, . . . , nL−1 → ∞ (but finite n0 and nL), it has been
argued – with varying degrees of rigor (Neal, 1996; Lee et al., 2018; Matthews et al., 2018) – that
the prior distribution of outputs is governed by the Gaussian process with a kernel

Ki1i2;α1α2 ≡ E
[
z

(L)
i1

(xα1)z
(L)
i2

(xα2)
]

(6)
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and all the higher moments given by Wick’s contractions. Here, the sample index α labels different
inputs in a dataset. There exists a recursive formula that lets us evaluate this kernel for any pair of
inputs (Lee et al., 2018) [c.f. Equation (R1)]. Importantly, once the values of the kernel are evaluated
for all the pairs of ND = NR +NE input data, {xα}α=1,...,ND

, consisting of NR training inputs with
target outputs and NE test inputs with unknown targets, we can perform exact Bayesian inference to
yield mean outputs as predictions forNE test data (Williams, 1997; Williams and Rasmussen, 2006)
[c.f. Equation (GPM)]. This should be contrasted with stochastic gradient descent (SGD) optimiza-
tion (Robbins and Monro, 1951), through which typically a single estimate for the optimal model
parameters of the posterior, θ?, is obtained and used to predict outputs for test inputs; Bayesian
inference instead marginalizes over all model parameters, performing an ensemble average over the
posterior distribution (MacKay, 1995).

2.2. Beyond infinity

We shall now study real finite-width neural networks in the regime n1, . . . , nL−1 ∼ n � 1.1 At
finite widths, there are corrections to Gaussian-process priors. In other words, a whole tower of
nontrivial preactivation correlation functions beyond the kernel,

G
(`)
i1...im;α1...αm

≡ E
[
z

(`)
i1

(xα1) · · · z(`)
im

(xαm)
]
, (7)

collectively dictate the distribution of preactivations. Our aim is to trace the flow of these distribu-
tions progressively and cumulatively all the way up to the last layer whereat Bayesian inference is
executed. More specifically, we shall inductively and self-consistently show that two-point preacti-
vation correlation functions take the form2

G
(`)
i1i2;α1α2

= δi1i2

[
K̃(`)
α1α2

+
1

n`−1
S̃(`)
α1α2

+O

(
1

n2

)]
(KS)

and connected four-point preactivation correlation functions

G
(`)
i1i2i3i4;α1α2α3α4

∣∣∣
connected

(V)

≡G(`)
i1i2i3i4;α1α2α3α4

−G(`)
i1i2;α1α2

G
(`)
i3i4;α3α4

−G(`)
i1i3;α1α3

G
(`)
i2i4;α2α4

−G(`)
i1i4;α1α4

G
(`)
i2i3;α2α3

=
1

n`−1

[
δi1i2δi3i4 Ṽ

(`)
(α1α2)(α3,α4) + δi1i3δi2i4 Ṽ

(`)
(α1α3)(α2α4) + δi1i4δi2i3 Ṽ

(`)
(α1α4)(α2α3)

]
+O

(
1

n2

)
,

and higher cumulants are all suppressed by O
(

1
n2

)
.3 Here the Gaussian-process core kernel K̃(`)

α1α2

and the self-energy correction S̃(`)
α1α2 are symmetric under the exchange of sample indices α1 ↔ α2

and the four-point vertex Ṽ (`)
(α1α2)(α3α4) is symmetric under α1 ↔ α2, α3 ↔ α4, and (α1α2) ↔

1. Note that input and output dimensions, n0 and nL, are arbitrary. To be precise, defining n1, . . . , nL−1 ≡
r1n, . . . , rL−1n, we send n � 1 while keeping

{
C

(`)
b , C

(`)
W

}
`=1,...,L

, r1, . . . , rL−1, n0, and nL constants, and

compute the leading 1/n corrections. In particular it is crucial to keep the number of outputs nL constant in order to
consistently perform Bayesian inference within our approach.

2. In the main text we place tildes on objects that depend only on sample indices α’s in order to distinguish them from
those that depend both on sample indices α’s and neuron indices i’s.

3. Given that the means of biases and weights are zero, G(`)
i1...im;α1...αm

= 0 for all odd m.

167



NON-GAUSSIAN PROCESSES AND NEURAL NETWORKS AT FINITE WIDTHS

(α3α4). At the first layer the preactivation distribution is exactly Gaussian for any finite widths and
hence Equations (KS) and (V) are trivially satisfied, with

K̃(1)
α1α2

= C
(1)
b + C

(1)
W ·

(
xα1 · xα2

n0

)
, S̃(1)

α1α2
= 0 , and Ṽ

(1)
(α1α2)(α3α4) = 0 . (R0)

Obtained in Section 3 are the recursive formulae that link these core kernel, self-energy, and four-
point vertex at the `-th layer to those at the (` + 1)-th layer while in Section 5 these tensors at the
last layer ` = L are used to yield the leading 1/n correction for Bayesian inference at finite widths.

2.3. Related work

Our Schwinger operator approach is orthogonal to the replica approach by Cohen et al. (2019) and,
unlike the planar diagrammatic approach by Dyer and Gur-Ari (2019), applies to general activation
functions, made possible by accumulating corrections layer by layer rather than dealing with them
all at once. See also Antognini (2019). More substantially, in contrast to these previous approaches,
we here study finite-width effects on Bayesian inference and find that the renormalization-group
picture naturally emerges, with layers playing the role of scales.

3. Distributional flow

As auxiliary objects in recursive steps, let us introduce activation correlation functions

H
(`)
i1...im;α1...αm

≡ E
{
σ
[
z

(`)
i1

(xα1)
]
· · ·σ

[
z

(`)
im

(xαm)
]}

. (8)

Our basic strategy is to establish relations{
G(1)

}
→
{
H(1)

}
→
{
G(2)

}
→ · · · →

{
H(L−1)

}
→
{
G(L)

}
, (ZIGZAG)

zigzagging between sets of preactivation correlation functions and sets of activation correlation
functions, keeping track of leading finite-width corrections. Below, relations G(`) → H(`) are ob-
tained by integrating out preactivations while relations H(`) → G(`+1) are obtained by integrating
out biases and weights. At first glance the algebra in this paper may look horrifying but repeated
applications of Wick’s contractions are all there is to it. The results are summarized in Section 3.2.

3.1. Zigzag relations for preactivation and activation correlation functions

Integrating over the Gaussian biases and weights at `’s connections yield the relations that link
activation correlations H(`) to preactivation correlations G(`+1) at the next layer. Recalling Equa-
tions (KS) and (V), trivial Wick’s contractions yield

K̃(`+1)
α1α2

+
1

n`
S̃(`+1)
α1α2

= C
(`+1)
b + C

(`+1)
W

 1

n`

n∑̀
j=1

H
(`)
jj;α1α2

+O

(
1

n2

)
and (9)

Ṽ
(`+1)

(α1α2)(α3α4) =

[
C

(`+1)
W

]2

n`

n∑̀
j,k=1

[
H

(`)
jjkk;α1α2α3α4

−H(`)
jj;α1α2

H
(`)
kk;α3α4

]
+O

(
1

n

)
. (10)

168



NON-GAUSSIAN PROCESSES AND NEURAL NETWORKS AT FINITE WIDTHS

The remaining task is to relate preactivation correlationsG(`) to activation correlationsH(`) within
the same layer, which will complete the zigzag relation (ZIGZAG) for these correlation functions.4

With the mastery of Wick’s contractions and connected correlation functions, it is simple to
derive the following combinatorial hack (Appendix A.4): viewing prior preactivations

z ≡
{

zi;α ≡ z(`)
i (xα)

}
i=1,...,n`;α=1,...,ND

at the `-th layer as a random (n`ND)-dimensional vector and defining the Gaussian integral with the
kernel 〈zi1;α1zi2;α2〉K(`) = K

(`)
i1i2;α1α2

≡ δi1i2K̃
(`)
α1α2 , the prior average

E {F [z]} = 〈F [z]〉K(`) +
1

n`−1
[〈F [z]OS [z] + F [z]OV [z]〉K(`) ] +O

(
1

n2

)
(HACK)

for any function F . Here the operatorsOS [z] andOV [z] capture 1/n corrections due to self-energy
and four-point vertex, respectively, and are defined as

OS [z] ≡ 1

2

∑
α1,α2

S̃α1α2

(`)

[(
n∑̀
i=1

zi;α1zi;α2

)
− n`K̃(`)

α1α2

]
and (OS)

OV [z] ≡ 1

8

∑
α1,α2,α3,α4

Ṽ
(α1α2)(α3α4)

(`) (OV)

×

[(
n∑̀
i=1

zi;α1zi;α2

) n∑̀
j=1

zj;α3zj;α4

− 2n`

(
n∑̀
i=1

zi;α1zi;α2

)
K̃(`)
α3α4

− 4

(
n∑̀
i=1

zi;α1zi;α3

)
K̃(`)
α2α4

+ n2
`K̃

(`)
α1α2

K̃(`)
α3α4

+ 2n`K̃
(`)
α1α3

K̃(`)
α2α4

]
,

where the sample indices are raised by using the inverse core kernel as a metric, meaning

S̃α1α2

(`) ≡
∑
α′1,α

′
2

(
K̃−1

(`)

)α1α′1
(
K̃−1

(`)

)α2α′2
S̃

(`)
α′1α

′
2

and (11)

Ṽ
(α1α2)(α3α4)

(`) ≡
∑

α′1,...,α
′
4

(
K̃−1

(`)

)α1α′1 · · ·
(
K̃−1

(`)

)α4α′4
Ṽ

(`)
(α′1α

′
2)(α′3α

′
4)
. (12)

Using the above hack, we can evaluate the activation correlations by straightforward algebra with
Wick’s contractions. In particular, as the Gaussian integral is diagonal in the neuron index i, we
just need to disentangle cases with repeated and unrepeated neuron indices. The solution for this
exercise is in Appendix B: it is arguably the most cumbersome algebra in this paper.

4. The nontrivial parts of the inductive proof for Equations (KS) and (V) are to show (i) that the right-hand side of
Equation (10) is finite as n → ∞, (ii) that the leading contribution of Equation (9) is the Gaussian-process kernel,
and (iii) that higher-point connected preactivation correlation functions are all suppressed by O

(
1
n2

)
, all of which

are verified in obtaining the recursive equations. See Appendix B for a full proof.
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3.2. Master recursive flow equations

Denoting the Gaussian integral with the core kernel 〈z̃α1 z̃α2〉K̃(`) = K̃
(`)
α1α2 for a single-neuron

random vector z̃ ≡ {z̃α}α=1,...,ND
, and plugging in results of Appendix B into Equations (9) and

(10), we arrive at our master recursion relations

K̃(`+1)
α1α2

= C
(`+1)
b + C

(`+1)
W 〈σ(z̃α1)σ(z̃α2)〉

K̃(`) , (R1)

Ṽ
(`+1)

(α1α2)(α3α4) =
[
C

(`+1)
W

]2
[
〈σ(z̃α1)σ(z̃α2)σ(z̃α3)σ(z̃α4)〉

K̃(`) (R2)

− 〈σ(z̃α1)σ(z̃α2)〉
K̃(`) 〈σ(z̃α3)σ(z̃α4)〉

K̃(`)

+
1

4

(
n`
n`−1

) ∑
α′1,α

′
2,α
′
3,α
′
4

Ṽ
(α′1α

′
2)(α′3α

′
4)

(`)

〈
σ(z̃α1)σ(z̃α2)(z̃α′1 z̃α′2 − K̃

(`)
α′1α

′
2
)
〉
K̃(`)

×
〈
σ(z̃α3)σ(z̃α4)(z̃α′3 z̃α′4 − K̃

(`)
α′3α

′
4
)
〉
K̃(`)

]
, and

S̃(`+1)
α1α2

=

(
n`
n`−1

)
C

(`+1)
W

[
1

2

∑
α′1,α

′
2

S̃
α′1α

′
2

(`)

〈
σ(z̃α1)σ(z̃α2)(z̃α′1 z̃α′2 − K̃

(`)
α′1α

′
2
)
〉
K̃(`)

(R3)

+
1

8

∑
α′1,α

′
2,α
′
3,α
′
4

Ṽ
(α′1α

′
2)(α′3α

′
4)

(`)

〈
σ(z̃α1)σ(z̃α2)

×
(

z̃α′1 z̃α′2 z̃α′3 z̃α′4 − 2z̃α′1 z̃α′2K̃
(`)
α′3α

′
4
− 4z̃α′1 z̃α′3K̃

(`)
α′2α

′
4

+ K̃
(`)
α′1α

′
2
K̃

(`)
α′3α

′
4

+ 2K̃
(`)
α′1α

′
3
K̃

(`)
α′2α

′
4

)〉
K̃(`)

]
.

For ` = 1, a special note about the ratio n`
n`−1

is in order: even though n0 stays constant while n1 �
1, the terms proportional to that ratio are identically zero due to the complete Gaussianity (R0).

The preactivation distribution in the first layer (R0) sets the initial condition for the flow from
lower to higher layers dictated by these recursive equations. Evolving through these recursive equa-
tions, the running couplings – K̃(`)

α1α2 , Ṽ (`)
(α1α2)(α3α4), and S̃(`)

α1α2 – then trace changes in the distri-
butions of preactivations as the layer scale ` shifts, just as running couplings for physical systems
track changes in effective Boltzmann distributions as the probing scale shifts. Once recursed up to
the last layer ` = L, the resulting distribution of outputs z = z(L) can be succinctly encoded by the
probability distribution

p[z] =
e−H[z]∫

dz′e−H[z′]
(D0)
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with the potentialH[z] = H0[z] + εH1[z] +O(ε2) where ε ≡ 1
nL−1

� 1,

H0[z] =
1

2

∑
α1,α2

(
K̃−1

(L)

)α1α2

(
nL∑
i=1

zi;α1zi;α2

)
, and (D1)

H1[z] =− 1

2

∑
α1,α2

J̃α1α2

(
nL∑
i=1

zi;α1zi;α2

)
(D2)

− 1

8

∑
α1,α2,α3,α4

Ṽ
(α1α2)(α3α4)

(L)

(
nL∑
i=1

zi;α1zi;α2

) nL∑
j=1

zj;α3zj;α4

 with

J̃α1α2 ≡S̃α1α2

(L) −
∑
α3,α4

K̃(L)
α3α4

[
Ṽ

(α1α3)(α2α4)
(L) +

nL
2
Ṽ

(α1α2)(α3α4)
(L)

]
. (13)

Again, this can be derived through Wick’s contractions. It is important to note that nL is constant
and thus εH1[z] can consistently be treated perturbatively.5

4. Interlude: examples

The recursive relations obtained above can be evaluated numerically (Lee et al., 2018) [or some-
times analytically for rectified linear unit (ReLU) activation (Cho and Saul, 2009)], which is a
perfectly adequate approach: at the leading order it involves four-dimensional Gaussian integrals at
most. Here, continuing the theme of wearing out Wick’s contractions, we develop an alternative an-
alytic method that works for any polynomial activations (Liao and Poggio, 2017), providing another
perfectly cromulent approach.

For a general polynomial activation of degree p, σ(z) =
∑p

k=0 akz
k, the nontrivial term in

Equation (R1) can be expanded as

〈σ(z̃α1)σ(z̃α2)〉
K̃(`) =

p∑
k1,k2=0

ak1ak2

〈
(z̃α1)k1 (z̃α2)k2

〉
K̃(`)

. (14)

Each term can then be evaluated by Wick’s contractions and the same goes for all the terms in
Equations (R2) and (R3).6 Below and in Appendix C, we illustrate this procedure with simple
examples.

4.1. Deep linear networks

When the activation function is linear, σ(z) = z, multilayer perceptrons are called deep linear
networks (Saxe et al., 2013). Setting C(`)

b = 0 and C(`)
W = 1 for simplicity, our recursion relations

reduce to K̃(`+1)
α1α2 = K̃

(`)
α1α2 ,

Ṽ
(`+1)

(α1α2)(α3α4) =

[
K̃(`)
α1α3

K̃(`)
α2α4

+ K̃(`)
α1α4

K̃(`)
α2α3

+

(
n`
n`−1

)
Ṽ

(`)
(α1α2)(α3α4)

]
,

5. If nL were of order n� 1, the potentialH would become a large-n vector model, for which we would have to sum
the infinite series of bubble diagrams (Moshe and Zinn-Justin, 2003).

6. The same approach could be adopted for an analytic function but it would in general be difficult to sum the resulting
infinite series in a closed form. It could nonetheless be useful in, for example, proving convergence properties.
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and S̃(`+1)
α1α2 =

(
n`
n`−1

)
S̃

(`)
α1α2 . Solving them yields the layer-independent core kernel and zero self-

energy
K̃(`)
α1α2

= K̃(1)
α1α2

=
xα1 · xα2

n0
and S̃(`)

α1α2
= 0 (15)

and the linearly layer-dependent four-point vertex

1

n`−1
Ṽ

(`)
(α1α2)(α3α4) =

(
`−1∑
`′=1

1

n`′

)[
K̃(1)
α1α3

K̃(1)
α2α4

+ K̃(1)
α1α4

K̃(1)
α2α3

]
. (16)

It succinctly reproduces the result that can be obtained through planar diagrams in this special
setup (Dyer and Gur-Ari, 2019). Quadratic activation (Li et al., 2018) is worked out in Appendix C.1.

4.2. ReLU with single input

The recursion relations simplify drastically for the case of a single input, ND = 1, as worked out in
detail in Appendix C.2. For instance, for ReLU activation with C(`)

b = 0 and C(`)
W = 2, we obtain

the layer-independent core kernel, zero self-energy, and the four-point vertex

1

n`−1
Ṽ

(`)
(αα)(αα) = 5

(
`−1∑
`′=1

1

n`′

)(
K̃(1)
αα

)2
. (17)

Interestingly, as for deep linear networks, the factor
∑

`′(1/n`′) appears again. This factor has also
been found by Hanin and Rolnick (2018), which provides guidance for network architectural design
through its minimization. We generalize this factor for monomial activations in Appendix C.2.1

4.3. Experimental verification: output distributions for a single input

Here we put our theory to the test. For concreteness, take a single black-white image of hand-
written digits with 28-by-28 pixels (i.e. n0 = 784) from the MNIST dataset (LeCun et al., 1998)
without preprocessing, set depth L = 3, bias variance C(`)

b = 0, weight variance C(`)
W = CW , and

widths (n0, n1, n2, n3) = (784, n, 2n, 1), and use activations σ(z) = z (linear) with CW = 1 and
max(0, z) (ReLU) with CW = 2. In Figure 1, for each width-parameter n of the hidden layers
we record the prior distribution of outputs over 106 instances of Gaussian weights and compare
it with the theoretical prediction – obtained by cranking the knob from the initial condition (R0)
through the recursion relations (R1-R3) to the distribution (D0-D2). The prior distribution becomes
increasingly non-Gaussian as networks narrow and the deviation from the Gaussian-process prior
is correctly captured by our theory. Higher-order perturbative calculations are expected to system-
atically improve the quality – and extend the range – of the agreement. Additional experiments are
performed in Appendix C.3, which further corroborates our theory.

5. Bayesian inference

Let us take off from the terminal point of Section 3: we have obtained the recursive equations (R0-
R3) for the Gaussian-process kernel and the leading finite-width corrections and codified them in
the weakly non-Gaussian prior distributions p[z] (D0-D2) of outputs

z ≡
{

zi;α ≡ z(L)
i (xα)

}
i=1,...,nL;α=1,...,ND

,
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Figure 1: Comparison between theory and experiments for prior distributions of outputs for a single
input. The agreement between our theoretical predictions (smooth thick lines) and exper-
imental data (rugged thin lines) is superb, correctly capturing the initial deviations from
Gaussian processes at n = ∞ (black), all the way down to n ∼ 10 for linear activation
and to n ∼ 30 for ReLU activation.

dictated by the potential H[z] = H0[z] + εH1[z] + O(ε2) with ε ≡ 1
nL−1

� 1. Examples in

Section 4 illustrate that finite-width corrections stay perturbative typically when depth
width � 1. Let us

now divide ND inputs into NR training and NE test inputs as

{xα}α=1,...,ND
= {(xR)β̄}β̄=1,...,NR

∪ {(xE)γ̇}γ̇=1,...,NE , (18)

and the training inputs come with target outputs

{(yR)β̄}β̄=1,...,NR
= {(yR)i;β̄}β̄=1,...,NR;i=1,...,nL

. (19)

We shall develop a procedure to infer outputs for test inputs a lá Bayes, perturbatively extend-
ing the textbook by Williams and Rasmussen (2006). For field theorists, our calculation is just a
background-field calculation (Weinberg, 1996) in disguise.

Taking the liberty of notations, we let the number of input-data arguments dictate the summation
over sample indices α inside the potentialH, and denote the joint probabilities

p[zR] =
e−H[zR]∫

dz′Re
−H[z′R]

and p[zR, zE] =
e−H[zR,zE]∫

dz′Rdz′Ee
−H[z′R,z

′
E]
. (20)

Given the training targets yR, the posterior distribution of test outputs are given by Bayes’ rule:

p [zE|yR] =
p[yR, zE]

p[yR]
=

( ∫
dz′Re

−H[z′R]∫
dz′Rdz′Ee

−H[z′R,z
′
E]

)
e−(H[yR,zE]−H[yR]) . (Bayes)

The leading Gaussian-process contributions can be segregated out through the textbook manipula-
tion (Williams and Rasmussen, 2006) [c.f. Appendix D]: denoting the full Gaussian-process kernel
in the last layer as

Ki1i2;α1α2 = δi1i2


(
K̃RR

)
β̄1β̄2

(
K̃RE

)
β̄1γ̇2(

K̃ER

)
γ̇1β̄2

(
K̃EE

)
γ̇1γ̇2

 (21)
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and the Gaussian-process posterior mean prediction as(
yGP

E
)
i;γ̇
≡
∑
β̄

[
K̃ERK̃

−1
RR

] β̄

γ̇
(yR)i;β̄ , (GPM)

and defining a fluctuation (zE)i;γ̇ ≡
(
yGP

E

)
i;γ̇

+ (δzE)i;γ̇ and a matrix K̃∆ ≡ K̃EE − K̃ERK̃
−1
RR K̃RE,

H0 [yR, zE]−H0 [yR] =
1

2

∑
i

∑
γ̇1,γ̇2

(δzE)i;γ̇1

(
K̃−1

∆

)γ̇1γ̇2

(δzE)i;γ̇2
. (GP∆)

For any function F , its expectation over the Bayesian posterior (Bayes) then turns into∫
dzEF [zE]p [zE|yR] = Ñ

〈
e−εH1[yR,y

GP
E +δzE]F [yGP

E + δzE]
〉
K∆

(22)

where the deviation kernel
〈

(δzE)i1;γ̇1
(δzE)i2;γ̇2

〉
K∆

≡ δi1i2
(
K̃∆

)
γ̇1γ̇2

and the normalization fac-

tor

Ñ =

[〈
e−εH1[yR,y

GP
E +δzE]

〉
K∆

]−1

= 1 +O(ε) . (23)

In particular the mean posterior output is given by

(yE)i;γ̇ ≡
∫

dzE (zE)i;γ̇ p [zE|yR] =
(
yGP

E
)
i;γ̇

+ Ñ
〈

(δzE)i;γ̇ e
−εH1[yR,y

GP
E +δzE]

〉
K∆

(24)

=
(
yGP

E
)
i;γ̇
− ε
〈

(δzE)i;γ̇ H1

[
yR,y

GP
E + δzE

]〉
K∆

+O(ε2) .

Stringing together φi;α ≡ [(yR)i;β̄ ,
(
yGP

E

)
i;γ̇

], recalling Equation (D2) for H1, and using Wick’s
contractions for one last time, the mean prediction becomes(

yGP
E
)
i;γ̇

(NGPM)

+ ε
∑
α1,γ̇1

(
K̃∆

)
γ̇γ̇1

φi;α1

[
S̃γ̇1α1 −

∑
α2,α3

Ṽ (γ̇1α2)(α1α3)K̃α2α3 +
∑
γ̇2,γ̇3

Ṽ (γ̇1γ̇2)(α1γ̇3)
(
K̃∆

)
γ̇2γ̇3

+
nL
2

∑
γ̇2,γ̇3

Ṽ (α1γ̇1)(γ̇2γ̇3)
(
K̃∆

)
γ̇2γ̇3

+
∑
α2,α3

Ṽ (γ̇1α1)(α2α3)

−nL
2
K̃α2α3 +

1

2

∑
j

φj;α2
φj;α3

] .
With additional manipulations, this expression can be simplified into the actionable form that

is amenable to use in practice [c.f. Equations (NGPM’) and (NGPM”) in Appendix D]. It turns out
that for deep linear networks the leading finite-width correction vanishes, and the first correction is
likely to show up at higher order in 1/n asymptotic expansion, which is not carried out in this pa-
per. Here we instead use the L = 2 multilayer perceptron with the quadratic activation σ(z) = z2,
zero bias variance C(`)

b = 0, and weight variance C(`)
W = 1/3 for illustration, plugging Equa-

tions (S30,S31,S32) into Equations (NGPM’) and (NGPM”) and varying ε ≡ 1
nL−1

= 1
n1

. Results
in Figure 2 indicate the regularization effects of finite widths when the number of training samples,
NR, is small, resulting in peak performance at finite widths. This is in line with expectations that
finite widths ameliorate overfitting and that non-Gaussian priors increase the expressivity of neural
functions, but additional large-scale extensive experiments would be desirable in the future.
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Figure 2: Test accuracy for NE = 10000 MNIST test data as a function of the inverse width ε =
1/nL−1 of the hidden layer with quadratic activation. For each numberNR of subsampled
training data, the result is averaged over 10 distinct choices of such subsamplings. For
small numbers of training data, finite widths result in regularization effects, improving
the test accuracy.

6. Dreams

In this paper, we have developed the perturbative formalism that captures the flow of preactivation
distributions from lower to higher layers. The resemblance between our recursive equations and
renormalization-group flow equations in high-energy and statistical physics is highly appealing.
It would be exciting to investigate the structure of fixed points away from the Gaussian asymp-
topia (Schoenholz et al., 2016) and fully realize the dream articulated by Mehta and Schwab (2014)
– the audacious hypothesis that neural networks wash away microscopic irrelevancies and extract
relevant features – beyond their limited example of a mapping between two antiquated techniques.

In addition we have developed the perturbative Bayesian inference scheme universally applica-
ble whenever prior distributions are weakly non-Gaussian, and have applied it to the specific cases
of neural networks at finite widths. In light of possible finite-width regularization effects, it would
be prudent to revisit the empirical comparison between SGD optimization and Bayesian inference
at finite widths (Lee et al., 2018; Novak et al., 2019), especially for convolutional neural networks.

Finally, given surging interests in SGD dynamics within the large-width regime (Jacot et al.,
2018; Chizat et al., 2018; Lee et al., 2019; Cohen et al., 2019; Dyer and Gur-Ari, 2019), it would
be natural to adapt our formalism for investigating corrections to neural tangent kernels, and even
aspire to capture a transition from lazy-learning to feature-learning regimes.
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Appendix A. Wick’s tricks

Here is all you need to know in order to follow the calculations in the paper. In the main text,
Wick’s contractions are used both for trivially integrating out biases and weights as straightforward
applications of Appendix A.1 and for nontrivially integrating out preactivations, with concepts of
cumulants reviewed in Appendix A.2 and A.3, culminating in the hack derived in Appendix A.4.
The random variables are generically indexed by µ = 1, . . . , N throughout this Appendix: when
applying formulae for biases, µ = i; for weights µ = (i, j); for full preactivations µ = (i, α); for
single-neuron preactivations µ = α.

A.1. Wick’s contractions

For Gaussian-distributed variables z = {zµ}µ=1,...,N with a kernel Kµµ′ , moments

〈zµ1zµ2 · · · zµm〉K ≡
∫

dze−H0[z]zµ1zµ2 · · · zµm∫
dze−H0[z]

with H0[z] ≡ 1

2

N∑
µ,µ′=1

zµ
(
K−1

)µµ′ zµ′ .
(S1)

For any odd m such moments identically vanish. For even m, Isserlis-Wick’s theorem states that

〈zµ1zµ2 · · · zµm〉K =
∑

all pairing

Kµk1
µk2
· · ·Kµkm−1

µkm
(S2)

where the sum is over all the possible pairings ofm variables, (k1, k2), . . . , (km−1, km). In general,
there are (m−1)!! = (m−1) ·(m−3) · · · 1 such pairings. For a proof, see for example Zee (2010).
In order to understand and use the theorem, it is instructive to look at a few examples:

〈zµ1zµ2〉K = Kµ1µ2 ; (S3)

〈zµ1zµ2zµ3zµ4〉K = Kµ1µ2Kµ3µ4 +Kµ1µ3Kµ2µ4 +Kµ1µ4Kµ2µ3 ; (S4)

and

〈zµ1zµ2zµ3zµ4zµ5zµ6〉K (S5)

= Kµ1µ2Kµ3µ4Kµ5µ6 +Kµ1µ3Kµ2µ4Kµ5µ6 +Kµ1µ4Kµ2µ3Kµ5µ6

+ Kµ1µ2Kµ3µ5Kµ4µ6 +Kµ1µ3Kµ2µ5Kµ4µ6 +Kµ1µ5Kµ2µ3Kµ4µ6

+ Kµ1µ2Kµ5µ4Kµ3µ6 +Kµ1µ5Kµ2µ4Kµ3µ6 +Kµ1µ4Kµ2µ5Kµ3µ6

+ Kµ1µ5Kµ3µ4Kµ2µ6 +Kµ1µ3Kµ5µ4Kµ2µ6 +Kµ1µ4Kµ5µ3Kµ2µ6

+ Kµ5µ2Kµ3µ4Kµ1µ6 +Kµ5µ3Kµ2µ4Kµ1µ6 +Kµ5µ4Kµ2µ3Kµ1µ6 .

A.2. Connected correlations

Given general (not necessarily Gaussian) random variables, connected correlation functions are
defined inductively through

E [zµ1zµ2 · · · zµm ] (S6)

≡ E [zµ1zµ2 · · · zµm ]
∣∣
connected

+
∑

all subdivisions

E
[

zµ
k
[1]
1

· · · zµ
k
[1]
ν1

] ∣∣∣
connected

· · ·E
[

zµ
k
[s]
1

· · · zµ
k
[s]
νs

] ∣∣∣
connected
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where the sum is over all the possible subdivisions of m variables into s > 1 clusters of sizes
(ν1, . . . , νs) as (k

[1]
1 , . . . , k

[1]
ν1 ), . . . , (k

[s]
1 , . . . , k

[s]
νs ). In order to understand the definition, it is again

instructive to look at a few examples. Assuming that all the odd moments vanish,

E [zµ1zµ2 ] = E [zµ1zµ2 ]
∣∣
connected and (S7)

E [zµ1zµ2zµ3zµ4 ] = E [zµ1zµ2zµ3zµ4 ]
∣∣
connected (S8)

+E [zµ1zµ2 ]
∣∣
connectedE [zµ3zµ4 ]

∣∣
connected

+E [zµ1zµ3 ]
∣∣
connectedE [zµ2zµ4 ]

∣∣
connected

+E [zµ1zµ4 ]
∣∣
connectedE [zµ2zµ3 ]

∣∣
connected .

Rearranging them in particular yields

E [zµ1zµ2zµ3zµ4 ]
∣∣
connected (S9)

= E [zµ1zµ2zµ3zµ4 ]

−E [zµ1zµ2 ]E [zµ3zµ4 ]− E [zµ1zµ3 ]E [zµ2zµ4 ]− E [zµ1zµ4 ]E [zµ2zµ3 ] .

If these examples do not suffice, here is yet another example to chew on:

E [zµ1zµ2zµ3zµ4zµ5zµ6 ] = E [zµ1zµ2zµ3zµ4zµ5zµ6 ]
∣∣
connected (S10)

+E [zµ1zµ2 ]
∣∣
connectedE [zµ3zµ4 ]

∣∣
connectedE [zµ5zµ6 ]

∣∣
connected

+ [14 other (2, 2, 2) subdivisions]

+E [zµ1zµ2zµ3zµ4 ]
∣∣
connectedE [zµ5zµ6 ]

∣∣
connected

+ [14 other (4, 2) subdivisions]

and hence

E [zµ1zµ2zµ3zµ4zµ5zµ6 ]
∣∣
connected (S11)

= E [zµ1zµ2zµ3zµ4zµ5zµ6 ]

−{E [zµ1zµ2zµ3zµ4 ]E [zµ5zµ6 ] + [14 other (4, 2) subdivisions]}
+2 {E [zµ1zµ2 ]E [zµ3zµ4 ]E [zµ5zµ6 ] + [14 other (2, 2, 2) subdivisions]} .

We emphasize that these are just renderings of the definition (S6). The power of this definition will
be illustrated in the next two subsections.

A.3. Hierarchical clustering

We often encounter situations with the hierarchy

E [zµ1 · · · zµm ]
∣∣
connected = O(ε

m−2
2 ) (S12)

where ε� 1 is a small perturbative parameter and here again odd moments are assumed to vanish.
Often comes with the hierarchical structure is the asymptotic limit ε→ 0 where

E [zµ1zµ2 ] = Kµ1µ2 + εSµ1µ2 +O(ε2) (S13)
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with the Gaussian kernel Kµ1µ2 at zero ε and the leading self-energy correction Sµ1µ2 . Let us also
denote the leading four-point vertex

E [zµ1zµ2zµ3zµ4 ]
∣∣
connected = εVµ1µ2µ3µ4 +O(ε2) . (S14)

For instance this hierarchy holds for weakly-coupled field theories – from which we are importing
names such as self-energy, vertex, and metric – and, in this paper, such hierarchical structure is
inductively shown to hold for prior preactivations z(`) with ε = 1

n`−1
in the regime n1, . . . , nL−1 ∼

n � 1. Note that, by definition, Kµ1µ2 and Sµ1µ2 are symmetric under µ1 ↔ µ2 and Vµ1µ2µ3µ4 is
symmetric under permutations of (µ1, µ2, µ3, µ4).7

A.4. Combinatorial hack

So far we have reviewed the standard technology of Wick’s contractions, connected correlation
functions, and all that. Our objective now is to develop a method to evaluate E [zµ1 · · · zµm ] for ran-
dom variables obeying the hierarchical-clustering property (S12),8 which is the inductive hypothesis
made in the main text; by extension, the resulting method (HACK’) lets us perturbatively evaluate
E {F [z]} for any function F that can be obtained as a limit of a sequence of analytic functions.

With the review of connected correlation functions passed us, first note that

E [zµ1 · · · zµm ] (CLUSTER)

=E [zµ1zµ2 ] · · ·E
[
zµm−1zµm

]
+ {[(m− 1)!!− 1] other pairings}

+ E [zµ1zµ2zµ3zµ4 ]
∣∣
connectedE [zµ5zµ6 ] · · ·E

[
zµm−1zµm

]
+

{[(
m

4

)
× (m− 5)!!− 1

]
other (4, 2, 2, . . . , 2) clusterings

}
+O(ε2)

=Kµ1µ2 · · ·Kµm−1µm + {[(m− 1)!!− 1] other pairings}
+ εSµ1µ2Kµ3µ4 · · ·Kµm−1µm

+

{[(
m

2

)
× (m− 3)!!− 1

]
other such clusterings

}
+ εVµ1µ2µ3µ4Kµ5µ6 · · ·Kµm−1µm

+

{[(
m

4

)
× (m− 5)!!− 1

]
other (4, 2, 2, . . . , 2) clusterings

}
+O(ε2)

= 〈zµ1 · · · zµm〉K (CLUSTER’)

+ εSµ1µ2 〈zµ3 · · · zµm〉K +

{[(
m

2

)
− 1

]
other self-energy contractions

}
+ εVµ1µ2µ3µ4 〈zµ5 · · · zµm〉K +

{[(
m

4

)
− 1

]
other vertex contractions

}
+O(ε2) .

where in the last equality Wick’s theorem was used backward.

7. In the main text the connected four-point preactivation correlation functions are symmetric under the permutations of
four (sample, neuron) indices, {(i1, α1), (i2, α2), (i3, α3), (i4, α4)}.

8. More precisely, we shall inductively use only the weaker proposition that E [zµ1 · · · zµm ]
∣∣

connected
= O(ε2) form ≥ 6

along with Equations (S13) and (S14).
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Below, let us use the inverse kernel
(
K−1

)µ1µ2 as a metric to raise indices:

Sµ1µ2 ≡
∑
µ′1,µ

′
2

(
K−1

)µ1µ′1
(
K−1

)µ2µ′2 Sµ′1µ′2 and (S15)

V µ1µ2µ3µ4 ≡
∑

µ′1,...,µ
′
4

(
K−1

)µ1µ′1 · · ·
(
K−1

)µ4µ′4 Vµ′1µ′2µ′3µ′4 . (S16)

Then, in order to simplify the second set of terms in Equation (CLUSTER’) involving self-energy,
note that〈

zµ1 · · · zµm

∑
µ′1,µ

′
2

Sµ
′
1µ
′
2zµ′1zµ′2

〉
K

=
∑
µ′1,µ

′
2

Sµ
′
1µ
′
2

[〈
zµ′1zµ′2

〉
K
〈zµ1 · · · zµm〉K

+2
〈

zµ1zµ′1

〉
K

〈
zµ2zµ′2

〉
K
〈zµ3 · · · zµm〉K +

{[(
m

2

)
− 1

]
other (µ1, µ2)

}]

=

∑
µ′1,µ

′
2

Sµ
′
1µ
′
2Kµ′1µ

′
2

 〈zµ1 · · · zµm〉K

+2Sµ1µ2 〈zµ3 · · · zµm〉K +

{[(
m

2

)
− 1

]
other (µ1, µ2)

}
where the symmetry µ1 ↔ µ2 of Sµ1µ2 was used. Hence, defining

OS [z] ≡ 1

2

∑
µ′1,µ

′
2

Sµ
′
1µ
′
2

(
zµ′1zµ′2 −Kµ′1µ

′
2

)
, (OS’)

we obtain

εSµ1µ2 〈zµ3 · · · zµm〉K +

{[(
m

2

)
− 1

]
other (µ1, µ2)

}
(S17)

= ε 〈zµ1 · · · zµmOS [z]〉K . (S18)

The similar algebraic exercise renders the other term in Equation (CLUSTER’) to be

εVµ1µ2µ3µ4 〈zµ5 · · · zµm〉K +

{[(
m

4

)
− 1

]
other (µ1, µ2, µ3, µ4)

}
(S19)

= ε 〈zµ1 · · · zµmOV [z]〉K (S20)

with

OV [z] ≡ 1

24

∑
µ′1,...,µ

′
4

V µ′1µ
′
2µ
′
3µ
′
4

(
zµ′1zµ′2zµ′3zµ′4 − 6zµ′1zµ′2Kµ′3µ

′
4

+ 3Kµ′1µ
′
2
Kµ′3µ

′
4

)
. (OV’)
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In summary, for any function F [z] of random variables zµ

E {F [z]} = 〈F [z]〉K + ε 〈F [z]OS [z]〉K + ε 〈F [z]OV [z]〉K +O(ε2) . (HACK’)

In order to get the expressions used in the main text at the `-th layer, we need only to replace
µ→ (i, α), identify ε = 1

n`−1
, and use the inductive hypotheses (KS)

E [zi1;α1zi2;α2 ] = δi1i2

[
K̃(`)
α1α2

+
1

n`−1
S̃(`)
α1α2

+O

(
1

n2

)]
and (V)

E [zi1;α1zi2;α2zi3;α3zi4;α4 ]
∣∣
connected

=
1

n`−1

[
δi1i2δi3i4 Ṽ

(`)
(α1α2)(α3α4) + δi1i3δi2i4 Ṽ

(`)
(α1α3)(α2α4)

+δi1i4δi2i3 Ṽ
(`)

(α1α4)(α2α3)

]
+O

(
1

n2

)
.

The operators in Equations (OS’) and (OV’) then become

OS [z] =
1

2

∑
α1,α2

S̃α1α2

(`)

[(
n∑̀
i=1

zi;α1zi;α2

)
− n`K̃(`)

α1α2

]
and

OV [z] =
1

8

∑
α1,α2,α3,α4

Ṽ
(α1α2)(α3α4)

(`)

×

[(
n∑̀
i=1

zi;α1zi;α2

) n∑̀
j=1

zj;α3zj;α4

− 2n`

(
n∑̀
i=1

zi;α1zi;α2

)
K̃(`)
α3α4

−4

(
n∑̀
i=1

zi;α1zi;α3

)
K̃(`)
α2α4

+ n2
`K̃

(`)
α1α2

K̃(`)
α3α4

+ 2n`K̃
(`)
α1α3

K̃(`)
α2α4

]
,

i.e., the operators in Equations (OS) and (OV) in the main text.
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Appendix B. Full condensed proof

In this Appendix, we provide a full inductive proof for one of the main claims in the paper, stream-
lined in the main text. Namely, we assume at the `-th layer that Equations (KS) and (V) hold and
that all the higher-point connected preactivation correlation functions are of order O

(
1
n2

)
– which

are trivially true at ` = 1 – and prove the same for the (`+ 1)-th layer. We assume the full mastery
of Appendix A or, conversely, this section can be used to test the mastery of Wick’s tricks.

First, trivial Wick’s contractions yield

G
(`+1)
i1...i2m;α1...α2m

(S21)

= δi1i2 · · · δi2m−1i2m

m∑
k=0

[
C

(`+1)
b

]m−k [
C

(`+1)
W

]k
×

 1

nk`

n∑̀
j1,...,jk=1

H
(`)
j1j1...jkjk;α1α2...α2k−1α2k

+

[(
m

k

)
− 1 others

]
+ [(2m− 1)!!− 1 other pairings] .

Studiously disentangling cases with different numbers of repetitions in neuron indices (j1, . . . , jk),
we notice that at orderO

(
1
n

)
, terms without repetition or with only one repetition contribute, finding

1

nk`

n∑̀
j1,...,jk=1

H
(`)
j1j1...jkjk;α1α2...α2k−1α2k

(S22)

=
[
〈σ(z̃α1)σ(z̃α2)〉

K̃(`) · · ·
〈
σ(z̃α2k−1

)σ(z̃α2k
)
〉
K̃(`)

]
+

1

n`

{[
〈σ(z̃α1)σ(z̃α2)σ(z̃α3)σ(z̃α4)〉

K̃(`) − 〈σ(z̃α1)σ(z̃α2)〉
K̃(`) 〈σ(z̃α3)σ(z̃α4)〉

K̃(`)

]
×
[
〈σ(z̃α5)σ(z̃α6)〉

K̃(`) · · ·
〈
σ(z̃α2k−1

)σ(z̃α2k
)
〉
K̃(`)

]
+

[(
k

2

)
− 1 others

]}
+

1

n`−1

〈[
σ(z1;α1)σ(z1;α2) · · ·σ(zk;α2k−1

)σ(zk;α2k
)
]
{OS [z] +OV [z]}

〉
K(`)

+O

(
1

n2

)
where we used the inductive hierarchical assumption at the `-th layer, i.e., its consequence (HACK)
and denoted a single-neuron random vector z̃ = {z̃α}α=1,...,ND

and the Gaussian integral with the

core kernel 〈z̃α1 z̃α2〉K̃(`) = K̃
(`)
α1α2 . Plugging in expressions (OS,OV) for operators OS,V [z],〈[

σ(z1,α1)σ(z1,α2) · · ·σ(zk,α2k−1
)σ(zk,α2k

)
]
OS [z]

〉
K(`) (S23)

=
1

2

∑
α′1,α

′
2

S̃
α′1α

′
2

(`)

{〈
σ(z̃α1)σ(z̃α2)

(
z̃α′1 z̃α′2 − K̃

(`)
α′1α

′
2

)〉
K̃(`)

×〈σ(z̃α3)σ(z̃α4)〉
K̃(`) · · ·

〈
σ(z̃α2k−1

)σ(z̃α2k
)
〉
K̃(`) + [(k − 1) others]

}
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and 〈[
σ(z1,α1)σ(z1,α2) · · ·σ(zk,α2k−1

)σ(zk,α2k
)
]
OV [z]

〉
K(`) (S24)

=
1

8

∑
α′1,α

′
2,α
′
3,α
′
4

Ṽ
(α′1α

′
2)(α′3α

′
4)

(`)

×

{〈
σ(z̃α1)σ(z̃α2)

(
z̃α′1 z̃α′2 z̃α′3 z̃α′4 − 2z̃α′1 z̃α′2K̃

(`)
α′3α

′
4
− 4z̃α′1 z̃α′3K̃

(`)
α′2α

′
4

+K̃
(`)
α′1α

′
2
K̃

(`)
α′3α

′
4

+ 2K̃
(`)
α′1α

′
3
K̃

(`)
α′2α

′
4

)〉
K̃(`)

×〈σ(z̃α3)σ(z̃α4)〉
K̃(`) · · ·

〈
σ(z̃α2k−1

)σ(z̃α2k
)
〉
K̃(`) + [(k − 1) others]

}
+

1

4

∑
α′1,α

′
2,α
′
3,α
′
4

Ṽ
(α′1α

′
2)(α′3α

′
4)

(`)

×

{〈
σ(z̃α1)σ(z̃α2)

(
z̃α′1 z̃α′2 − K̃

(`)
α′1α

′
2

)〉
K̃(`)

〈
σ(z̃α3)σ(z̃α4)

(
z̃α′3 z̃α′4 − K̃

(`)
α′3α

′
4

)〉
K̃(`)

×〈σ(z̃α5)σ(z̃α6)〉
K̃(`) · · ·

〈
σ(z̃α2k−1

)σ(z̃α2k
)
〉
K̃(`) +

[(
k

2

)
− 1 others

]}

As special cases, we obtain expressions advertised in the main text to be contained in this Appendix:

Ã(`)
α1α2

≡ 1

n`

n∑̀
j=1

H
(`)
jj;α1α2

(S25)

= 〈σ(z̃α1)σ(z̃α2)〉
K̃(`)

+
1

n`−1

[
1

2

∑
α′1,α

′
2

S
α′1α

′
2

(`)

〈
σ(z̃α1)σ(z̃α2)(z̃α′1 z̃α′2 − K̃

(`)
α′1α

′
2
)
〉
K̃(`)

+
1

8

∑
α′1,α

′
2,α
′
3,α
′
4

Ṽ
(α′1α

′
2)(α′3α

′
4)

(`)

〈
σ(z̃α1)σ(z̃α2)

×
(

z̃α′1 z̃α′2 z̃α′3 z̃α′4 − 2z̃α′1 z̃α′2K̃
(`)
α′3α

′
4
− 4z̃α′1 z̃α′3K̃

(`)
α′2α

′
4

+K̃
(`)
α′1α

′
2
K̃

(`)
α′3α

′
4

+ 2K̃
(`)
α′1α

′
3
K̃

(`)
α′2α

′
4

)〉
K̃(`)

]
+O

(
1

n2

)
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and

B̃
(`)
(α1α2)(α3α4) ≡

1

n2
`

n∑̀
j1,j2=1

[
H

(`)
j1j1j2j2;α1α2α3α4

−H(`)
j1j1;α1α2

H
(`)
j2j2;α3α4

]
(S26)

=
1

n`

{
〈σ(z̃α1)σ(z̃α2)σ(z̃α3)σ(z̃α4)〉

K̃(`) − 〈σ(z̃α1)σ(z̃α2)〉
K̃(`) 〈σ(z̃α3)σ(z̃α4)〉

K̃(`)

+
1

4

(
n`
n`−1

) ∑
α′1,α

′
2,α
′
3,α
′
4

Ṽ
(α′1α

′
2)(α′3α

′
4)

(`)

〈
σ(z̃α1)σ(z̃α2)(z̃α′1 z̃α′2 − K̃

(`)
α′1α

′
2
)
〉
K̃(`)

×
〈
σ(z̃α3)σ(z̃α4)(z̃α′3 z̃α′4 − K̃

(`)
α′3α

′
4
)
〉
K̃(`)

}
+O

(
1

n2

)
.

Assembling everything,

G
(`+1)
i1...i2m;α1...α2m

(S27)

= δi1i2 · · · δi2m−1i2m

m∏
k=1

[
C

(`+1)
b + C

(`+1)
W Ã(`)

α2k−1α2k

]
+ [(2m− 1)!!− 1 other pairings]

+δi1i2 · · · δi2m−1i2mB̃
(`)
(α1α2)(α3α4)

m∏
k=3

[
C

(`+1)
b + C

(`+1)
W Ã(`)

α2k−1α2k

]
+

{[
3×

(
2m

4

)
× (2m− 5)!!− 1

]
other (4, 2, 2, . . . , 2) clusterings

}
+O

(
1

n2

)
.

In particular,

G
(`+1)
i1i2;α1α2

= δi1i2

[
C

(`+1)
b + C

(`+1)
W Ã(`)

α1α2

]
+O

(
1

n2

)
, (S28)

G
(`+1)
i1i2i3i4;α1α2α3α4

∣∣∣
connected

= δi1i2δi3i4B̃
(`)
(α1α2)(α3α4) + δi1i3δi2i4B̃

(`)
(α1α3)(α2α4)

+δi1i4δi2i3B̃
(`)
(α1α4)(α2α3) +O

(
1

n2

)
, and

G
(`+1)
i1i2...i2m−1i2m;α1α2...α2m−1α2m

∣∣∣
connected

= O

(
1

n2

)
, for 2m ≥ 6 . (S29)

completing our inductive proof. Note that B̃(`)
(α1α2)(α3α4) = O

(
1
n

)
.

Nowhere in our derivation had we assumed anything about the form of activation functions. The
only potential exceptions to our formalism are exponentially growing activation functions – which
we never see in practice – that would make the Gaussian integrals unintegrable.
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Appendix C. Bestiary of concrete examples

C.1. Quadratic activation

Let us take multilayer perceptrons with quadratic activation, σ(z) = z2, and study the distributions
of preactivations in the second layer as another illustration of our technology. From the master
recursion relations (R1-R3) with the initial condition (R0), Wick’s contractions yield

K̃(2)
α1α2

=C
(2)
b + C

(2)
W

[
K̃(1)
α1α1

K̃(1)
α2α2

+ 2K̃(1)
α1α2

K̃(1)
α1α2

]
, (S30)

Ṽ
(2)

(α1α2)(α3α4)[
C

(2)
W

]2 =2

[
K̃(1)
α1α1

K̃(1)
α3α3

(
K̃(1)
α2α4

)2
+ K̃(1)

α1α1
K̃(1)
α4α4

(
K̃(1)
α2α3

)2
(S31)

+ K̃(1)
α2α2

K̃(1)
α3α3

(
K̃(1)
α1α4

)2
+ K̃(1)

α2α2
K̃(1)
α4α4

(
K̃(1)
α1α3

)2
]

+ 4

[(
K̃(1)
α1α3

)2 (
K̃(1)
α2α4

)2
+
(
K̃(1)
α1α4

)2 (
K̃(1)
α2α3

)2
]

+ 8

[
K̃(1)
α1α1

K̃(1)
α2α3

K̃(1)
α3α4

K̃(1)
α4α2

+ K̃(1)
α2α2

K̃(1)
α3α4

K̃(1)
α4α1

K̃(1)
α1α3

+ K̃(1)
α3α3

K̃(1)
α4α1

K̃(1)
α1α2

K̃(1)
α2α4

+ K̃(1)
α4α4

K̃(1)
α1α2

K̃(1)
α2α3

K̃(1)
α3α1

]
+ 16

[
K̃(1)
α1α2

K̃(1)
α1α3

K̃(1)
α2α4

K̃(1)
α3α4

+ K̃(1)
α1α2

K̃(1)
α1α4

K̃(1)
α2α3

K̃(1)
α3α4

]
+ 16K̃(1)

α1α3
K̃(1)
α1α4

K̃(1)
α2α3

K̃(1)
α2α4

, and

S̃(2)
α1α2

=0 . (S32)

where K̃(1)
α1α2 = C

(1)
b + C

(1)
W ·

(
xα1 ·xα2

n0

)
. These expressions are used in the main text for the

experimental study of finite-width corrections on Bayesian inference.
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C.2. Details for single-input cases

The recursive relations simplify drastically for the case of a single input, ND = 1. Setting C(`)
b = 0

for simplicity and dropping α index, our recursive equations reduce to

K̃(`+1) =C
(`+1)
W

〈
[σ(z̃)]2

〉
K̃(`)

, (S33)

Ṽ (`+1)(
K̃(`+1)

)2 =


〈

[σ(z̃)]4
〉
K̃(`)〈

[σ(z̃)]2
〉2

K̃(`)

− 1

+
1

4

(
n`
n`−1

)
〈

[σ(z̃)]2 z̃2
〉
K̃(`)〈

[σ(z̃)]2
〉
K̃(`)

K̃(`)
− 1

2

· Ṽ (`)(
K̃(`)

)2 , and

(S34)

S̃(`+1)

K̃(`+1)
=

1

2

(
n`
n`−1

)
〈

[σ(z̃)]2 z̃2
〉
K̃(`)〈

[σ(z̃)]2
〉
K̃(`)

K̃(`)
− 1

 · S̃(`)

K̃(`)
(S35)

+
1

8

(
n`
n`−1

)
〈

[σ(z̃)]2 z̃4
〉
K̃(`)〈

[σ(z̃)]2
〉
K̃(`)

(
K̃(`)

)2 − 6

〈
[σ(z̃)]2 z̃2

〉
K̃(`)〈

[σ(z̃)]2
〉
K̃(`)

K̃(`)
+ 3

 · Ṽ (`)(
K̃(`)

)2 .

C.2.1. MONOMIALS WITH SINGLE INPUT

For monomial activations, σ(z) = zp, such as in deep linear networks (Saxe et al., 2013) and
quadratic activations (Li et al., 2018),

K̃(`+1) =
[
(2p− 1)!!C

(`+1)
W

] (
K̃(`)

)p
, (S36)

Ṽ (`+1)(
K̃(`+1)

)2 =

{
(4p− 1)!!

[(2p− 1)!!]2
− 1

}
+ p2

(
n`
n`−1

)
Ṽ (`)(
K̃(`)

)2 , and (S37)

S̃(`+1)

K̃(`+1)
=

(
n`
n`−1

)p S̃(`)

K̃(`)
+
p(p− 1)

2

Ṽ (`)(
K̃(`)

)2

 . (S38)

In particular the four-point vertex solution is given by

1

n`−1p2(`−1)

Ṽ (`)(
K̃(`)

)2 =

{
(4p− 1)!!

[(2p− 1)!!]2
− 1

}( `−1∑
`′=1

1

n`′p2`′

)
. (S39)

The factor
(∑

`′
1

n`′p
2`′

)
generalizes the factor

(∑
`′

1
n`′

)
for linear and ReLU activations. Fol-

lowing Hanin and Rolnick (2018), this factor guides us to narrow hidden layers as we pass through
nonlinear activations for p > 1.
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C.2.2. RELU WITH SINGLE INPUT

ReLU activation, σ(z) = max(0, z), can also be worked out for a single input through Wick’s
contractions, noting that the Gaussian integral is halved, yielding

K̃(`+1) =

[
C

(`+1)
W

2

]
K̃(`) , (S40)

Ṽ (`+1)(
K̃(`+1)

)2 = 5 +

(
n`
n`−1

)
Ṽ (`)(
K̃(`)

)2 , and (S41)

S̃(`+1)

K̃(`+1)
=

(
n`
n`−1

)
S̃(`)

K̃(`)
. (S42)

Setting C(`)
W = 2 for simplicity, these equations can be solved, leading to

K̃(`) = K̃(1) =
||x||22
n0

, (S43)

1

n`−1
Ṽ (`) = 5

(
`−1∑
`′=1

1

n`′

)(
K̃(1)

)2
, and (S44)

S̃(`) = 0 . (S45)

C.3. More experiments on output distributions

Here is an extended version of experiments in Section 4.3. As in the main text, take a single
black-white image of hand-written digits from the MNIST dataset as an n0 = 784-dimensional
input, without preprocessing. Set bias variance C(`)

b = 0, weight variance C(`)
W = CW , and use

activations σ(z) = z (linear) with CW = 1, σ(z) = z2 (quadratic) with CW = 1
3 , and σ(z) =

max(0, z) (ReLU) with CW = 2. For all three cases, we consider both depth L = 2 with widths
(n0, n1, n2) = (784, n, 1) and depth L = 3 with widths (n0, n1, n2, n3) = (784, n, 2n, 1). As
in Figure 1, in Figure S1, for each width-parameter n of the hidden layers we record the prior
distribution of outputs over 106 instances of Gaussian weights and compare it with the theoretical
prediction. Results again corroborate our theory.
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Figure S1: Comparison between theory and experiments for prior distributions of outputs for a
single input. Our theoretical predictions (smooth thick lines) and experimental data
(rugged thin lines) agree, correctly capturing the initial deviations from the Gaussian
processes (black, n = ∞), at least down to n = n? with n? ∼ 10 for linear cases,
n? ∼ 30 for ReLU cases and depth L = 2 quadratic case, and n? ∼ 100 for depth
L = 3 quadratic case. This also illustrates that nonlinear activations quickly amplify
non-Gaussianity.
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Appendix D. Finite-width corrections on Bayesian inference

In order to massage Equation (NGPM) into an actionable form, first playing with the metric inver-
sions and defining φ

α
i ≡

∑
α′(K̃

−1)αα
′
φi;α′ , the mean prediction becomes(

yGP
E
)
i;γ̇

+ ε
∑

α1,γ̇1,α0

(
K̃∆

)
γ̇γ̇1

φ
α1

i

(
K̃−1

)γ̇1α0

(S46)

×

{
S̃(L)
α0α1

−
∑
α2,α3

[
Ṽ

(L)
(α0α2)(α1α3) +

nL
2
Ṽ

(L)
(α0α1)(α2α3)

]
×
[(
K̃−1

)α2α3

−
(
K̃−1

)α2γ̇2
(
K̃∆

)
γ̇2γ̇3

(
K̃−1

)γ̇3α3
]

+
1

2

∑
α2,α3

Ṽ
(L)

(α0α1)(α2α3)

∑
j

φ
α2

j φ
α3

j

} .
This expression simplifies drastically through the identity(

K̃RR K̃RE

K̃ER K̃EE

)−1

=

(
K̃−1

RR + K̃−1
RR K̃REK̃

−1
∆ K̃ERK̃

−1
RR −K̃−1

RR K̃REK̃
−1
∆

−K̃−1
∆ K̃ERK̃

−1
RR K̃−1

∆

)
, (S47)

which can be checked explicitly, recalling K̃∆ ≡ K̃EE − K̃ERK̃
−1
RR K̃RE. Incidentally, this identity

can also be used to prove Equation (GP∆). Now equipped with this identity, recalling φi;α ≡

[(yR)i;β̄ ,
(
yGP

E

)
i;γ̇

], we notice that φ
β̄
i =

∑
β̄′

(
K̃−1

RR

)β̄β̄′
(yR)i;β̄′ and φ

γ̇1

i = 0. Similarly(K̃−1
)β̄2β̄3

−
∑
γ̇2,γ̇3

(
K̃−1

)β̄2γ̇2
(
K̃∆

)
γ̇2γ̇3

(
K̃−1

)γ̇3β̄3

 =
(
K̃−1

RR

)β̄2β̄3

and other components [i.e. with one or both of training components (β̄2, β̄3) replaced by test com-
ponents γ̇] vanish. Equation (S46) thus simplifies to

(
yGP

E
)
i;γ̇

+ ε
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(
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∑
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]

Finally, denoting the matrix inside the parenthesis to be

Aα0β̄1
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+
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2
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 (NGPM’)
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∑
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,
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and noticing
∑

γ̇1

(
K̃∆

)
γ̇γ̇1

(
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)γ̇1β̄0

= −
(
K̃ERK̃
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and
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(
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Aγ̇β̄1
−
∑
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 (NGPM”)

is the mean prediction. Equations (NGPM’) and (NGPM”) with φ
β̄
i =

∑
β̄′

(
K̃−1

RR

)β̄β̄′
(yR)i;β̄′ are

actionable, i.e., easy to program.
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