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Abstract
Machine learning (ML) models trained by differentially private stochastic gradient descent (DP-
SGD) have much lower utility than the non-private ones. To mitigate this degradation, we propose
a DP Laplacian smoothing SGD (DP-LSSGD) to train ML models with differential privacy (DP)
guarantees. At the core of DP-LSSGD is the Laplacian smoothing, which smooths out the Gaussian
noise used in the Gaussian mechanism. Under the same amount of noise used in the Gaussian
mechanism, DP-LSSGD attains the same DP guarantee, but in practice, DP-LSSGD makes training
both convex and nonconvex ML models more stable and enables the trained models to generalize
better. The proposed algorithm is simple to implement and the extra computational complexity
and memory overhead compared with DP-SGD are negligible. DP-LSSGD is applicable to train a
large variety of ML models, including DNNs. The code is available at https://github.com/
BaoWangMath/DP-LSSGD.
Keywords: Laplacian Smoothing, Differential Privacy, Machine Learning, Optimization

1. Introduction

Many released machine learning (ML) models are trained on sensitive data that are often crowd-
sourced or contain private information (Yuen et al., 2011; Feng et al., 2017; Liu et al., 2017). With
overparameterization, deep neural nets (DNNs) can memorize the private training data, and it is pos-
sible to recover them and break the privacy by attacking the released models (Shokri et al., 2017).
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For example, Fredrikson et al. demonstrated that a model-inversion attack can recover training im-
ages from a facial recognition system (Fredrikson et al., 2015). Protecting the private data is one of
the most critical tasks in ML.

Differential privacy (DP) (Dwork et al., 2006) is a theoretically rigorous tool for designing
algorithms on aggregated databases with a privacy guarantee. The idea is to add a certain amount of
noise to randomize the output of a given algorithm such that the attackers cannot distinguish outputs
of any two adjacent input datasets that differ in only one entry.

For repeated applications of additive noise based mechanisms, many tools have been invented
to analyze the DP guarantee for the model obtained at the final stage. These include the basic
and strong composition theorems and their refinements (Dwork et al., 2006, 2010; Kairouz et al.,
2015), the moments accountant (Abadi et al., 2016), etc. Beyond the original notion of DP, there are
also many other ways to define the privacy, e.g., local DP (Duchi et al., 2014), concentrated/zero-
concentrated DP (Dwork and Rothblum, 2016; Bun and Steinke, 2016), and Rényi-DP (RDP)
(Mironov, 2017).

Differentially private stochastic gradient descent (DP-SGD) reduces the utility of the trained
models severely compared with SGD. As shown in Figure 1, the training and validation losses of the
logistic regression on the MNIST dataset increase rapidly when the DP guarantee becomes stronger.
The convolutional neural net (CNN) 1 trained by DP-SGD has much lower testing accuracy than the
non-private one on the MNIST. We will discuss the detailed experimental settings in Section 4. A
natural question raised from such performance degradations is:

Can we improve DP-SGD, with negligible extra computational complexity and memory cost,
such that it can be used to train general ML models with improved utility?
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Figure 1: Training (left) and validation (middle) losses of the logistic regression on the MNIST
trained by DP-SGD with (ε, δ = 10−5)-DP guarantee. (right): testing accuracy of a
simple CNN on the MNIST trained by DP-SGD with (ε, δ = 10−5)-DP guarantee.

We answer the above question affirmatively by proposing differentially private Laplacian smooth-
ing SGD (DP-LSSGD) to improve the utility in privacy-preserving empirical risk minimization
(ERM). DP-LSSGD leverages the Laplacian smoothing (Osher et al., 2018) as a post-processing
to smooth the injected Gaussian noise in the differentially private SGD (DP-SGD) to improve the
convergence of DP-SGD in training ML models with DP guarantee.

1. github.com/tensorflow/privacy/blob/master/tutorials/mnist_dpsgd_tutorial.py
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1.1. Our Contributions

The main contributions of our work are highlighted as follows:

• We propose DP-LSSGD and prove its privacy and utility guarantees for convex/nonconvex op-
timizations. We prove that under the same privacy budget, DP-LSSGD achieves better utility,
excluding a small term that is usually dominated by the other terms, than DP-SGD by a factor that
is much less than one for convex optimization.

• We perform a large number of experiments logistic regression and CNN to verify the utility im-
provement by using DP-LSSGD. Numerical results show that DP-LSSGD remarkably reduces
training and validation losses and improves the generalization of the trained private models.

In Table 1, we compare the privacy and utility guarantees of DP-LSSGD and DP-SGD. For the
utility, the notation Õ(·) hides the same constant and log factors for each bound. The constants d and
n denote the dimension of the model’s parameters and the number of training points, respectively.
The numbers γ and β are positive constants that are strictly less than one, andD0, Dσ, G are positive
constants, which will be defined in Section 3.

Table 1: Utility and Differential Privacy Guarantees.
Algorithm DP Assumption Utility Measurement Reference

DP-SGD (ε, δ) convex Õ
(√

(D0+G2)d

(εn)

)
optimality gap Bassily et al. (2014)

DP-SGD (ε, δ) nonconvex Õ
(√

d/(εn)
)

`2-norm of gradient Zhang et al. (2017)

DP-LSSGD (ε, δ) convex Õ
(√

γ(Dσ+G2)d

(εn)

)
optimality gap This Work

DP-LSSGD (ε, δ) nonconvex Õ
(√
βd/(εn)

)
1 `2-norm of gradient This Work

1 Measured in the norm induced by A−1
σ , we will discuss this in detail in Section 4.

1.2. Related Work

There is a massive volume of research over the past decade on designing algorithms for privacy-
preserving ML. Objective perturbation, output perturbation, and gradient perturbation are the three
major approaches to perform ERM with a DP guarantee. Chaudhuri and Monteleoni (2008); Chaud-
huri et al. (2011) considered both output and objective perturbations for privacy-preserving ERM,
and gave theoretical guarantees for both privacy and utility for logistic regression and SVM. Song
et al. (2013) numerically studied the effects of learning rate and batch size in DP-ERM. Wang
et al. (2016) studied stability, learnability and other properties of DP-ERM. Lee and Kifer (2018)
proposed an adaptive per-iteration privacy budget in concentrated DP gradient descent. The util-
ity bound of DP-SGD has also been analyzed for both convex and nonconvex smooth objectives
(Bassily et al., 2014; Zhang et al., 2017). Jayaraman et al. (2018) analyzed the excess empirical
risk of DP-ERM in a distributed setting. Besides ERM, many other ML models have been made
differentially private. These include: clustering (Su et al., 2015; Y. Wang and Singh, 2015; Bal-
can et al., 2017), matrix completion (Jain et al., 2018), online learning (Jain et al., 2012), sparse
learning (Talwar et al., 2015; Wang and Gu, 2019), and topic modeling (Park et al., 2016). Gilbert
and McMillan (2017) exploited the ill-conditionedness of inverse problems to design algorithms to
release differentially private measurements of the physical system.
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Shokri and Shmatikov (2015) proposed distributed selective SGD to train deep neural nets
(DNNs) with a DP guarantee in a distributed system, however, the obtained privacy guarantee was
very loose. Abadi et al. (2016) considered applying DP-SGD to train DNNs in a centralized setting.
They clipped the gradient `2 norm to bound the sensitivity and invented the moment accountant to
get better privacy loss estimation. Papernot et al. (2017) proposed Private Aggregation of Teacher
Ensembles/PATE based on the semi-supervised transfer learning to train DNNs, and this framework
improves both privacy and utility on top of the work by Abadi et al. (2016). Recently Papernot et al.
(2018) introduced new noisy aggregation mechanisms for teacher ensembles that enable a tighter
theoretical DP guarantee. The modified PATE is scalable to the large dataset and applicable to more
diversified ML tasks.

Laplacian smoothing (LS) can be regarded as a denoising technique that performs post-processing
on the Gaussian noise injected stochastic gradient. Denoising has been used in the DP earlier: Post-
processing can enforce consistency of contingency table releases (Barak et al., 2007) and leads
to accurate estimation of the degree distribution of private network (Hay et al., 2009). Nikolov
et al. (2013) showed that post-processing by projecting linear regression solutions, when the ground
truth solution is sparse, to a given `1-ball can remarkably reduce the estimation error. Bernstein
et al. (2017) used Expectation-Maximization to denoise a class of graphical models’ parameters.
Balle and Wang (2018) showed that in the output perturbation based differentially private algo-
rithm design, denoising dramatically improves the accuracy of the Gaussian mechanism in the
high-dimensional regime. To the best of our knowledge, we are the first to design a denoising
technique on the Gaussian noise injected gradient to improve the utility of the trained private ML
models.

1.3. Notation

We use boldface upper-case letters A, B to denote matrices and boldface lower-case letters x, y
to denote vectors. For vectors x and y and positive definite matrix A, we use ‖x‖2 and ‖x‖A to
denote the `2-norm and the induced norm by A, respectively; 〈x,y〉 denotes the inner product of x
and y; and λi(A) denotes the i-th largest eigenvalue of A. We denote the set of numbers from 1 to
n by [n]. N (0, Id×d) represents d-dimensional standard Gaussian.

1.4. Organization

This paper is organized in the following way: In Section 2, we introduce the DP-LSSGD algorithm.
In Section 3, we analyze the privacy and utility guarantees of DP-LSSGD for both convex and
nonconvex optimizations. We numerically verify the efficiency of DP-LSSGD in Section 4. We
conclude this work and point out some future directions in Section 5.

2. Problem Setup and Algorithm

2.1. Laplacian Smoothing Stochastic Gradient Descent (LSSGD)

In this paper, we consider empirical risk minimization problem as follows. Given a training set
S = {(x1, y1), . . . , (xn, yn)} drawn from some unknown but fixed distribution, we aim to find an
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empirical risk minimizer that minimizes the empirical risk as follows,

min
w

F (w) :=
1

n

n∑
i=1

fi(w), w ∈ Rd, (1)

where F (w) is the empirical risk (a.k.a., training loss), fi(w) = `(w; xi, yi) is the loss function of
a given ML model defined on the i-th training example (xi, yi), and w ∈ Rd is the model parameter
we want to learn. Empirical risk minimization serves as the mathematical foundation for training
many ML models that are mentioned above. The LSSGD (Osher et al., 2018) for solving (1) is
given by

wk+1 = wk − ηA−1
σ

(
1

b

∑
ik∈Bk

∇fik(wk)

)
, (2)

where η is the learning rate, ∇fik denotes the stochastic gradient of F evaluated from the pair of
input-output {xik , yik}, and Bk is a random subset of size b from [n]. Let Aσ = I− σL for σ ≥ 0
being a constant, where I ∈ Rd×d and L ∈ Rd×d are the identity and the discrete one-dimensional
Laplacian matrix with periodic boundary condition, respectively. Therefore,

Aσ :=


1 + 2σ −σ 0 . . . 0 −σ
−σ 1 + 2σ −σ . . . 0 0
0 −σ 1 + 2σ . . . 0 0
. . . . . . . . . . . . . . . . . .
−σ 0 0 . . . −σ 1 + 2σ

 (3)

When σ = 0, LSSGD reduces to SGD.
Note that Aσ is positive definite with condition number 1 + 4σ that is independent of Aσ’s

dimension, and LSSGD guarantees the same convergence rate as SGD in both convex and noncon-
vex optimization. Moreover, Laplacian smoothing (LS) can reduce the variance of SGD on-the-
fly, and lead to better generalization in training many ML models including DNNs (Osher et al.,
2018). For v ∈ Rd, let u := A−1

σ v, i.e., v = Aσu. Note Aσ is a convolution matrix, therefore,
v = Aσu = u− σd ∗u, where d = [−2, 1, 0, · · · , 0, 1]T and ∗ is the convolution operator. By the
fast Fourier transform (FFT), we have

A−1
σ v = u = ifft (fft(v)/(1− σ · fft(d))) ,

where the division in the right hand side parentheses is performed in a coordinate wise way.

2.2. DP-LSSGD

DP ERM aims to learn a DP model, w, for the problem (1). A common approach is injecting
Gaussian noise into the stochastic gradient, and it resulting in the following DP-SGD

wk+1 = wk − η
(

1

b

∑
ik∈Bk

∇fik(wk) + n

)
, (4)

where n is the injected Gaussian noise for DP guarantee. Note that the LS matrix A−1
σ can remove

the noise in v. If we assume v is the initial signal, then A−1
σ v can be regarded as performing an

approximate diffusion step on the initial noisy signal which removes the noise from v. We will
provide a detailed argument for the diffusion process in the appendix. As numerical illustrations,
we consider the following two signals:
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Algorithm 1 DP-LSSGD
Input: fi(w) is G-Lipschitz for i = 1, 2, · · · , n.
w0: initial guess of w, (ε, δ): the privacy budget, η: the step size, T : the total number of
iterations.
Output: (ε, δ)-differentially private classifier wpriv.
for k = 0, 1, · · · , T − 1 do

wk+1 = wk − ηA−1
σ

(
1
b

∑
ik∈Bk ∇fik(wk) + n

)
, where n ∼ N (0, ν2I) and ν is defined in

Theorem 2, and Bk ⊂ [n].
return wT

• 1D: v1 = {sin(2iπ/100) + 0.1N (0, 1)|i = 1, 2, · · · , 100}.

• 2D: v2 = {sin(2iπ/100) sin(2jπ/100) + 0.2N (0, I2×2)|i, j = 1, 2, · · · , 100}.

We reshape v2 into 1D with row-major ordering and then perform LS. Figure 2 shows that LS can
remove noise efficiently. This noise removal property enables LSSGD to be more stable to the noise
injected stochastic gradient, therefore improves training DP models with gradient perturbations.
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Figure 2: Illustration of LS (σ = 10 for v1 and σ = 100 for v2). (a): 1D signal sampled uniformly
from sin(x) for x ∈ [0, 2π]. (b), (c), (d): 2D original, noisy, and Laplacian Smoothed
noisy signals sampled uniformly from sin(x) sin(y) for (x, y) ∈ [0, 2π]× [0, 2π].

We propose the following DP-LSSGD for solving (1) with DP guarantee

wk+1 = wk − ηA−1
σ

(
1

b

∑
ik∈Bk

∇fik(wk) + n

)
. (5)

In this scheme, we first inject the noise n to the stochastic gradient ∇fik(wk), and then apply the
LS operator A−1

σ to denoise the noisy stochastic gradient, ∇fik(wk) + n, on-the-fly. We assume
that each component function fi in (1) is G-Lipschitz. The DP-LSSGD for finite-sum optimization
is summarized in Algorithm 1. Compared with LSSGD, the main difference of DP-LSSGD lies in
injecting Gaussian noise into the stochastic gradient, before applying the Laplacian smoothing, to
guarantee the DP.
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3. Main Theory

In this section, we present the privacy and utility guarantees for DP-LSSGD. The technical proofs
are provided in the appendix.

Definition 1 ((ε, δ)-DP) (Dwork et al. (2006)) A randomized mechanismM : SN → R satisfies
(ε, δ)-DP if for any two adjacent datasets S, S′ ∈ SN differing by one element, and any output
subset O ⊆ R, it holds that

P[M(S) ∈ O] ≤ eε · P[M(S′) ∈ O] + δ.

Theorem 2 (Privacy Guarantee) Suppose that each component function fi is G-Lipschitz. Given
the total number of iterations T , for any δ > 0 and privacy budget ε, DP-LSSGD, with injected
Gaussian noise N (0, ν2) for each coordinate, satisfies (ε, δ)-DP with ν2 = 20TαG2/(µn2ε),
where α = log(1/δ)/

(
(1 − µ)ε

)
+ 1, if there exits µ ∈ (0, 1) such that α ≤ log

(
µn3ε/(5b3Tα +

µbn2ε)
)

and 5b2Tα/(µn2ε) ≥ 1.5.

Remark 3 It is straightforward to show that the noise in Theorem 2 is in fact also tight to guarantee
the (ε, δ)-DP for DP-SGD. . We will omit the dependence of µ in our results in the rest of the paper
since µ is a constant.

For convex ERM, DP-LSSGD guarantees the following utility in terms of the gap between the
ergodic average of the points along the DP-LSSGD path and the optimal solution w∗.

Theorem 4 (Utility Guarantee for convex optimization) Suppose F is convex and each compo-
nent function fi is G-Lipschitz. Given ε, δ > 0, under the same conditions of Theorem 2 on ν2, α, if
we choose ηk = 1/

√
T and T = C1(Dσ+G2/b)n2ε2/

(
dG2 log(1/δ)

)
, whereDσ = ‖w0−w∗‖2Aσ

and w∗ is the global minimizer of F , the DP-LSSGD output w̃ =
∑T−1

k=0 ηk/
(∑T−1

i=0 ηi
)
wk satisfies

the following utility

E
(
F (w̃)− F (w∗)

)
≤
C2G

√
6γ(Dσ +G2/b)d log(1/δ)

nε
,

where γ = 1/d
∑d

i=1 1/[1 + 2σ − 2σ cos(2πi/d)], C1, C2 are universal constants.

Proposition 5 In Theorem 4, γ = 1+ωd

(1−ωd)
√

4σ+1
, where ω = 2σ+1−

√
4σ+1

2σ < 1. That is, γ converge
to 0 almost exponentially as the dimension, d, increases.

Remark 6 In the above utility bound for convex optimization, for different σ (σ = 0 corresponds
to DP-SGD), the only difference lies in the term γ(Dσ + G2). The first part γDσ depends on
the gap between initialization w0 and the optimal solution w∗. The second part γG2 decrease
monotonically as σ increases. σ should be selected to get an optimal trade-off between these two
parts. Based on our test on multi-class logistic regression for MNIST classification, σ 6= 0 always
outperforms the case when σ = 0.

For nonconvex ERM, DP-LSSGD has the following utility bound measured in gradient norm.
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Theorem 7 (Utility Guarantee for nonconvex optimization) Suppose that F is nonconvex and
each component function fi isG-Lipschitz and has L-Lipschitz continuous gradient. Given ε, δ > 0,
under the same conditions of Theorem 2 on ν2, α, if we choose η = 1/

√
T and T = C1(DF +

LG2/b)n2ε2/
(
dLG2 log(1/δ)

)
, where DF = F (w0)−F (w∗) with w∗ being the global minimum

of F , then the DP-LSSGD output w̃ =
∑T−1

k=0 wk/T satisfies the following utility

E‖∇F (w̃)‖2
A−1
σ
≤ C2

G
√
βdL(2DF + LG2/b) log(1/δ)

nε
,

where β = 1/d
∑d

i=1 1/[1 + 2σ − 2σ cos(2πi/d)]2, C1, C2 are universal constants.

Proposition 8 In Theorem 7, β = 2ω2d+1−ξω2d+2ξdωd−2ω+ξ
σ2ξ3(1−ωd)2

, where ω = 2σ+1−
√

4σ+1
2σ and ξ =

−
√

1+4σ
σ . Therefore, β ∈ (0, 1).

It is worth noting that if we use the `2-norm instead of the induced norm, we have the following
utility guarantee

E‖∇F (w̃)‖22 ≤
E‖∇F (w̃)‖2

A−1
σ

λmin(A−1
σ )

≤ (1 + 4σ)E‖∇F (w̃)‖2
A−1
σ
≤ 4ζ

G
√

6dL(2DF + LG2) log(1/δ)

nε

where ζ =
√

1
d

∑d
i=1

(1+4σ)2

(1+2σ−2σ cos(2πi/d))2
> 1. In the `2-norm, DP-LSSGD has a bigger utility

upper bound than DP-SGD (set σ = 0 in ζ). However, this does not mean that DP-LSSGD has
worse performance. We provide an example to support this claim in the appendix.

4. Experiments

In this section, we verify the efficiency of DP-LSSGD in training multi-class logistic regression
and CNNs for MNIST and CIFAR10 classification. We use v ← v/max (1, ‖v‖2/C) (Abadi
et al., 2016) to clip the gradient `2-norms of the CNNs to C. The gradient clipping guarantee the
Lipschitz condition for the objective functions. We train all the models below with (ε, 10−5)-DP
guarantee for different ε. For Logistic regression we use the privacy budget given by Theorem 2,
and for CNNs we use the privacy budget in the Tensorflow privacy (Andrew and et al., 2019). We
checked that these two privacy budgets are consistent.

4.1. Logistic Regression for MNIST Classification

We ran 50 epochs of DP-LSSGD with learning rate scheduled as 1/t with t being the index of the
iteration to train the `2-regularized (regularization constant 10−4) multi-class logistic regression. We
split the training data into 50K/10K with batch size 128 for cross-validation. We plot the evolution
of training and validation loss over iterations for privacy budgets (0.2, 10−5) and (0.1, 10−5) in
Figure 3. We see that the training loss curve of DP-SGD (σ = 0) is much higher and more oscillatory
(log-scale on the y-axis) than that of DP-LSSGD (σ = 1, 3). Also, the validation loss of the model
trained by DP-LSSGD decays faster and has a much smaller loss value than that of the model
trained by DP-SGD. Moreover, when the privacy guarantee gets stronger, the utility improvement
by DP-LSSGD becomes more significant.
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Figure 3: Training and validation losses of the multi-class logistic regression by DP-LSSGD. (a)
and (b): training and validation curves with (0.2, 10−5)-DP guarantee; (c) and (d): train-
ing and validation curves with (0.1, 10−5)-DP guarantee. (Average over 5 runs)

Next, consider the testing accuracy of the multi-class logistic regression trained with (ε, 10−5)-
DP guarantee by DP-LSSGD includes σ = 0, i.e., DP-SGD. We list the test accuracy of logistic
regression trained in different settings in Table 2. These results reveal that DP-LSSGD with σ =
1, 2, 3 can improve the accuracy of the trained private model and also reduce the variance, especially
when the privacy guarantee is very strong, e.g., (0.1, 10−5).

Table 2: Testing accuracy of the multi-class logistic regression trained by DP-
LSSGD with (ε, δ = 10−5)-DP guarantee and different LS parameter
σ. Unit: %. (5 runs)

ε 0.30 0.25 0.20 0.15 0.10

σ = 0 81.74 ± 0.96 81.45 ± 1.59 78.92 ± 1.14 77.03 ± 0.69 73.49 ± 1.60
σ = 1 84.21 ± 0.51 83.27 ± 0.35 81.56 ± 0.79 79.46 ± 1.33 76.29 ± 0.53
σ = 2 84.23 ± 0.65 83.65 ± 0.76 82.15 ± 0.59 80.77 ± 1.26 76.31 ± 0.93
σ = 3 85.11 ± 0.45 82.97 ± 0.48 82.22 ± 0.28 80.81 ± 1.03 77.13 ± 0.77
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Figure 4: Accuracy of the logistic regression on MNIST when different learning rates are used to
train the model. Left: (0.1, 10−5)-DP; Right: (0.2, 10−5)-DP.

4.1.1. THE EFFECTS OF STEP SIZE

We know that the step size in DP-SGD/DP-LSSGD may affect the accuracy of the trained private
models. We try different step size scheduling of the form {a/t|a = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0},
where t is again the index of iteration, and all the other hyper-parameters are used the same as
before. Figure. 4 plots the test accuracy of the logistic regression model trained with different
learning rate scheduling and different privacy budget. We see that the private logistic regression
model trained by DP-LSSGD always outperforms DP-SGD.

4.2. CNN for MNIST and CIFAR10 Classification

In this subsection, we consider training a small CNN 2 with DP-guarantee for MNIST classification.
We implement DP-LSSGD and DP-LSAdam (Kingma and Ba, 2014) (simply replace the noisy
gradient in DP-Adam in the Tensorflow privacy with the Laplacian smoothed surrogate) into the
Tensorflow privacy framework (Andrew and et al., 2019). We use the default learning rate 0.15
for DP-(LS)SGD and 0.001 for DP-(LS)Adam and decay them by a factor of 10 at the 10K-th
iteration, norm clipping (1), batch size (256), and micro-batches (256). We vary the noise multiplier
(NM), and larger NM guarantees stronger DP. As shown in Figure 5, the privacy budget increases at
exactly the same speed (dashed red line) for four optimization algorithms. When the NM is large,
i.e., DP-guarantee is strong, DP-SGD performs very well in the initial period. However, after a
few epochs, the validation accuracy gets highly oscillatory and decays. DP-LSSGD can mitigate
the training instability issue of DP-SGD. DP-Adam outperforms DP-LSSGD, and DP-LSAdam can
further improve validation accuracy on top of DP-Adam.

Next, we consider the effects of the LS constant (σ) and the learning rate in training the DP-CNN
for MNIST classification. We fixed the NM to be 10, and run 60 epochs of DP-SGD and DP-LSSGD
with different σ and different learning rate. We show the comparison of DP-SGD with DP-LSSGD
with different σ in the left panel of Figure 7, and we see that as σ increases it becomes more stable
in training CNNs with DP-guarantee even though initially it becomes slightly slower. In the middle

2. github.com/tensorflow/privacy/blob/master/tutorials/mnist_dpsgd_tutorial.py
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Figure 5: Performance comparison (validation accuracy) between different DP optimization algo-
rithms in training CNN for MNIST classification with a fixed δ = 10−5.

panel of Figure 7, we plot the evolution of validation accuracy curves of the DP-CNN trained by
DP-SGD and DP-LSSGD with different learning rate, where the solid lines represent results for
DP-LSSGD and dashed lines for DP-SGD. DP-LSSGD outperforms DP-SGD in all learning rates
tested, and DP-LSSGD is much more stable than DP-SGD when a larger learning rate is used.

Finally, we go back to the accuracy degradation problem raised in Figure 1. As shown in Fig-
ure 3, LS can efficiently reduce both training and validation losses in training multi-class logistic
regression for MNIST classification. Moreover, as shown in the right panel of Figure 7, DP-LSSGD
can improve the testing accuracy of the CNN used above significantly. In particular, DP-LSSGD im-
proves the testing accuracy of CNN by 3.2% and 5.0% for (0.4, 10−5) and (0.2, 10−5), respectively,
on top of DP-SGD. DP-LSAdam can further boost test accuracy. All the accuracies associated with
any given privacy budget in Figure 7 (right panel), are the optimal ones searched over the results
obtained in the above experiments with different learning rate, number of epochs, and NM.

4.3. CNN for CIFAR10 Classification

In this section, we will show that LS can also improve the utility of the DP-CNN trained by DP-
SGD and DP-Adam for CIFAR10 classification. We simply replace the CNN architecture used
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above for MNIST classification with the benchmark architecture in the Tensorflow tutorial 3 for
CIFAR10 classification. Also, we use the same set of parameters as that used for training DP-CNN
for MNIST classification except we fixed the noise multiplier to be 2.0 and clip the gradient `2
norm to 3. As shown in Figure 6, LS can significantly improve the validation accuracy of the model
trained by DP-SGD and DP-Adam, and the DP guarantee for all these algorithms are the same
(dashed line in Figure 6).
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Figure 6: Performance comparison between different differentially private optimization algorithms
in training CNN for CIFAR10 classification with a fixed δ = 10−5.
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Figure 7: Left & middle panels: Contrasting performance (validation acc) of DP-SGD and DP-
LSSGD with different σ and different learning rate. Right panel: ε vs. Testing accuracy of
the private models trained by different DP-optimization algorithms with a fixed δ = 10−5.

5. Conclusions

In this paper, we integrated Laplacian smoothing with DP-SGD for privacy-presrving ERM. The
resulting algorithm is simple to implement and the extra computational cost compared with the DP-

3. github.com/tensorflow/models/tree/master/tutorials/image/cifar10
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SGD is almost negligible. We show that DP-LSSGD can improve the utility of the trained private
ML models both numerically and theoretically.
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Appendix A. Proof of the Main Theorems

A.1. Privacy Guarantee

To prove the privacy guarantee in Theorem 2, we first introduce the following `2-sensitivity.

Definition 9 (`2-Sensitivity) For any given function f(·), the `2-sensitivity of f is defined by

∆(f) = max
‖S−S′‖1=1

‖f(S)− f(S′)‖2,

where ‖S − S′‖1 = 1 means the data sets S and S′ differ in only one entry.

We will adapt the concepts and techniques of Rényi DP (RDP) to prove the DP-guarantee of the
proposed DP-LSSGD.

Definition 10 (RDP) For α > 1 and ρ > 0, a randomized mechanism M : Sn → R satisfies
(α, ρ)-Rényi DP, i.e., (α, ρ)-RDP, if for all adjacent datasets S, S′ ∈ Sn differing by one element,
we have

Dα

(
M(S)||M(S′)

)
:=

1

α− 1
logE

(
M(S)

M(S′)

)α
≤ ρ,

where the expectation is taken overM(S′).

Lemma 11 (Wang et al., 2019) Given a function q : Sn → R, the Gaussian Mechanism M =
q(S) + u, where u ∼ N(0, σ2I), satisfies (α, α∆2(q)/(2σ2))-RDP. In addition, if we apply the
mechanism M to a subset of samples using uniform sampling without replacement, M satisfies
(α, 5τ2∆2(q)α/σ2)-RDP given σ′2 = σ2/∆2(q) ≥ 1.5, α ≤ log(1/τ

(
1 + σ′2)

)
, where τ is the

subsample rate.

Lemma 12 (Mironov, 2017) If k randomized mechanisms Mi : Sn → R, for i ∈ [k], satisfy
(α, ρi)-RDP, then their composition

(
M1(S), . . . ,Mk(S)

)
satisfies (α,

∑k
i=1 ρi)-RDP. Moreover,

the input of the i-th mechanism can be based on outputs of the previous (i− 1) mechanisms.

Lemma 13 If a randomized mechanism M : Sn → R satisfies (α, ρ)-RDP, then M satisfies
(ρ+ log(1/δ)/(α− 1), δ)-DP for all δ ∈ (0, 1).

With the definition (Def. 10) and guarantees of RDP (Lemmas 11 and 12), and the connection
between RDP and (ε, δ)-DP (Lemma 13), we can prove the following DP-guarantee for DP-LSSGD.
Proof [Proof of Theorem 2] Let us denote the update of DP-SGD and DP-LSSGD at the k-th
iteration starting from any given points wk and w̃k, respectively, as

wk+1 = wk − ηk
(

1

b

∑
ik∈Bk

∇fik(wk) + n

)
, (6)

and

w̃k+1 = w̃k − ηkA−1
σ

(
1

b

∑
ik∈Bk

∇fik(w̃k) + n

)
, (7)
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where Bk is a mini batch that are drawn uniformly from [n], and |Bk| = b is the mini batch size.
We will show that with the aforementioned Gaussian noise N (0, ν2) for each coordinate of n,

the output of DP-SGD, w̃, after T iterations is (ε, δ)-DP. Let us consider the mechanism M̂k =
1
b

∑
ik∈Bk ∇fik(wk) + n, andMk = n

b∇F (wk) + n with the query qk = n
b∇F (wk). We have

the `2-sensitivity of qk as ∆(qk) = ‖∇fik(wk)−∇fi′k(wk)‖2 ≤ 2G
b . According to Lemma 11, if

we add noise with variance

ν2 =
20TαG2

n2εµ
,

the mechanismMk will satisfy
(
α, (n2εµ/b2)/

(
10T

))
-RDP. By post-processing theorem, we im-

mediately have that under the same noise, M̃k = A−1
σ (∇F (wk)+n) also satisfies

(
α, (n2εµ/b2)/

(
10T

))
-

RDP. According to Lemma 11, M̂k will satisfy
(
α, µε/T

)
-RDP provided that ν2/∆(qk)

2 ≥ 1.5,
because τ = b/n. Let α = log(1/δ)/

(
(1−µ)ε

)
+ 1, we obtain that M̂k satisfies

(
log(1/δ)/

(
(1−

µ)ε
)

+ 1, µε/T
)
-RDP as long as we have

ν2

∆(qk)2
=

5Tαb2

n2εµ
≥ 1.5.

In addition, we have

1

τ
(
1 + ν2/∆(qk)2

) =
µn3ε

5b3Tα+ µbn2ε
,

which implies that α = log(1/δ)/
(
(1 − µ)ε

)
+ 1 ≤ log

(
µn3ε/(5b3Tα + µbn2ε)

)
. Therefore,

according to Lemma 12, we have wk satisfies
(

log(1/δ)/
(
(1−µ)ε

)
+ 1, kµε/T

)
-RDP. Finally, by

Lemma 13, we have wk satisfies
(
kµε/T + (1− µ)ε, δ

)
-DP. Therefore, the output of DP-SGD, w̃,

is (ε, δ)-DP.

Remark 14 In the above proof, we used the following estimate of the `2 sensitivity

∆(qk) = ‖A−1
σ ∇fi(wk)−A−1

σ ∇fi′(wk)‖2/n ≤ 2G/n.

Indeed, let g = ∇fi(wk) − ∇fi′(wk) and d = A−1
σ g, then according to Osher et al. (2018) we

have

‖d‖2 + 2σ
‖D+d‖22

d
+ σ2 ‖Ld‖22

d
= ‖g‖2,

where d is the dimension of d, and

D+ =


−1 1 0 . . . 0 0
0 −1 1 . . . 0 0
0 0 −1 . . . 0 0
. . . . . . . . . . . . . . . . . .
1 0 0 . . . 0 −1

 .
Moreover, if we assume the g is randomly sampled from a unit ball in a high dimensional space,
then a high probability estimation of the compression ratio of the `2 norm can be derived from
Lemma. 16.

Numerical experiments show that ‖A−1
σ ∇fi(wk)−A−1

σ ∇fi′(wk)‖2 is much less than ‖∇fi(wk)−
∇fi′(wk)‖2, so for the above noise, it can give much stronger privacy guarantee.
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A.2. Utility Guarantee – Convex Optimization

To prove the utility guarantee for convex optimization, we first show that the LS operator compresses
the `2 norm of any given Gaussian random vector with a specific ratio in expectation.

Lemma 15 Let x ∈ Rd be the standard Gaussian random vector. Then

E‖x‖2
A−1
σ

=
d∑
i=1

1

1 + 2σ − 2σ cos(2πi/d)
,

where ‖x‖2
A−1
σ

.
= 〈x,A−1

σ x〉 is the square of the induced norm of x by the matrix A−1
σ .

Proof [Proof of Lemma 15] Let the eigenvalue decomposition of A−1
σ be A−1

σ = UΛUT , where
Λ is a diagonal matrix with Λii = 1

1+2σ−2σ cos(2πi/d) We have

E‖x‖2
A−1
σ

= E[Tr(x>UΛU>x)]

=
d∑
i=1

Λii

=

d∑
i=1

1

1 + 2σ − 2σ cos(2πi/d)
= γ.

Proof [Proof of Theorem 4] Recall that we have the following update rule wk+1 = wk−ηkA−1
σ (∇fik(wk)+

n), where ik are drawn uniformly from [n], and n ∼ N (0, ν2I). Let∇fBk =
∑

ik∈Bk ∇fik(wk)/b,
observe that

‖wk+1 −w∗‖2Aσ
= ‖wk − ηkA−1

σ (∇fBk(wk) + n)−w∗‖2Aσ

= ‖wk −w∗‖2Aσ
+ η2

k

(∥∥A−1
σ

(
∇fBk(wk)−∇F (wk) +∇F (wk)

)∥∥2

Aσ
+ ‖A−1

σ n‖2Aσ

+ 2〈A−1
σ ∇fBk(wk),n〉

)
− 2ηk〈∇fBk(wk) + n,wk −w∗〉.

Taking expectation with respect to Bk and n given wk, we have

E‖wk+1 −w∗‖2Aσ
= E‖wk −w∗‖2Aσ

− 2ηkE〈∇F (wk),wk −w∗〉+ η2
kE‖∇fBk(wk)−∇F (wk)‖2

A−1
σ

+ η2
kE‖∇F (wk)‖2

A−1
σ

+ η2
kE‖n‖2A−1

σ
.

In addition, we have

E‖∇fBk(wk)−∇F (wk)‖2
A−1
σ
≤ E‖∇fBk(wk)−∇F (wk)‖22 ≤

G2

b
, (8)

and (
1− Lηk

2

)
ηk‖∇F (wk)‖22 ≤ F (wk)− F (w∗), (9)
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which implies that

η2
kE‖∇F (wk)‖2

A−1
σ
≤ η2

kE‖∇F (wk)‖22 ≤
(

2

2− Lηk

)
ηkE

(
F (wk)− F (w∗)

)
≤ 4

3
ηkE

(
F (wk)− F (w∗)

)
,

where the last inequality is due to the fact that ηt ≤ 1/(2L). Therefore, we have

E‖wk+1 −w∗‖2Aσ
≤ E‖wk −w∗‖2Aσ

− 2

3
ηkE

(
F (wk)− F (w∗)

)
+ η2

k

(
G2/b+ γdν2

)
,

where the inequality is due to the convexity of F , and Lemma 15. It implies that

2

3
ηkE

(
F (wk)− F (w∗)

)
≤
(
E‖wk −w∗‖2Aσ

− E‖wk+1 −w∗‖2Aσ

)
+ η2

k(G
2/b+ γdν2).

Now taking the full expectation and summing up over T iterations, we have

T−1∑
k=0

2

3
ηkE

(
F (wk)− F (w∗)

)
≤ Dσ +

T−1∑
k=0

η2
k(G

2/b+ γdν2),

where Dσ = ‖w0 −w∗‖2Aσ
. Let vk = ηk/

(∑T−1
k=0 ηk

)
, we have

T−1∑
k=0

vkE
(
F (wk)− F (w∗)

)
≤
Dσ +

∑T−1
k=0 η

2
k(G

2/b+ γdν2)

2
∑T−1

k=0 ηk/3
.

According to the definition of w̃ and the convexity of F , we obtain

E
(
F (w̃)− F (w∗)

)
≤
Dσ +

∑T−1
k=0 η

2
k(G

2/b+ γdν2)

2
∑T−1

k=0 ηk/3

≤
Dσ +

∑T−1
k=0 η

2
kG

2/b

2
∑T−1

k=0 ηk/3
+

∑T−1
k=0 η

2
k

2
∑T−1

k=0 ηk/3
· 20γdTG2 log(1/δ)

n2ε2µ(1− µ)
.

Let η = 1/
√
T and T = C1(Dσ +G2/b)n2ε2/

(
γdG2 log(1/δ)

)
, we can obtain that

E
(
F (w̃)− F (w∗)

)
≤
C2G

√
γ(Dσ +G2/b)d log(1/δ)

nε
,

where C1, C2 are universal constants.

A.3. Utility Guarantee – Nonconvex Optimization

To prove the utility guarantee for nonconvex optimization, we need the following lemma, which
shows that the LS operator compresses the `2 norms of any given Gaussian random vector with a
specific ratio in expectation.

Lemma 16 Let x ∈ Rd be the standard Gaussian random vector. Then

E‖A−1
σ x‖22 =

d∑
i=1

1

(1 + 2σ − 2σ cos(2πi/d))2
.
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Proof [Proof of Lemma 16] Let the eigenvalue decomposition of A−1
σ be A−1

σ = UΛUT , where
Λ is a diagonal matrix with Λii = 1

1+2σ−2σ cos(2πi/n) We have

E‖A−1
σ x‖22 = E[Tr(x>UΛU>UΛU>x)]

= E[Tr(x>UΛ2U>x)]

=
d∑
i=1

Λ2
ii

=

d∑
i=1

1

(1 + 2σ − 2σ cos(2πi/d))2
= β.

Proof [Proof of Theorem 7] Recall that we have the following update rule wt+1 = wk−ηkA−1
σ (∇fik(wk)+

n), where ik are drawn uniformly from [n], and n ∼ N (0, ν2I). Let∇fBk =
∑

ik∈Bk ∇fik(wk)/b,
since F is L-smooth, we have

F (wk+1) ≤ F (wk) + 〈∇F (wk),wk+1 −wk〉+
L

2
‖wk+1 −wk‖22

= F (wk)− ηk〈∇F (wk),A−1
σ (∇fBk(wk) + n)〉

+
η2
kL

2

(∥∥A−1
σ

(
∇fBk(wk)−∇F (wk) +∇F (wk)

)∥∥2

2
+ ‖A−1

σ n‖22 + 2〈A−1
σ ∇fBk(wk),A−1

σ n〉
)
.

Taking expectation with respect to Bk and n given wk, we have

EF (wk+1) ≤ EF (wk)− ηkE〈∇F (wk),A−1
σ ∇fBk(wk)〉+

η2
kL

2

(
E‖A−1

σ

(
∇fBk(wk)−∇F (wk)

)
‖22

+ E‖A−1
σ ∇F (wk)

∥∥2

2
+ E‖A−1

σ n‖22
)

≤ EF (wk)− ηk
(

1− ηkL

2

)
E‖∇F (wk)‖2

A−1
σ

+
η2
kL

2
(G2/b+ dβν2)

≤ EF (wk)− ηk
2
E‖∇F (wk)‖2

A−1
σ

+
η2
kL(G2 + dβν2)

2
,

where the second inequality uses Lemma 16, the inequality (8), and the last inequality is due to
1− ηkL/2 > 1/2. Now taking the full expectation and summing up over T iterations, we have

EF (wT ) ≤ F (w0)−
T−1∑
k=1

ηk
2
E‖∇F (wk)‖2

A−1
σ

+

T−1∑
k=1

η2
kL(G2/b+ dβν2)

2
.

If we choose fix step size, i.e., ηk = η, and rearranging the above inequality, and using F (w0) −
EF (wT ) ≤ F (w0)− F (w∗), we get

1

T

T−1∑
k=1

E‖∇F (wk)‖2
A−1
σ
≤ 2

ηT

(
F (w0)− F (w∗)

)
+ ηL(G2/b+ dβν2),
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which implies that

E‖∇F (w̃)‖2
A−1
σ
≤ 2DF

ηT
+ ηL(G2/b+ dβν2)

≤ 2DF

ηT
+ ηL

(
G2/b+

20dβTG2 log(1/δ)

n2ε2µ(1− µ)

)
.

Let η = 1/
√
T and T = C1(2DF + LG2/b)n2ε2/

(
dLβG2 log(1/δ)

)
, where DF = F (w0) −

F (w∗), we obtain

E‖∇F (w̃)‖2
A−1
σ
≤ C2

G
√
βdL(2DF + LG2/b) log(1/δ)

nε
,

where C1, C2 are universal constants.

It is worth noting that if we use the `2-norm instead of the induced norm, we have the following
utility guarantee

E‖∇F (w̃)‖22 ≤
E‖∇F (w̃)‖2

A−1
σ

λmin(A−1
σ )

≤ (1 + 4σ)E‖∇F (w̃)‖2
A−1
σ
≤ 4ζ

G
√

6dL(2DF + LG2) log(1/δ)

nε

where ζ =
√

1
d

∑d
i=1

(1+4σ)2

(1+2σ−2σ cos(2πi/d))2
> 1. In the `2-norm, DP-LSSGD has a bigger utility

upper bound than DP-SGD (set σ = 0 in ζ). However, this does not mean that DP-LSSGD has
worse performance. To see this point, let us consider the following simple nonconvex function

f(x, y) =

{
x2

4 + y2, for x
2

4 + y2 ≤ 1

sin
(
π
2

(
x2

4 + y2
))

, for x
2

4 + y2 > 1.
(10)

For two points a1 = (2, 0) and a2 = (1,
√

3/2), the distance to the local minima a∗ = (0, 0) are 2
and
√

7/2, while ‖∇f(a1)‖2 = 1 and ‖∇f(a2)‖2 =
√

13/2. So a2 is closer to the local minima
a∗ than a1 while its gradient has a larger `2-norm.

Appendix B. Calculations of β and γ

B.1. Calculation of γ

To prove Proposition 5, we need the following two lemmas.

Lemma 17 (Residue Theorem) Let f(z) be a complex function defined on C, then the residue of
f around the pole z = c can be computed by the formula

Res(f, c) =
1

(n− 1)!
lim
z→c

dn−1

dzz−1
((z − c)nf(z)) . (11)

where the order of the pole c is n. Moreover,∮
f(z)dz = 2πi

∑
ci

Res(f, ci), (12)

where {ci} be the set of pole(s) of f(z) inside {z||z| < 1}.
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The proof of Lemma 17 can be found in any complex analysis textbook.

Lemma 18 For 0 ≤ θ ≤ 2π, suppose

F (θ) =
1

1 + 2σ(1− cos(θ))
,

has the discrete-time Fourier transform of series f [k]. Then, for integer k,

f [k] =
α|k|√
4σ + 1

where

α =
2σ + 1−

√
4σ + 1

2σ

Proof By definition,

f [k] =
1

2π

∫ 2π

0
F (θ)eikθ dθ =

1

2π

∫ 2π

0

eikθ

1 + 2σ(1− cos(θ))
dθ. (13)

We compute (13) by using Residue theorem. First, note that because F (θ) is real valued, f [k] =
f [−k]; therefore, it suffices to compute (13)) for nonnegative k. Set z = eiθ. Observe that cos(θ) =
0.5(z + 1/z) and dz = izdθ. Substituting in (13) and simplifying yields that

f [k] =
−1

2πiσ

∮
zk

(z − α−)(z − α+)
dz, (14)

where the integral is taken around the unit circle, and α± = 2σ+1±
√

4σ+1
2σ are the roots of quadratic

−σz2 + (2σ + 1)z − σ. Note that α− lies within the unit circle; whereas, α+ lies outside of the
unit circle. Therefore, because k is nonnegative, α− is the only singularity of the integrand in (14)
within the unit circle. A straightforward application of the Residue Theorem, i.e., Lemma 17, yields
that

f [k] =
−αk−

σ(α− − α+)
=

αk√
4σ + 1

.

This completes the proof.

Proof [Proof of Proposition 5] First observe that we can re-write γ as

1

d

d−1∑
j=0

1

1 + 2σ(1− cos(2πj
d ))

. (15)

It remains to show that the above summation is equal to 1+αd

(1−αd)
√

4σ+1
. This follows by lemmas 18

and standard sampling results in Fourier analysis (i.e. sampling θ at points {2πj/d}d−1
j=0). Never-

theless, we provide the details here for completeness: Observe that that the inverse discrete-time
Fourier transform of

G(θ) =
d−1∑
j=0

δ

(
θ − 2πj

d

)
.
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is given by

g[k] =

{
d/2π if k divides d,
0 otherwise.

Furthermore, let

F (θ) =
1

1 + 2σ(1− cos(θ))
,

and use f [k] to denote its inverse discrete-time Fourier transform. Now,

1

d

d−1∑
j=0

1

1 + 2σ(1− cos(2πj
d ))

=
1

d

∫ 2π

0
F (θ)G(θ)

=
2π

d
DTFT−1[F ·G][0]

=
2π

d
(DTFT−1[F ] ∗DTFT−1[G])[0]

=
2π

d

∞∑
r=−∞

f [−r]g[r]

=
2π

d

∞∑
`=−∞

f [−`d]
d

2π

=
∞∑

`=−∞
f [−`d].

The proof is completed by substituting the result of lemma 18 in the above sum and simplifying.

We list some typical values of γ in Table 5.

Table 3: The values of γ corresponding to some σ and d.

σ 1 2 3 4 5

d = 1000 0.447 0.333 0.277 0.243 0.218
d = 10000 0.447 0.333 0.277 0.243 0.218
d = 100000 0.447 0.333 0.277 0.243 0.218

B.2. Calculation of β

The proof of Proposition 8 is similar as the proof of Proposition 5. The only difference is that we
need to compute

f [k] =
1

2π

∫ 2π

0

eikθ

(1 + 2σ(1− cos θ))2dθ. (16)
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By Residue theorem, for k > 0 (note that f [−k] = f [k] ), we have

f [k] =
1

2π

∫ 2π

0

eikθ

(1 + 2σ(1− cos θ))2dθ

=
1

2πi

∮
zk+1

(z + σ(2z − z2 − 1))2
dz

= lim
z→α−

d

dz

(
(z − α−)2 zk+1

(z + σ(2z − z2 − 1))2

)
= lim

z→α−
d

dz

(
zk+1

σ2(z − α+)2

)
=

(k + 1)αk

4σ + 1
+

2σαk+1

(4σ + 1)3/2
,

where α− = 2σ+1−
√

4σ+1
2σ . Therefore, we have

β =
2α2d+1 − ξα2d + 2ξdαd − 2α+ ξ

σ2ξ3(1− αd)2
.

We list some typical values of β in Table 8.

Table 4: The values of β corresponding to some σ and d.

σ 1 2 3 4 5

d = 1000 0.268 0.185 0.149 0.128 0.114
d = 10000 0.268 0.185 0.149 0.128 0.114
d = 100000 0.268 0.185 0.149 0.128 0.114

Appendix C. Laplacian Smoothing and Diffusion Equation

Let u(x, t) be a function defined on the space-time domain [0, 1]× [0,+∞), suppose it satisfies the
following diffusion equation with the Neumann boundary condition

∂u
∂t = ∂2u

∂x2
, (x, t) ∈ [0, 1]× [0,+∞),

∂u(0,t)
∂x = ∂u(1,t)

∂x = 0, t ∈ [0,+∞)

u(x, 0) = f(x), x ∈ [0, 1]

(17)

If we apply the backward Euler in time and central finite difference in space to discretize the
governing equation in (17), we get

v∆t − v0 = ∆tLv∆t,

where v0 is the discretization of f(x), and v∆t is the numerical solution of (17) at time ∆t. There-
fore, we have

v∆t = (I −∆tL)−1v0,

which is the LS with σ = ∆t.
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