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Abstract

In this effort, we derive a formula for the integral representation of a shallow neural network with
the ReLU activation function. We assume that the outer weighs admit a finite L;-norm with respect
to Lebesgue measure on the sphere. For univariate target functions we further provide a closed-form
formula for all possible representations. Additionally, in this case our formula allows one to explicitly
solve the least L;-norm neural network representation for a given function.
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1. Introduction

In this paper we consider the problem of approximating a target function (e.g., an image classifier,
solution to a partial differential equation, a specific parameter associated with a model, etc.) by a
neural network. The goal is to obtain, e.g., construct and train, a neural network that approximates
the target function.

We propose to address this problem by the so-called “integral representation” technique. The
main ingredient of our method is to obtain a shallow network as an appropriate discretization of an
integral representation of the objective function. Specifically, we provide an approach to recast the
d-dimensional function as an integral of a particular weight function ¢ : R x R — R over the d + 1
dimensional unit sphere. Based on the available training data, we approximate such integrals by a
discrete sum, which, in turn, yields the desired network architecture.

Additionally, we introduce the space W(R), that fully characterizes the class of functions that
admit the desired integral representation. Moreover, this allows us to solve the least L;-norm network
representation, i.e., the neural network with the minimal L;-norm of the outer weights. We note that
the characterization of the multi-dimensional analogue of this space remains an open question; see,
e.g., Remark 6 for more detailed information.

1.1. Motivation

Artificial neural networks were first introduced in the 1940’s as mathematical models for describing
biological networks, and with the invention of the back-propagation method for training neural
networks Rumelhart et al. (1988) in the mid 1980’s, the mathematical community’s interest in
this area spiked. Though research in the field was slowly diminishing by the end of the 1990’s,
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advancements in computational tools during the last decade have led to a revival of interest in this
field, as deeper architectures have been observed to perform better than shallow ones Poggio et al.
(2017), and faster GPU’s accelerated the deep network training processes since, €.g., computations
can be done in parallel using a network-type dataflow structure.

Nevertheless, despite recent developments in both theory and practical tools, many fundamental
questions regarding the construction and training of (even shallow) neural networks still remain
unanswered. The unavailability of theoretical insight naturally implicates the numerous real-life
challenges associated with the implementation and deployment of neural networks, are amplified.
These challenges include:

* the choice of the network architecture is often dictated by a heuristic rather than the available
data, which typically results in an underperforming or an over-complicated network;

* the model generally lacks interpretabilty in the sense that the contributions of individual nodes
are generally unclear; and

* Backpropagation-based training is often more computationally expensive than necessary due
to the network overparametrization and a sub-optimal initialization strategy. Moreover, the
learning process is sensitive to the initial conditions, i.e., an initialization scheme and a choice
of hyperparameters, and can result in a bad local minimum.

In this paper we attempt to tackle these issues by exploiting a more theoretical framework for
understanding neural network approximations. Specifically, we consider integral representations of
shallow networks in order to analyze the relationship between the class of target functions and the
corresponding tangible approximating networks.

1.2. Integral representations of shallow neural networks

A shallow neural network with an activation o : R — R and m nodes is a function L : RY — R? of
the form

L(x) :ch o(aj -z + b)), (1)
j=1

where a; € R, b; € R, and ¢; € R? are called the inner weights, biases, and outer weights,
respectively.

In this paper we consider the ReLU (rectified linear unit) activation, given by o(z) = max{z, 0},
which seems to be the conventional choice of activation in most modern architectures. A neural
network with the ReL.U activation is a computationally simple parametric family since propagating
an input through any such network essentially requires only matrix multiplications, which is a
highly-optimized easily-parallelizable procedure.

Our main approach is to think of a shallow network L : R¢ — R¥ as a discretization of a suitable
integral representation of the target function f : R? — RY. More precisely, a shallow neural network
is regarded as a discretization of an integral of the form

flx) = / o(a-x+b)dv(a,b), 2)
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where v : R% x R — R is an appropriate Radon measure. In particular, a network (1) with m nodes
can be written as (2) for an atomic measure v with m atoms so this type of representation is quite
general.

We believe that such an approach opens many research opportunities, potentially leading up
to faster and more stable algorithms for neural network training, and to architectures best fitted
for specific problems. The integral form of neural network representations is more concise and
better suited for analysis, thus allowing to address the questions of the architecture expressibility
and the network approximation. From numerical perspective, utilizing an appropriate discretization
method allows one to obtain a fully-trained network that approximates the target function, potentially
bypassing the backpropagation-based learning process. Finally, an architecture obtained via the
integral discretization can be treated as an initial state of the network, in place of the conventionally
used random-based weights initialization, and hence can be further fine-tuned with an optimization
algorithm.

The goal of this project is two-fold: first, we further develop existing analytical tools for neural
network integral representations; second, we aim to facilitate the learning process by analyzing
existing integral representations of neural networks and their integral discretizations.

1.3. Related work

Neural network integral representations have been considered by various authors, where typically
the Radon measure v is assumed to be of a special form, e.g. supported on a given set or absolutely
continuous with respect to a probability measure. One specific type of integral representation for
neural network integral representations discussed below originates from the harmonic analysis
perspective to shallow neural networks and employs the ridgelet transform; see e.g. Candes (1999).
There it is assumed that the target function f can be written as

flx) = / c(a,b)o(a -z +b)dadb =: Rl c(z). 3)
RExR

Function Rlc(:p) is called the dual ridgelet transform of the function ¢(a, b) with respect to o. The
‘direct’ transform R, f(a, b), called the ridgelet transform of f(x) with respectto 7 : R — C, is
given by

(a,b) / f(x)7(a-z+b)dz 4)
It is shown in Sonoda and Murata (2017) that if the pair (o, 7) satisfies the admissibility condition

it [T,y

jw]?

R

then the reconstruction formula RLRT( f) = f holds, thus providing a particular integral representa-
tion of the target function f:

/ /f T(a-z+b)o(a-z+b)drdadb.

R4 xR R4
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In Ito (1991), using a Radon inversion formula, the author proves that for Heaviside and sigmoid-like
activation functions, every objective function f in the Schwartz class has a representation

flz) = / / c(a,b) ¢(a - x + b) dv(a) db,

R §d-1

where v is some probability measure on the unit sphere in R%. In Ktirkov4 et al. (1997); Kainen et al.
(2000, 2010) the authors prove integral representation results of the form

flx) = / c(a,b)¢(a-x + b)dadb

Rd+1

and use it to get error estimates for neural network approximations with Heaviside activation function.
Since Heaviside function is the derivative of ReLLU this is highly relevant to our work, and we employ
some of their results in the proof of Theorem 1.

Largely motivated by the works Barron (1993) and Klusowski and Barron (2016), in Ma et al.
(2019) the Barron spaces were introduced, which are defined as the space of functions f : R? — R
admitting the representation

f(z) = / co(a-x+b)dv(a,b,c) forall z e [-1,1]%

RxRIxR

where v denotes the space of probability measures on R x R? x R. Note that in a Barron space the
representation is restricted to the unit cube [—1, 1]¢, whereas we require the representation to be on
the whole R

While the above integral representations are largely considered with the aim of obtaining estimates
on the size of the approximating network, methods for discretizing integral representations of the
form (2) have been considered by various authors aiming to obtain desirable approximation rate.
In particular, in Bengio et al. (2006) the authors employ a greedy method to discretize the solution
of (2) with the smallest total variation norm, and in Bach (2017) the same problem is solved by the
conditional gradient algorithm. In Pao et al. (1994); Pao and Phillips (1995) the authors suggested the
random vector functional-link (or RVFL) network method, which includes Monte—Carlo sampling for
the values of the parameters (a, b) and least square regularization for the values of outer weights c. A
related Monte—Carlo discretization method for integral representations of radial basis function (RBF)
neural networks is considered in Mhaskar (2004). Lastly, in Sonoda and Murata (2013) integral
representations are used to get better weight initialization.

The major difference of our approach is that we are aiming to fully characterize the class
of functions that allow neural network integral representation, and to use that representation to
get a meaningful interpretation to network weights (e.g., dependence on second derivative in one
dimensional case as stated in Theorem 2).

1.4. Our approach

While the representation (2) can generally be stated for a wider class of measures v, in this paper
we restrict ourselves to the case of Lebesgue measures, which seems appropriate from a harmonic
analysis viewpoint.
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Due to the positive homogeneity of the ReLLU activation function the representation (1) can be
rewritten with the weights (a;, b;) on the unit sphere S? = {(a,b) € R : ||a;|? + |b;|? = 1}. In
this setting, we consider target functions f that admit integral representations of the form

f@) = [ cla.b)ola- 2+ b) dvafa.b), ®
Sd
where v is the Lebesgue measure on S% and ¢ € L1 (S?, v4) with L1 (S?, v4) denoting the class of all
Lebesgue-integrable functions on S? with respect to v/4. Note that the integral in (x) is well defined
since for every = € R? the function o (a - z + b) is bounded on S¢.
In this paper we address the following challenges, which we fully solve in a case of univariate
target functions:

(a) Characterize the class of target functions that admit the representation (x);
(b) For a given f find all weight functions ¢ € Ly (S, v4) for which (x) holds;

(c) Find the least L;-norm solution to (x) for a given target function.

We recognize that a similar approach is employed in Savarese et al. (2019); Ongie et al. (2019),
however, to the best of our knowledge, the characterization results in Section 2.1 involving the space
W(R) are novel and presented in this effort for the first time.

2. Main results

We begin this section by recalling the following well-known definitions. The Radon transform of a
function f € L'(RY) is a mapping R[f] : R™! — R? given by the formula:

Rifib) = [ fla)dvas,
a-x+b=0
where integration is with respect to (d — 1)-dimensional Lebesgue measure /41 on the hyperplane
{r € R?:qa-z+b=0}. The Hilbert transform 7 : R — R of a function g : R — R is defined as

o0

1 9(2)
b) == — p.v. —dz.
Hlgl(b) :== —p.v / &
—0o0
We now formulate one of our main results which provides a particular weight function c(a, b) for the
integral representation (%).
Theorem 1 For any compactly supported function f € C d+1(Rd) define
(_1)d+1/2 1 §a+1
2(2m)41 ||a||d+2 Obd+T
(-0 1 gttt
2(2m)41 |[a]|F+2 Hbd+1

R[f](a,b)o(a-x +b) if d is odd,
crla,b) =

H[R[f](a,b)](b) o(a -z + b) if d is even.

Then we have

f(z) = /Cf(a, b) dvg(a,b).

Sd
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The stated theorem offers a way to construct a specific weight function ¢(a, b), for which the
integral representation (x) holds. A similar result was proved in Kainen et al. (2010) for the Heaviside
function, which is the derivative of ReLU. In the next section we show that for the univariate target
functions the particular cf(a, b) provided by Theorem 1 has the least L;-norm among all possible
solutions ¢ € L1(S?, v4). While previously we conjectured that this is likely to be the case for any
dimension d > 1 as well, it is now evident that this conjecture in fact holds and the proof can be
derived (after a small adaptation to our setting) from Ongie et al. (2019), that was posted concurrently
with our work.

2.1. Univariate target functions

For the case d = 1 we state a stronger version of Theorem 1 that characterizes the class of target
functions f(x) that can be represented in the form (x).

Note that the unit circle S' can be parameterized by (a, b) = (cos ¢, sin ¢), where ¢ € [0, 27).
Then the hyperplane {x € R : a -2 + b = 0} consists of a single point: * = —tan¢ and
hence R|[f](a,b) = f(—tan¢). Thus Theorem 1 provides for any compactly supported function
f € C%(R) that

2m

f(x) :/ma(xcosgb—ksingb)dgb.
0

In this subsection we provide a more general representation and extend the set of the admissible
functions f by defining the class W(R) O C?(R) consisting of such functions g : R — R that ¢’
exists everywhere on R, g” exist almost everywhere on R, and

r—+00 r—+o00

lim g(z) = lim x¢'(z) =0, / lg" (z)|V1+ 22dz < <.

The following theorem characterizes the class of target functions that admits the integral repre-
sentation (x) with an integrable weight function c(a, b). Moreover, for a given target function f we
characterize the class of integrable kernels c that satisfy the representation (x).

Theorem 2 The function f admits the representation
27
f(z) = / c(¢) o(x cos ¢ + sin @) do 5)
0
with some ¢ € L0, 27] if and only if f has the form

f(z) =g(x) + ax + B + y(xarctanx 4+ 1) + narctan z, (6)
where g € W(R) and
2 2 2
o= i/c(aﬁ)cossbda 8= i/c(d))sinqbdqb, ’y:/c((;ﬁ)|cos¢>]d¢>,
ar ° °
n= /C(¢) s(¢)d¢ with s(¢) = s(¢ + ) =sing for ¢ € [=7/2,7/2).
0
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Moreover, the set of such weight functions c¢(¢) coincides with the set of functions of the form

f"(—tan¢) K'(—tan¢)
2| cos? ¢ 2 cos? ¢

where k € W(R) and o, B,7v,n € R.

+acos¢ + Bsin g + [ cos g +15(9), ©)

The following theorem characterizes the class W(R) as the functions that admit an integral
representation with an appropriate integrable weight function.

Theorem 3 A function f belongs to the class W(R) if and only if it admits the representation

2w

f(z) = /c(qb)a(ac cos ¢ + sin¢) do

0

with a weight function ¢ € L1[0, 27| satisfying

/2 /2 /2 /2
/ c(¢) cospdp = / c(¢p+ ) cos pdp = / c(¢) singpdp = / c(¢p+ ) singpdp = 0.
—7/2 —/2 —7/2 —7/2

Since in Theorem 3 we make an assumption ¢ € L1[0, 2], we can pose a question of finding the
weight function c(a, b) with the smallest L;-norm for a given target function f. Such a formulation
is of interest for many real-life applications as regularization is typically employed to condition
ill-posed problems (see, e.g., Engl et al. (1996); Evgeniou et al. (2000)). In particular, L;-norm
minimization is commonly used in compressed sensing for finding a sparse solution, and is often
utilized in machine learning for promoting generalization properties of the network. In the following
theorem we answer the stated question.

Theorem 4 For f € W(R) the minimum

27
_min el st [ () owcoso+sing)do = f) ®)
0
is attained at P tan )
— tan
ci(p) = o |

Remark 5 We note that the solution of (8) is not always unique. For instance, if f"(x) > 0 a.e.
then any g € W(R) with |g"| < f" provides a weight function with the smallest possible norm.

Remark 6 A similar to Theorem 4 result was obtained in Savarese et al. (2019) and its multidi-
mensional analogue in Ongie et al. (2019). Their results are stated in the S*™1 x R domain of
(a,b), which corresponds to a different scaling of the weights. After performing respective change
of variables from S x R to S one of the theorems in Ongie et al. (2019) implies that in fact
the weight function cy provided by Theorem I indeed possesses the smallest Ly-norm in any setting
d > 1. However the question of finding the analogue of the space W(R) in multiple dimensions
remains open still.
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3. Conclusion

This effort focused on integral representations of shallow neural networks with ReLLU activation
functions. Specifically, we recast a target function in a suitable integral form, which can be discretized
in order to obtain a network approximation of the training data.

We analyze the set of target functions that admit the desired integral form and derive an explicit
formula for the integrand. Moreover, in the univariate setting, we fully characterize all such functions
as the class W(R), and establish an approach for obtaining a network with the least L;-norm of the
outer weights, for any function from W(R).

Our approach facilitates a “deeper” theoretical understanding of how the network weights’
contribute to the approximation of the training data. We believe that it is vital to bridge the gap
between practical applications and underlying theoretical processes, and hope that the tools presented
in this work will contribute to providing solutions to this grand challenge. We intend to continue
research in this direction and further promote the interpretability of neural networks by better
understanding how the geometry of the training data affects the architecture and the training process
of the neural network.
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Appendix A. Proof of Theorem 1

Lemma 7 Forany F € L'(S?) we have

™

/F(a,b) dvg(a,b) = /sindlgzﬁ / F (asin ¢, cos @) dvg—1(a) do
Sd d—1

0 Sd—

B 1 o I3 5
_//md+lF<\/1+ﬁ2a\/1+52>dd—1(0‘)d5~

§d-1 R

Proof Statement of the lemma is trivial for d = 1. For d > 1 consider the following change of
variables given by the spherical coordinates

b = cos ¢1,

a1 = sin ¢1 sin g9 =: sin ¢1 a7,

g1 = sin ¢y ... sin ¢g_1 cos ¢g =: sin ¢1 ag_1,

aq = sin ¢q ... sin ¢g_1 sin ¢g =: sin ¢1 oy,

where ¢1,...,¢4-1 € [0,7] and ¢4 € [0,27), and o = (ay, ..., aq) € S¥1. The area element
on the unit sphere S is given by dvg(a,b) = sin?~! ¢1sin?2 ¢y ... sinpg_1 doy des ... dpg_1.
Therefore we obtain

/ F(a, b) dvg(a, b)

sd

by T 27

:/...//F(asin¢1,cos¢1) sin?~1 o1 sin4—2 G2 ...8inpg_1dpg ... dpsdey
0 0 0

by by T 27

o d . ) . d-2 .

—/sm ¢1/...//F(as1n¢)1,005¢1) Sin® “ o ...sin¢pg_1dog... doodeps.
0 0 0 0

To complete the proof, we change the variable ¢; € [0,7] to 8 = cot¢1 € R to get cos¢; =
B/\/1+p% and sin ¢1 = 1/,/1+52. Substituting into the above integral provides the required result. ll

We also use the following technical result, which is a corollary of Proposition 8.1 from Kainen
et al. (2010).

Lemma8 Let H : R — R be the Heaviside function, i.e. H(x) = (1+sen(z))/2. Then for any
compactly supported function f in C’d(Rd) the following reconstruction formula holds:

_1)4+1/2 d
S | [ i s e 9 asava e i s ode
flx) = (_1)d/2 gd-1 R 5
T 2(2m)i T / pga LRI p)](B) Hax+ f)dBdvas(a) i dis even.
sd-1 R
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We now proceed to the proof of Theorem 1. Let d be odd. From Lemma 7 we get

1 8d+1
WWR[JC](G, b) O'(G - T+ b) dVd(CL, b)
d

/ / 8d+1 < o ’ /8 ) O’(Oé x4+ B) dﬁ d]/d_l(a)
ppIr V1+B2 /14

gd-1 R

8d+1
— | [ ggmckira.s) oo+ 8)dsdvia(a),

gd-1 R

where we use the positive homogeneity of Radon transform

R c _ 5 ) — R[] (a, B).
( T i) = i)
Then integration by parts provides
8d+1 8d
Wﬂf](a,ﬁ) ola-z+p)df=— Tﬁdﬂ[f](a,ﬁ) H(a-z+p)dp
R R

and applying Lemma 8 completes the proof of this case. The case of even d is proven analogously.

Appendix B. Proof of Theorem 2

Before proving the theorem we perform several related calculations. From the equality o(z) =
2|/2 4 z/2 we obtain

2 2w 2
/cos¢a(xcos¢+sin¢)d¢: ;/cos¢|xcosd)+sin¢\d¢+;/cos¢(xcos¢+sin¢)d¢
0 0 0

™ 27
1
:2</+/>cosqzb|a:cos¢+sm¢>|dgb+m—ﬂ;
0 T

and, in the same way,
2w

/sind)a(mcos¢+sin¢)d¢ = g
0
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From the mutual orthogonality of the functions {sin ¢, cos ¢, | cos ¢|, s(¢)} we deduce
27
/ | cos ¢| o(z cos ¢ + sin ¢) dg
0

27 om
:;/’COS(b ’xcos¢+51n¢\d¢+;/\cos¢| (x cos ¢ + sin ¢) dg
0 0

/2 /2
= / | cos ¢| |x cos ¢ + sin ¢p|do = / cos® ¢ |z + tan ¢| de
_7r/2 —77/2

o0
= / Mdz:xarctanx—i—l,
z

—00

where we changed the variable ¢ € (—7/2,7/2) to z = tan ¢ € R. Similarly,

21 21 21
/s(qb) o(xcos ¢+ sing)do = % /s(gb) |x cos ¢ + sin ¢| dp + % / $(®) (z cos ¢ + sin @) do
0 0 0
2 %
= % 5(¢) |z cos ¢ +sind|dp = [ tan¢ cos? ¢ |z + tan ¢| dg
0 3
= / m dz = arctan x.

We now prove the direct implication. Assume that a function f admits the integral representation

27
f@) = [ @) olacos + sing) do

0

with a weight function ¢ € L]0, 27|. Note that due to the mutual orthogonality of the functions
{sin ¢, cos ¢, | cos ¢|, s(¢) } we can assume without loss of generality that« = 8 =~ =n = 0 by

replacing the weight function ¢(¢) with
c(¢) — acos¢ — Bsing — y[cos ¢| —ns(¢).

Then from the mutual orthogonality of {c(¢), sin ¢, cos @, | cos ¢|, s(¢)} we deduce

/c(¢)cos¢d¢:/c(cZ)—i—Tr)cosngqu:/c(qﬁ)singf)dqﬁ:/c(¢+7r)sin<bd¢:0. 9)
0 0 0

0
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We will show that f is in the class W(R). First, we show that lirf f(z) = 0. Indeed, from

T—>100
condition (9) we get for any = > 0

/2 /2
flx) = / c(¢) o(xcos ¢ + sin¢) do + / c(¢+ ) o(—xcos ¢ — sin @) do
—7/2 —7/2

7r/2 — arctanx

= / c(p) (xcos ¢ + sin¢) do + / c(¢p+ ) (—xcosp —sin¢p)de

—arctanx _71'/2

—arctanx —arctanz

——r [ (@) +erm)eosods— [ (o) + o+ m)singds,
—7/2 —7/2

By using the relation cos(arctan ) = 1/v/1+2? we obtain

—arctanx —arctan
x / (c(¢) + c(¢p+ 7)) cospdg | < \/% / |c(¢) + (o + 7r)| dg.  (10)

,ﬂ/2 771'/2

Then from condition (9) we get lim f(z) = 0. By a similar argument we have lim f(x) = 0.
T—00 T——00
Next, we show the existence of the derivative f” and that lirin xf'(x) = 0. Let H denote the
T—>100

Heaviside step function, then by using dominated convergence theorem we get for any z > 0

2

f(z) = /c(qS)H(:ccos¢+sinqﬁ) cos ¢ do

0

/2 /2
= / c(¢) H(x cos ¢ + sin¢) cos pdp — / c(¢p+ m) H(—x cos ¢ — sin ¢) cos ¢ do
—/2 —7/2
7r/2 —arctanx
= / c(¢) cos pdep — / c(¢p + ) cos pdep
— arctanx 771'/2
—arctanx
_ / (c(@) + ¢ + 7)) cos 6 dg. (11)
—7/2

By taking into account estimate (10) we derive lim zf’(z) = 0. Condition lim zf'(z) = 0
T—00 T—r—00
proves in a similar way.
Next we show that the second derivative f” exists almost everywhere. Indeed, from (11) we see

that f”(z) exists at every x such that — arctan z is a Lebesgue point of (c(¢) + c(¢ + 7)) cos ¢,
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which is almost everywhere since ¢ € L1[0, 27]. In that case we get

1
() = a2 (c(— arctan z) + ¢(— arctan z + 7)) cos(— arctan z)
x
c(—arctan ) + ¢(— arctan z + 7)
— . . (12)
(1 +a2)%
Finally, by changing the variable from x € R to ¢ = —arctanx € (—7/2,7/2), we estimate
o oo 1
/ |f" (@) V14 2?2de = / o2 |c(—arctanz) + ¢(— arctanz + )| d
x
—00 —00
7T/2 2
= [ (o) + o+ m)|do < [ le(@)]do < .
_7r/2 0

Therefore f € W(R).
Lastly, we show that the weight function ¢ has the form (7) with some & € W(R). Denote

(¢)_ { C((b)v (Z)E [_ﬂ/27ﬂ—/2)7
—c(¢), ¢ € [7/2,37/2).
Then ¢ € L]0, 27| and satisfies conditions (9), hence

2

k(x) = /c(gzﬁ) o(zcos¢ +sing)dp € W(R).

0
From (12) we deduce that for almost all ¢ € [0, 27]
K'(—tan¢) = (¢(¢) + c(¢ + ) cos® ¢ = (c(@) — c(¢p+ ) cos® ¢,
f'(—tan¢) = (c(¢) + c(¢ +))| cos® ¢|.
Combining these relations we conclude

_f”(—tangb) E"(— tan ¢)
o(¢) = 2| cos? ¢| + 2cost ¢

Since we initially subtracted the term a.cos ¢ + Ssin¢ + v|cos(z)| + 1 s(¢) from the weight
function ¢(¢), in a general case we will have

B f"(—tang) K’(—tano¢)
o(9) = 2| cos? ¢| + 2 cos ¢?

+acoso+ Bsing + v | cos d| + ns(p),

which completes the proof of the direct implication.
We now prove the inverse implication. Assume that function f has the form

f(z) =g(x) + ax + 4+ y(xarctanx + 1) + narctanz
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with some function g € W(R) and constants «, 3,7,n € R. Similarly to the direct case, we can
assume that « = 3 = v = n = 0 by replacing function f(z) with

f(z) — ax — 8 — y(xarctanx + 1) — narctan x.

Denote
f'(~tang) _ ¢"(~tang)

o(¢) = 2| cos? ¢| 2 cos? ¢

We will show that ¢ € L]0, 27| and that f027r c(¢) o(xcos ¢ +sin¢) dp = f(x). First, note that

/y \d¢<2/‘f ta;f d¢+2/’92‘ Otsa;f do

w\:\

2
o0

- / PN+ 2)E e+ / O+ 22 dz < oo

and hence ¢ € L0, 27|. Taking into account that o(z) + o(—z) = |z| and using the assumption
f e W(R) we get

7f”(—tan¢)

3ot g o(xcos ¢ + sin¢)do
/2 37/2
= / Wa(x+tan¢)d¢+/WU(—x—tan@d(f)
—/2 /2

:;/f”(z)!a:—z\dz:_;/f/(z) sign(z — 2)dz = f(z).

On the other hand, since o(z) — o(—z) = z and from the assumption g € W(R) we obtain

2
/ M o(x cos ¢ + sin ¢) do

2 cos? ¢
0
= / WU(Htancb)w—/Wa(—x—taw)w
s o
17 1 7
:2/9”(2)(13—2)d222/g'(z)dz:().

Hence fo% c(¢) o(xcosd +sing)dp = f(z), which completes the proof.
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Appendix C. Proof of Theorem 4
From Theorem 2 we deduce that any weight function c(¢) satisfying

2

/C(qb) o(xcos¢ +sing)de = f(x)

0

has the form

_ ["(=tang)  g"(—tan¢)
o(9) = 2| cos? ¢| + 2 cos? ¢

with some g € W(R). Hence

27

/!c(qb)dqﬁ:;/!f”(o:)+g”(x)\x/1+as2dx+;/|f”(x)—g”(fc>!x/1+fc2dw
0 —00 —00

> [ 1@Vt

and the minimal value of ||c||; is attained at g = 0.
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