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Abstract

Calibrating a Lévy process usually requires characterizing its jump distribution. Traditionally this
problem can be solved with nonparametric estimation using the empirical characteristic functions
(ECF), assuming certain regularity, and results to date are mostly in 1D. For multivariate Lévy pro-
cesses and less smooth Lévy densities, the problem becomes challenging as ECFs decay slowly and
have large uncertainty because of limited observations. We solve this problem by approximating
the Lévy density with a parametrized functional form; the characteristic function is then estimated
using numerical integration. In our benchmarks, we used deep neural networks and found that
they are robust and can capture sharp transitions in the Lévy density compared to piecewise linear
functions and radial basis functions.
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1. Introduction

Lévy processes generalize Gaussian processes by allowing jump-diffusion. Because of their ability
to allow continuous evolution and abrupt jumps of random variables (Chen et al. (2010)), many
models in finance, physics and biology have been built based on Lévy processes. For example, in
the classical Black-Scholes model for risky assets, the price St of an asset at time t is governed
by (Figueroa-Lopez and Houdré (2004))

St = S0e
σBt+µt (1)

where Bt is the standard Brownian motion amd σ and µ are the standard deviation and the drift
mean. To account for the excessive skewness and kurtosis in the log return distributions in em-
pirical financial data, the Black-Scholes model has been generalized to the exponential Lévy pro-
cess (Tankov (2011); Andersen and Lipton (2013); Benhamou (2000))

St = S0e
Xt (2)

where Xt is a Lévy process. Yet, because of the lack of analytical closed-form density functions
for general Lévy processes, an exact maximum likelihood estimator is not feasible. The lack of a
closed-form density function leads to the difficulty of calibrating Lévy processes in the presence of
jumps.

The multivariate Lévy process can be described by three parameters (Menn and Rachev (2006)):
a positive semi-definite matrix A = ΣΣT ∈ Rd×d, where Σ ∈ Rd×d; a vector b ∈ Rd, and a
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measure ν ∈ Rd\{0}. The Lévy process Xt is a superposition of a Wiener process ΣBt + bt,
where Bt is the standard i.i.d. Brownian motion, and a pure-jump Lévy process with the Lévy
measure

ν(A) =
1

t
E

∑
s≤t

1A(Xs −Xs−)

 (3)

where 1A is an indicator forA, i.e., 1A(x) = 1 for x ∈ A and 0 otherwise. The corresponding char-
acteristic function is given by the Lévy-Khintchine representation (Papapantoleon (2008))

φ(ξ) = E[ei〈ξ,Xt〉] = exp

[
t

(
i〈b, ξ〉 − 1

2
〈ξ,Aξ〉+

∫
Rd

(
ei〈ξ,x〉 − 1− i〈ξ,x〉1‖x‖≤1

)
ν(dx)

)]
(4)

The subject of this paper is to study the nonparametric calibration of pure jump processes ν(x) and
thus we assume A = 0 and b = 0 throughout the paper. In addition, we assume that ν is determined
by a density function such that ν(ds) = ν(s)ds, and we call ν(s) the Lévy density.

The traditional nonparametric estimation for Lévy processes in 1D has two cases (Neumann et al.
(2009)): (1) the Lévy process Xt is observed at high frequency at times ti, i.e., maxi(ti − ti−1)
is small. In this case, a large increment Xti − Xti−1 indicates that a jump occurred. For example
Comte and Genon-Catalot (2009) proposed nonparametric inference methods for Lévy process in
this case. (2) in the low-frequency observation case, there are zero or several jumps present within
the increment Xti −Xti−1 . In this case, Neumann et al. (2009) applied a deconvolution algorithm
to estimate ν(x) from the empirical characteristic function. Cont and Tankov (2004) discretized the
Lévy density ν(x) on a grid and applied relative entropy minimization to find the optimal ν(x). We
tackle the latter case, where we want to estimate ν(x) from Lévy process data given at equispaced
time intervals, i.e., t1 = ∆t, t2 = 2∆t, t3 = 3∆t, . . .

However, much of the attention in the literature has been restricted to 1D case and well-behaved
ν(x). In the case where ν(x) is discontinuous, Neumann et al. (2009) proposed a deconvolution
method but since the decay of the characteristic function is very slow, the method requires large
computational domains. The method proposed in Cont and Tankov (2004) assigned one degree of
freedom (DOF) to the discretized Lévy density ν(x) per grid point, which partially contributed to
the ill-posedness of the nonlinear optimization problem. The ill-posedness problem becomes more
severe in higher dimensions since DOFs grow exponentially.

In this paper, we tackle those challenges by proposing a novel approach for 2D nonparametric
estimation of the Lévy density ν(x). This approach proceeds in four stages:

1. The Lévy density is approximated by a parametric functional form—such as piecewise linear
functions—with parameters θ,

ν(x) ≈ νθ(x) (5)

2. The characteristic function is approximated by numerical integration

φ(ξ) ≈ φθ(ξ) := exp

[
∆t

nq∑
i=1

(
ei〈ξ,xi〉 − 1− i〈ξ,xi〉1‖xi‖≤1

)
νθ(xi)wi

]
(6)

where {(xi, wi)}
nq

i=1 are quadrature nodes and weights and 1 denotes the indicator function.
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3. The empirical characteristic functions are computed given observations {Xi∆t}ni=0

φ̂n(ξ) :=
1

n

n∑
i=1

exp(i〈ξ,Xi∆t −X(i−1)∆t〉), ξ ∈ Rd (7)

4. Finally, we solve the following optimization problem with a gradient based method.

min
θ

1

m

m∑
i=1

‖φ̂n(ξi)− φθ(ξi)‖2 (8)

Here {ξi}mi=1 are collocation points and ‖ · ‖ denotes complex modulus.

Note that our method is not a direct fitting algorithm in the sense that we do not fit the function
approximators with input-output pairs. The output of the function approximators are unobservable
and must be calibrated by embedding the function approximator in a statistical model. The gra-
dient descent method requires differentiating through both the statistical model and the function
approximator.

One challenge for this approach is computing the error ‖φ̂n(ξ)−φ(ξ)‖ in the empirical characteristic
function. In theory, the empirical characteristic function converges to the exact one given infinite
observations under certain conditions (Marcus (1981); Feuerverger et al. (1977)). However, in
practice the observations are limited and thus the empirical characteristic function is not exact.
Another challenge is the discontinuity of Lévy densities. This occurs when the jump distribution
experiences sudden changes for certain x (Eberlein (2009)).

To tackle these challenges, the choice of function approximators νθ(x) is essential. From the pre-
vious discussion, a potential form must have the following properties: (1) universal approximation,
i.e., the capability of approximating any continuous functions given sufficient computing budget;
(2) robustness to noise; (3) ability to handle discontinuity. In this paper, we apply and benchmark
three popular parametric functional forms: neural networks (NN), piecewise linear functions (PL),
and radial basis functions (RBF).

Neural networks enjoy many favorable properties such as exponential convergence for analytic func-
tions (E and Wang (2018)) and rational function (Telgarsky (2017)) and we demonstrate empirically
that they outperform the other two methods—PL and RBF—in several aspects. On the one hand,
PL consists of local basis functions and therefore DOFs with no data points nearby around are not
optimized. On the other hand, although the basis functions in RBF are global so it suffers less from
the problem PL struggles with, it is well known that RBF is susceptible to noise and discontinu-
ity (Boyd (2010); Xu and Belytschko (2005); Orr et al. (1996)). Besides, accuracy and stability
of RBF depend on proper choice of shape parameters and determining optimal shape parameters
is difficult in many situations. However, the problems are alleviated for NN, partially because it is
adaptive to non-uniform data (Huang et al. (2019)), robust to noise (Rolnick et al. (2017)), and can
overcome Gibbs phenomenon (Llanas et al. (2008); Xu and Darve (2019)). The capability of the
neural network is demonstrated in Figure 1, where different function approximators are trained on
20 data points in a step function

f(x) = 0.5 + 12<x<5(x)
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As we can see in the plots, when the number of training points is fixed, we need to limit the degrees
of freedom (DOF) or impose regularization for local basis functions, such as piecewise linear func-
tions, to avoid overfitting. In the presence of discontinuity, the radial basis functions suffer from
oscillations near the discontinuous point. The neural network is capable of capturing the disconti-
nuity and provides a large number of DOFs to approximate complex functions.
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Figure 1: Fitting a step function y = 0.5 + 12<x<5(x) using different function approximators.
NNn stands for neural network model with n layers, 20 neurons per hidden layer and
ReLU as activation function. PLn stands for piecewise linear function with n equispaced
distributed nodes. RBFn stands for radial basis functions with n equispaced distributed
centers.

With the re-parametrization technique, we show that the method can also be applied to multivariate
symmetric α-stable processes (Gulian et al. (2018)), a subclass of Lévy processes. In this case, ν(x)
is singular at x = 0, but we can re-parametrize the characteristic function as

φ(ξ) = E (exp(it〈θ, ξ〉)) = exp

[
t

(
−1

2
〈ξ,Aξ〉+ i〈ξ,b〉 −

∫
Sd
|〈θ, ξ〉|αΓ(s)ds

)]
(9)

where Γ(s) is a function defined on Sd. Here we can substitute Γ(s) by a parametrized functional
form Γθ(s), apply the quadrature rule on the unit circle and minimize the discrepancy between
φ̂n(ξ) and φθ(ξ).

Finally, we built a toolset LevyNN for calibrating Lévy processes based on the open source library
ADCME.jl. The latter is an automatic differentiation library with TensorFlow backends and is
specially designed for scientific computing. The library automates the gradient computation and
integrates the optimization workflow.

2. Nonparametric Estimation of the Lévy processes

2.1. Characteristic Function Matching Method

The characteristic function matching method (Yu (2004)) minimizes the discrepancy between the
empirical characteristic function φ̂n(ξ) (Equation (7)) and the characteristic function φ(ξ) (Equa-
tion (4)). The rationales are: (1) As n → ∞, φ̂n(ξ) → φ(ξ) because of the large number law;
(2) there is a one-to-one correspondence between the characteristic function φ(x) and the density
function for Xi∆t−X(i−1)∆t, a.k.a., ν(x). Consequently, we can estimate ν(x) from φ̂n(ξ).
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For Lévy processes, we have to make two additional approximations: (1) ν(x) is approximated with
a parametrized functional form νθ(x) (Equation (5)); (2) Based on νθ(x), φ(ξ) is approximated by
φθ(ξ) via numerical integration (Equation (6)). In the following, we will discuss details regarding
those two approximations.

2.2. Approximation to the Lévy Density

x

Piecewise Linear Basis Functions Radial Basis Functions Neural Networks

Figure 2: Different functional forms in 1D. In PL and RBF, the target function are approximated
by linear combination of basis functions; in NN, it is approximated by composing linear
transformations and nonlinear activation functions.

The Lévy density ν(x) is a mapping from the coordinates x ∈ R2 to R. We first truncate the infinite
computational domain to x ∈ [−M,M ]2 and then approximate ν(x) with νθ(x). In the following
paragraphs, we discuss three functional forms for νθ(x) (Figure 2).

One type of neural network (NN) is a composition of linear operations followed by a nonlinear
activation function. In this paper, we consider ReLU dense neural networks, where

νθ(x) = WLReLU(WL−1ReLU(· · ·ReLU(W1x + b1) · · · ) + bL−1) + bL (10)

here ReLU(x) = max(x, 0) and it is applied elementwise, L is the number of layers and θ =
{(Wi,bi)}Li=1 are the weights and biases. For all the hidden layers, the output dimension is 20.
NN is special because information at each data point is not represented by linear combination of
predetermined basis functions by composing linear and nonlinear mappings.

Although the neural network does not require the input range or computational domain explicitly, it
usually requires that the input data is properly scaled. For example, if M is very large, we need to
scale x to x

M first.

For piecewise linear functions (PL), the computational domain is first triangulated and each vertex
is associated with one DOF. The value νθ(x) is linearly interpolated from the nodal values of the
triangle where x is located. θ consists of all those DOFs. In this paper, we obtain the triangulation
by splitting each square cell into two triangles on a uniform grid. One disadvantage of PL is the
local DOF problem, where the DOFs with no data points nearby are not trained.

For radial basis functions (RBF), we have

νθ(x) =

M∑
i=1

ai
1√

(x− xi)2 + c2
(11)

where {ai}Mi=1 are coefficients, {xi}Mi=1 are centers, c is the shape parameter. In this paper, the
centers are chosen as the grid points on a uniform grid. c is given by the grid step size, suggested by
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Wu et al. (2012). Although the basis functions are global, the coefficients in RBF are more affected
by data points that are closer to the corresponding centers. Hence, we expect RBF also suffers from
the local DOF problem like PL.

2.3. Numerical Approximation to the Characteristic Function
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Figure 3: Quadrature points used for R2 and the unit circle. To avoid bloated plots, we show fewer
quadrature points with order nq = 100 and nq = 20 respectively.

We assume that ν(x) decays as ‖x‖ → ∞; we use the quadrature rule on the truncated domain
{(x, y) : x2 + y2 < M2} for approximating the integral in Equation (4)∫

R2

(
ei〈ξ,x〉 − 1− i〈ξ,x〉1‖x‖≤1

)
ν(x)dx ≈

nq∑
i=1

(
ei〈ξ,xi〉 − 1− i〈ξ,xi〉1‖xi‖≤1

)
νθ(xi)wi

The quadrature points and weights {(xi, wi)}
nq

i=1 are obtained according to Cools and Kim (2000).
For multivariate stable processes in the following, we use quadrature rules on the unit circle. Fig-
ure 3 shows examples of quadrature points with order nq = 100 and nq = 20.

Consequently, we obtain the expression for the approximation to the characteristic function

φ(ξ) ≈ φθ(ξ) := exp

[
∆t

n∑
i=1

(
ei〈ξ,xi〉 − 1− i〈ξ,xi〉1‖xi‖≤1

)
νθ(xi)wi

]
(12)

2.4. Optimization

The characteristic function matching method requires minimizing the discrepancy between φ̂n(ξ)
and φθ(ξ). For computation, we consider a set of collocation points {ξi}mi=1 uniformly drawn from
[−M ′,M ′]2 and solve the nonlinear least square problem

min
θ
L(θ) :=

1

m

m∑
i=1

‖φ̂n(ξi)− φθ(ξi)‖2 (13)

The choice of M ′ is based on {Xi}: we can choose M ′ such that |φ̂n(ξ)| is smaller than a certain
value for ξ ∈ R2\[−M ′,M ′]2. In the objective function, we have used the characteristic function
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instead of its logarithm (the characteristic exponent) because by taking the exponential of the char-
acteristic exponent we can eliminate the 2π period in its imaginary part. Additionally, because of
the exponential, the objective function will place more weights on the high frequency region (when
the real part of the characteristic exponent is large), and this objective function is desired in certain
scenarios because high frequency captures sharp changes in the Lévy density function.

The optimization problem Equation (13) is solved with ADCME. It computes the gradient∇L(θ) us-
ing automatic differentiation (Baydin et al. (2018); Abadi et al. (2016)) and applies a gradient-based
optimizer such as L-BFGS-B (Dai (2013)) for minimization. The considerable flexibility makes it
easy to test different approximation functional forms νθ(x) without deriving and implementing new
gradients or optimization procedures.

2.5. Multivariate α-Stable Process: Re-parametrization

For the multivariate symmetric α-stable distribution, the characteristic function of the increment
Xi∆t −X(i−1)∆t is given by the following theorem Samorodnitsky et al. (1994)

Theorem 1 X is a symmetric α-stable vector in Rd with 0 < α < 2 if and only if there exists a
unique symmetric finite measure Γ on the unit sphere Sd such that

φ(ξ) = E (exp(i∆t〈X, ξ〉)) = exp

(
−∆t

∫
Sd
|〈s, ξ〉|αΓ(ds)

)
(14)

Γ is the spectral measure of the symmetric α-stable vector X.

We assume that Γ is determined by a density function such that Γ(ds) = Γ(s)ds. The previous pro-
cedure will fail because ν(x) is singular at x = 0 thus the given quadrature rule is unable to handle
the singularities. For example, when Γ(s) = 1, the corresponding Lévy density satisfies (Nolan
(2008))

ν(x) ∝ 1

‖x‖α+2
, ‖x‖ → 0 (15)

Instead of working with ν(x), we approximate Equation (14) directly since ν(x) is singular in this
case but Γ(s) usually has better regularity. For calibrating the multivariate symmetric α-stable pro-
cess, we apply the quadrature rule {(si, wi)}

nq

i=1 on a unit circle instead of R2 and we obtain

φ(ξ) ≈ φθ(ξ) := exp(i∆t〈θ, ξ〉) = exp

(
−∆t

nq∑
i=1

|〈ξ, si〉|αΓθ(si)wi

)
(16)

We have the additional constraint Γ(s) = Γ(−s) according to Theorem 1. This is enforced directly
by the functional form Γθ. For example, we assume Γθ(s) = Γ′θ(s) + Γ′θ(−s), where Γ′θ(s) is NN,
PL or RBF in the 1D domain [0, 2π) (since there exists a one-to-one correspondence between S2

and [0, 2π)).

3. Numerical Results

We now present the results of numerical experiments. We first compare the accuracy of three func-
tional forms based on exact characteristic function, ignoring the uncertainty from observations.
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Function NN5 NN10 NN20 PL10 PL20 PL40 RBF10 RBF20 RBF40

Step 0.7500 0.7499 0.7498 0.7493 0.7494 0.7500 0.7482 0.7483 0.7504
Constant 0.7499 0.7500 0.7500 0.7500 0.7500 0.7499 0.7500 0.7500 0.7499

Table 1: Estimated α for different methods and test functions. The exact fractional index α is 0.75.
We can see that our NN method is able to learn α quite accurately, regardless of the choices
of basis functions.

Then we apply and compare the functional forms to symmetric α-stable processes and general Lévy
processes in the presence of uncertainty from observations. We show that NN has very favorable
properties in terms of being robust and capturing sharp transitions. We demonstrate the properties
in the following three benchmarks and apply the algorithm to stock markets data.

3.1. Multivariate α-Stable Processes: Estimation from Exact Empirical Characteristic
Functions
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Figure 4: Estimated Γθ(s) from exact characteristic functions using different methods. Here s =
[cos(x), sin(x)], x ∈ [0, 2π). For details about legend abbreviations, see Figure 4.

We assume that φ(ξ) is computed with accurate numerical quadrature rules nq = 10000 for

Γ(s) = 1|s1|>0.5(s), and Γ(s) = 1, s = (s1, s2), s ∈ S2 (17)

hence the error is negligible for estimating φ(ξ). We assume ∆t = 0.5, α = 0.75, and nq = 100 for
approximating φθ(ξ). The results in Figure 4 indicate that NN can capture the sharp transition better
than others. For PL, if DOFs are too few, it is unable to capture the transition; however, some of
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DOFs are not trained because there are no data points locating in the support of the associated basis
functions. For RBF, results for RBF40 implies that too few data points compared to the number
of centers make the optimization problem ill-posed. Additionally, RBF fails to capture the sharp
transitions.

The fractional indices are estimated quite accurately (Table 1). This implies that compared to the
“directional” information of the jump, the heavy tail information is easier to capture.

The effect of overfitting Despite having much more degrees of freedom than the PL and the RBF,
NN does not overfit when trained from sample paths data and statistical constraint Equation (13).
Piecewise linear functions are local basis functions, and thus to calibrate all the coefficients in
the linear combination, the number of points in the training data must be at least the number of
coefficients. That’s why we see a lot of oscillations in the middle panel of Figure 1 when the DOF
is large. For radial basis functions, it is known that when the number of the basis functions is
larger than the number of training data, numerical instability occurs. As a numerical demonstration,
we compare the results in Table 2 for α = 0.75 using NN5, PL2000, and RBF2000, which have
approximately the same number of parameters (2000 for the PL and RBF, and 1762 for the NN).
We report the error norm ‖Γ(ŝ)− Γθ(ŝ)‖2 using equispaced ŝ.

Function NN5 PL2000 RBF2000

Error 3.51 24.97 14.97

Table 2: Comparison of error ‖Γ(ŝ)− Γθ(ŝ)‖2 for different methods with approximately the same
DOF.

3.2. Multivariate α-Stable Processes: Estimation from Observations
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Figure 5: The first column shows sample paths of generated alpha-stable processes. The other three
columns show estimated Γθ(s) from observations with different methods. The ξ ∈ [0, 2π)
axis corresponds to the angle of s, i.e., s = [cos(ξ), sin(ξ)]. For details about legend
abbreviations, see Figure 4.
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Function NN5 NN10 NN20 PL10 PL20 PL40 RBF10 RBF20 RBF40

Step 1.5164 1.5156 1.5162 1.5151 1.5166 1.5169 3.2155 1.5154 1.5171
Constant 1.5331 1.5329 1.5329 1.5330 1.5329 1.5330 1.5329 1.5329 1.5330

Table 3: Estimated α for different methods and test functions. The reference fractional index α is
1.5. For step functions, if we use too few centers for radial basis functions, the estimation
is not accurate (RBF10). This is also demonstrated in Figure 5.

Now we consider estimating the multivariate α-stable process from m = 1000 observations. Dif-
ferent from the last section, φ(ξ) is unknown and is estimated with φ̂n(ξ). The difference |φ̂n(ξ)−
φ(ξ)| introduces additional uncertainty, which can also be interpreted as “noise” in the nonlinear
optimization problem.

The results in Figure 5 imply that NN is most robust in either case. The α indices are properly
estimated in Table 3, except for the step function and RBF10 case because of the noise.

3.3. Multivariate Lévy Processes.

In this example, we consider the Lévy process where the jump distributions are truncated normal
distributions. The Lévy density has the expression

ν(x) =
2

π
exp

(
−‖x‖

2

2

)
1x∈R2

+
(18)

The density ν(x) is only nonzero for x ∈ R2
+ and has sharp transition at axes x = 0 and y = 0

in the first quadrant. In our experiment, we assume ∆t = 0.5, m = 10000, nq = 4096. The
data {Xi∆t}ni=1 are simulated according to Nolan (2008). Notably, NN captures the sharp transi-
tion (Figure 6). However, the results from PL do not even capture the shape of the density function
well. Additionally, RBF creates a smooth profile of the density distribution with a blurring edge and
thus fails to capture the sharp transition.

3.4. Application to Stock Markets.

Finally, we apply our method to a stock market example. We investigate 12 stocks from 01/01/2016
to 08/01/2019, which are from the technology sector (MSFT, AAPL, AMZN, GOOG), the financial
sector (JPM, C, WFC, CME) and the energy sector (EOG, XOM, COG, MPC). The α index is
computed for each pair of stocks. The stock prices are turned into the log return and then shifted so
data for each stock are unbiased.

We model the pairwise shifted log return of the stocks by a 2D symmetric α-stable process with
unknown α and Γ(s). Figure 7 shows the estimated pairwise α indices. Most of the indices are
between 1.1 and 1.5. This implies that jumps do exist in the pairwise log return changes. We also
show Γ(s) for EOG vs. MSFT. We identify 4 peaks in the plot, which indicate that there is a larger
tendency for prices to jump in those 4 directions compared to nearby directions.
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Figure 6: Estimated νθ(x) from observations with different methods. The intercepted arc of the
dashed red sector is {(x, y) : x2 + y2 = 1, x ≥ 0, y ≥ 0}. The sector indicates the area
with most of the density for the reference ν(x). For details about subtitle abbreviations,
see Figure 4.

4. Conclusion

We have proposed a novel nonparametric estimation approach for Lévy processes and compared
three approximation functional forms: (1) neural network (2) piecewise linear functions (3) and
radial basis functions. We found that for the tested cases neural network performed best for being
robust to noise and capturing sharp transitions. However, one should not expect that neural networks
are always superior to others. Most likely, a certain functional form may be more suitable to a class
of problems, since the performance highly depends on the characteristics of the training data.

Besides Lévy processes, the same idea—approximating an unknown function in a system model
with neural network, and training by matching the model outputs with observations—can be ap-
plied to many other fields as well. In the future, a deeper understanding of the neural network
approximation properties and improvement of the training algorithm will broaden the applications
of our nonparametric estimation approach.
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frequency Observations. Bernoulli, 15(1):223–248, 2009.

John P Nolan. An Overview of Multivariate Stable Distributions. Online: http://academic2.
american.edu/˜jpnolan/stable/overview.pdf, 2008.

Mark JL Orr et al. Introduction to radial basis function networks, 1996.
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