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Abstract
We introduce SchrödingeRNN, a quantum-inspired generative model for raw audio. Audio data is
wave-like and is sampled from a continuous signal. Although generative modeling of raw audio
has made great strides lately, relational inductive biases relevant to these two characteristics are
mostly absent from models explored to date. Quantum Mechanics is a natural source of proba-
bilistic models of wave behavior. Our model takes the form of a stochastic Schrödinger equation
describing the continuous time measurement of a quantum system, and is equivalent to the contin-
uous Matrix Product State (cMPS) representation of wavefunctions in one dimensional many-body
systems. This constitutes a deep autoregressive architecture in which the system’s state is a latent
representation of the past observations. We test our model on synthetic data sets of stationary and
non-stationary signals. This is the first time cMPS are used in machine learning.
Keywords: Machine Learning, Generative Models, Quantum Physics, Matrix Product States.

1. Introduction

Audio generation appears in different machine learning tasks such as music synthesis or text-to-
speech, where the input is text and the output is speech audio. One of the reasons why it is challeng-
ing is that the dimensionality of the raw audio signal is usually a lot larger than that of the effective
semantic-level signal. In speech synthesis for instance, one is typically interested in generating ut-
terances corresponding to full sentences. At a minimum quality sampling rate of 16kHz, an average
of 6,000 samples per word are generated Mehri et al. (2016).

Both music and speech are complex and highly structured. In audio signal form, different fea-
tures have different timescales, ranging from milliseconds to minutes in the case of music. Because
the correlations span different orders of magnitude, modeling the temporal correlations of the sig-
nals is challenging Dieleman et al. (2018).

Traditionally, the high dimensionality of the raw audio modelling problem has been dealt with
by compressing the audio waveforms into spectral or higher level features, and then defining gen-
erative models on these features. Examples in music generation are symbolic representations such
as scores and MIDI sequences. The compression causes many of the subtleties that are crucial for
the quality of sound to vanish. A way around these limitations is to model sound in the raw audio
domain instead. While the digital form of audio is also lossy, the relevant information for the quality
of musicality is retained.

There has been recent work on raw audio modelling using autoregressive models: AMAE Diele-
man et al. (2018), WaveNet van den Oord et al. (2016), VRNN Chung et al. (2015), WaveRNN
Kalchbrenner et al. (2018) and SampleRNN Mehri et al. (2016). The first is a convolutional neural
network with dilated convolutions, the rest are recurrent neural networks. Beyond autoregressive
models, there is WaveGlow Prenger et al. (2018) where a flow model is used and WaveGAN Don-
ahue et al. (2018) using generative adversarial networks.
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2. Quantum-inspired machine learning

A natural connection between quantum mechanics and machine learning is that probability distri-
butions appear in both disciplines. Quantum-inspired machine learning is the use of quantum wave
functions and quantum processes to model probability distributions and generative processes. In
each case, one needs to choose the wave function and the physical process that is suitable for the
problem at hand.

In raw audio modeling, the data is wave-like and quantum mechanics is a natural source of
probabilistic models of wave behaviour. Hence, quantum-inspired models might benefit from the
inductive bias induced by these two characteristics: the wave-like and probabilistic nature. Fur-
thermore, within the range of problems that exist in machine learning, one-dimensional machine
learning is specially appealing for quantum many-body physicists. This is because in physics, the
most powerful numerical and analytical tools have been developed to study one-dimensional sys-
tems. Therefore, there is the potential to use them to solve machine learning tasks. In this work,
we use continuous matrix product states (cMPS) (see Appendix A), a numerical tool used in many-
body quantum physics to deal with Hilbert spaces of many-body systems, to handle the high di-
mensionality of the audio data. There have been several works where matrix product states and
more general tensor networks have been used for machine learning Glasser et al. (2019); Cheng
et al. (2019); Stokes and Terilla (2019); Li and Zhang (2018); Han et al. (2017); Efthymiou et al.
(2019); Liu et al. (2019); Evenbly (2019); Guo et al. (2018); Glasser et al. (2018); Stoudenmire
(2018); Novikov et al. (2016); Bradley et al. (2019); Stoudenmire and Schwab (2016). RNNs have
previously been used to learn the Schrödinger equation Wang et al. (2019). As far as we are aware,
our work is the first where cMPS are used.

3. A quantum-inspired model for raw audio

In a typical raw audio dataset, each data point is a vector with several thousands of real valued
elements, e.g. in NSynth dataset Engel et al. (2017) each note amounts to 64,000 samples. Hence,
data lives in a very high dimensional space, which makes it unaffordable to explore brute-force: we
are faced with the curse of dimensionality.

This is reminiscent of a problem that arises in many-body quantum optimization problems.
When trying to find the variational ground state of a many-body quantum system, one has an expo-
nentially large Hilbert space to explore. Matrix product states (MPS) serve as a tool to overcome the
curse of dimensionality in this context. As explained in Orus (2014), it gives a way to parameterize
the relevant corner of the Hilbert space efficiently.

The fact that MPS has proven to be a successful tool to overcome the curse of dimensionality
in physics suggests that it might be useful in machine learning as well. In this work, we want to
explore the utility of MPS to model raw audio. On the other hand, MPS is not suitable for modeling
continuous data (like raw audio), because it describes lattices of discrete degrees of freedom like
spins. As explained in Appendix A, there exists a generalization of MPS to systems with continuous
degrees of freedom: continuous matrix product states (cMPS).

We will be thinking of the audio waveforms as the outcome of a sequential measurement of a
continuous observable throughout the evolution of a quantum system.
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SCHRÖDINGERNN

3.1. The SchrödingeRNN model

As explained in Appendix B, our model generative process consists on the continuous measurement
of the homodyne current It (see Appendix B.1), on the output of an open quantum system described
by a cMPS. As a refinement of the cMPS model, we include two extra variables: A and σ. The
model involves the signal It together with a latent Hilbert space consisting of vectors |ψ〉 ∈ CD.
The signal follows the stochastic process

It+dt = A〈Rt +R†t 〉t + z, where z ∼ N(0, 1/dt). (1)

The parameterA is a real learning variable, Rt = eiHtRe−iHt (H is real and diagonal), R ∈ CD×D
is a matrix acting on the latent space and as before the angular brackets 〈·〉t denote the quantum
mechanical expectation over an (unnormalized) state |ψ̃t〉

〈·〉t =
〈ψ̃t| · |ψ̃t〉
〈ψ̃t|ψ̃t〉

. (2)

The state |ψ̃〉 evolves according to

|ψ̃t+dt〉 =

[
1− σ2

2
R†tRtdt+RtIt+dtdt

]
|ψ̃t〉 , (3)

|ψt+dt〉 = |ψ̃t+dt〉 /
√
〈ψ̃t+dt|ψ̃t+dt〉. (4)

The purpose of introducing the training variable A is to learn the amplitude of the signal. The
amplitude is set by A〈Rt +R†t 〉t in Eq. (1). This is done to learn R independently of the amplitude
of the signals in the dataset. This way, the training ofR is geared solely towards optimizing the time
evolution of |ψ̃t〉 in Eq. (3). The hyperparameter dt sets the strength of the term R†tRt compared to
RtIt+dt (one can see this by absorbing

√
dt into R). In cases where we are interested in fixing dt to

be the real time discretization of the data (see Sec. 6.5), σ is the hyperparameter in charge of this.
The initial state |ψ0〉 is learned.

The conditional joint probability density for a sequence of measurements {It} is

p(IT , ..., I1|H,R,A, |ψ0〉) =
T−1∏
k=0

p(Ik+1|Ik, ..., I1;H,R,A, |ψ0〉), where

p(Ik+1|Ik, ..., I1;H,R,A, |ψ0〉) =

√
dt

2π
exp

[
−dt

2

(
Ik+1 −A〈Rk +R†k〉k

)2
]
. (5)

This constitutes an Autoregressive Recurrent Neural Network where the hidden state is the quantum
wavefunction |ψ̃〉 and the non-linear update equation is Eq. (4). Aside from a few last details that
will be explained in the coming sections, this probability distribution defines our quantum-inspired
model. A detailed derivation of the model can be found in Appendix B.

4. Advantages of the cMPS approach

As explained in the introduction, the traditional way of dealing with the high dimensionality of raw
audio data has been to compress the audio waveforms into spectral or higher level features, and
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then defining generative models on these features. As a consequence, many of the nuances that are
essential for the quality of the sound vanish.

The alternative is to model raw audio waveforms directly. This approach consists in modeling
the joint probability distribution of the dataset (the waveforms). There has been recent work using
deep neural networks: Dieleman et al. (2018); van den Oord et al. (2016); Chung et al. (2015);
Kalchbrenner et al. (2018); Mehri et al. (2016); Prenger et al. (2018); Donahue et al. (2018). Audio
data is wave-like and is sampled from a continuous signal. Although generative modeling of raw
audio has made great strides lately, relational inductive biases relevant to these two characteristics
are mostly absent from models explored to date. The cMPS model introduces these inductive biases.

5. Data as homodyne current

We have seen that the sequential measurement of the homodyne current on the output of an open
quantum system described by a cMPS gives rise to the autoregressive probability distribution shown
in Eq. (5). We now want to use this probability distribution to model raw audio data xt. One obvious
thing to do is to consider the raw audio to be the homodyne current, i.e. It ≡ xt, in which case the
generative model is defined as

p(xT , ..., x1|H,R,A, |ψ0〉) =
T−1∏
k=0

p(xk+1|xk, ..., x1;H,R,A, |ψ0〉),

p(xk+1|xk, ..., x1;H,R,A, |ψ0〉) =

√
dt

2π
exp

[
−dt

2

(
xk+1 −A〈Rk +R†k〉k

)2
]
. (6)

Note that in the limit dt→ 0, the variance 1/dt diverges and the samples of this probability distribu-
tion become pure noise. Hence, this model does not have a continuous limit in the sense that as the
time discretization becomes dense, the signal does not become smoother but more discontinuous.

If our training strategy is maximum log likelihood, the loss function of a single data point is

− log p(xT , ..., x1|H,R,A, |ψ0〉) = −
T−1∑
k=0

log p(xk+1|xk, ..., x1;H,R,A, |ψ0〉). (7)

Since dt is a hyperparameter (i.e., we do not learn it), we define the loss function as

loss(H,R,A, |ψ0〉) =
T−1∑
k=0

(
xk+1 −A〈Rk +R†k〉k

)2
. (8)

At sampling time, the variance of the Gaussian in Eq. (6) is tuned by introducing a temperature
parameter T (explained in Sec. 6.6) to optimize the quality of the samples. Therefore, dt does not
influence the variance at generation time.

6. Time derivative of data as homodyne current: a
stochastic differential equation perspective

Let us consider Eq. (1). Note that z ∼ N(0, q2) is equivalent to qz ∼ N(0, 1) and therefore
multiplying both sides by dt
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It+dtdt = A〈Rt +R†t 〉tdt+ dβt. (9)

The process βt is Brownian motion and its independent increments have variance dt. In the limit
dt→ 0, this equation is reminiscent of a stochastic differential equation

dIt = f(It, t)dt+ dβt. (10)

On the other hand, the left hand side of Eq. (9) contains the value of the stochastic process It whereas
the left hand side of Eq. (10) contains the differential of the process dIt ≡ It+dt − It. In order to
rephrase our model in the language of stochastic differential equations, an option is to define the
time derivative of the raw audio data to be the outcome of the homodyne current measurement, i.e.
It ≡ dxt/dt, instead of It ≡ xt.

As explained in Chen et al. (2018), there are several advantages of having a continuous formu-
lation of the model, even though one always needs to discretize to perform numerical calculations.
One of the main advantages is that one can use the machinery developed to numerically integrate
stochastic differential equations.

Even though it is appealing to rephrase the model in terms of SDEs, later we will see that this
is not always a good option, since for certain datasets, the time derivative dxt/dt of the signals is
more spiky and discontinuous than the signal xt, which is problematic for training our model. In
the remainder of the paper, we will use both approaches. Depending on the choice, the notation will
be

• If It ≡ xt, then xt+dt = A〈Rt +R†t 〉t + z, where z ∼ N(0, 1/dt).

• If It ≡ dxt/dt, then dxt = A〈Rt +R†t 〉tdt+ dβt.

Throughout the paper, unless we consider it helpful, we do not specify the units of different quanti-
ties.

6.1. The model from an SDE perspective

In the continuous formulation of the model, the signal follows the stochastic process (Itô process)

dxt = A〈Rt +R†t 〉tdt+ dβt. (11)

Here βt is Brownian motion with diffusion constant q, which means that the independent increments
∆β ≡ βk+1−βk are zero mean Gaussian random variables with variance q∆t. The state |ψ̃〉 evolves
according to

d |ψ̃t〉 =

[
−σ

2

2
R†tRtdt+Rtdxt

]
|ψ̃t〉 . (12)

Hence our model in Eq. (11) has the form of a non-linear stochastic differential equation.
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6.2. Generalization to density matrices

To add expressivity to the model, we can consider starting from a learned density matrix ρ0, and
evolving the density matrix instead of the state |ψ̃t〉. There is the disadvantage that ρ ∈ CD×D, so it
is more costly to evolve than the pure state. The equation of motion for the (unnormalized) density
matrix is

dρ̃t
dt

= σ2L(ρ̃t) + (ρ̃tR
†
t +Rtρ̃t)

dxt
dt
, (13)

where L(·) is the Linbladian

L(ρ) = RtρR
†
t −

1

2

(
R†tRtρ+ ρR†tRt

)
. (14)

The quantum mechanical average in Eq. (11) then becomes

〈Rt +R†t 〉t =
Tr
[(
Rt +R†t

)
ρ̃t

]
Tr [ρ̃t]

. (15)

6.3. Parameter estimation

We now have a parametric form of our model and we need to find the values of the parameters
that best fit the data, given a dataset. The probability distribution of continuous processes is not
normalizable Särkkä and Solin (2019), i.e. if we formally define it as

p(Xt) = lim
n→∞

p(x1, ..., xn), (16)

this limit tends to zero or infinity almost everywhere in the domain of the distribution. In order to de-
fine a finite loss function, we can consider the relative probability distribution of the process Xt with
respect to the probability of another process that does not contain the learnt parameters. It is natural
to define the relative probability of the signalXt with respect to the driving Brownian motion βt. Let
us call the probability measure of our model PcMPS(Xt) and the probability distribution associated
with Brownian motion Pβ(Xt). According to the Girsanov theorem (Särkkä and Solin (2019)), the
relative probability of PcMPS(Xt) with respect to Pβ(Xt) is given by the Radon-Nikodym derivative
involved in changing measure from PcMPS(Xt) to Pβ(Xt):

dPcMPS(Xt)
dPβ(Xt)

= exp

(
A

q

∫
〈Rt +R†t 〉tdxt −

A2

2q

∫
〈Rt +R†t 〉2tdt

)
, (17)

where q is the diffusion constant of the Brownian motion. Our training strategy is to minimise
the negative log likelihood (relative to the measure of Brownian motion), i.e., our loss function
(associated to a single continuous audio signal Xt) is minus the logarithm of Eq. (17):

loss = − log
dPcMPS(Xt)
dPβ(Xt)

= −A
∫
〈Rt +R†t 〉tdxt +

A2

2

∫
〈Rt +R†t 〉2tdt. (18)

Note that we removed the factor 1/q because it is not a learning variable.

79
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6.4. Discretization

Since we cannot solve Eq. (11) exactly, we cannot evaluate the likelihood exactly and so we need
the aid of discretization methods. We use the Euler-Maruyama integration scheme

|ψ̃t+∆t〉 =

[
1− σ2

2
R†tRt∆t+Rt∆xt

]
|ψ̃t〉 , and (19)

ρ̃t+∆t =

[
1− σ2

2
R†tRt∆t+Rt∆xt

]
ρ̃t

[
1− σ2

2
R†tRt∆t+Rt∆xt

]†
. (20)

The discretization of the model SDE (11) is

∆xt = A〈Rt +R†t 〉t∆t+ ∆βt, (21)

where ∆xt ≡ xt+∆t − xt and ∆βt ≡ βt+∆t − βt. The discretization of the loss function (18) is

loss(H,R,A, |ψ0〉) = −A
∑
t

〈Rt +R†t 〉t∆xt +
A2

2

∑
t

〈Rt +R†t 〉2t∆t. (22)

Neglecting the constant −∆xt
2/2∆t and the multiplicative factor ∆t/2, it is expressed as

loss(H,R,A, |ψ0〉) =
∑
t

(
∆xt
∆t
−A〈Rt +R†t 〉t

)2

. (23)

Note that substituting ∆xt/∆t by xt, this is equal to Eq. (8).

6.5. Learnable parameters and hyperparameters

The model is specified by the learnable parameters A,H,R and |ψ0〉 (or ρ0) and the hyperparame-
ters:

1. The bond dimension D, which reflects the complexity of the model.

2. Time discretization ∆t. If we set it to be equal to the inverse of the sampling rate of the data,
which corresponds to matching the time discretization of the data with the time discretization
of the model, we can relate the eigenvalues H to the (angular) frequencies ω = 2πf of the
data (see Appendix F).

3. σ, which governs the strength of the term R†R.

4. The hyperparameters σω and σR are regularisers for H and R (see Appendix F). In this work
we do not experiment with regularisers.

6.6. Sampling

After training, we use the learnt parameters H,R,A and |ψ0〉 (or ρ0) to generate samples using the
discrete model
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xt+1 = xt + ∆xt, where,

∆xt = A〈Rt +R†t 〉t∆t+
√
T∆βt. (24)

We introduce a temperature parameter T to tune the variance of the independent increments of the
Brownian motion. In generative modeling, it is common to introduce a temperature parameter to
optimize the quality of the sampling. See for example Kingma and Dhariwal (2018). At T = 0
the generative process is deterministic. As the temperature is increased, the generative model gives
rise to a variety of samples due to the randomness of the increments. At very high temperatures,
the Gaussian noise dominates the generative process and the samples resemble the training data less
and less.

7. Experiments

To test the capabilities of our model, we create synthetic datasets where we know the ground truth
probability distributions. We can then readily check whether the learnt probability distribution
matches the ground truth. We train on three different datasets: damped sines with random delays,
Gaussian processes and filtered Poisson processes.

7.1. Damped sines

The experimental details are shown in Appendix C.1.

7.1.1. SINGLE FREQUENCY EXPERIMENT

We start by modeling a dataset that consists of damped sines with random delays. Each signal has
amplitude zero at the beginning, and the length of this “silence” period is random (see two samples
in Fig. 1(a)). All signals have the same frequency f = 261.6Hz, the sampling rate is 16KHz and the
length of each signal vector is 512 (which corresponds to 0.032 seconds). To generate the training
set, we obtain the random delays by sampling from the distribution Gamma(α = 2, β = 0.39).

We start by considering the pure state model. The results are:

1. At T = 0, the sampling is deterministic given the learned initial state |ψ0〉, as explained in
Sec. 6.6. The zero temperature sample has the shape of a damped sine with a finite delay.
This sample is shown in Fig. 1(b).

2. At finite temperature, we find that we can capture the delay degree of freedom, i.e. different
samples have the form of a damped sine, with different delays. On the other hand, we find that
the samples have the right form (i.e., the form of a damped sine) for the first 300 points only,
having been trained on signals of length 512. In this sense, the outcome of this experiment is
not very satisfactory. We experimented with different bond dimensions up to D = 300. We
show two samples in Fig. 2(a).

We now consider the time evolution of a density matrix

81
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(a) (b)

Figure 1: (a) Two signals of the dataset with different delays. The length of the data samples is
512 and the sampling frequency 16 kHz. (b) The T = 0 sample from the our pure state
model, after training. It has the form of a damped sine with a finite delay.

ρ̃t+∆t =

[
1− σ2

2
R†tRt∆t+Rt∆xt

]
ρ̃t

[
1− σ2

2
R†tRt∆t+Rt∆xt

]†
. (25)

In this case, sampling remains of good quality up to 512 samples, as can be seen in Fig. 2(b).

(a) (b)

Figure 2: (a) Two samples at T = 30, D = 100 and σ = 10−4 using the pure state model. The
shape of a damped sine is well captured. On the other hand, we can only get proper
samples of length 300 approximately. (b) Two samples at T = 42, D = 100 and σ =
10−4, where we use a density matrix. Unlike in the pure state case, the samples look like
damped sines, for the whole length of 512 samples.

We also experiment with damped sines of two different frequencies. We find that the model
learns the manifold of damped sines fairly well, but it fails to capture the two frequencies degree of
freedom of the dataset. Details about this experiment are shown in Appendix E.
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7.2. Gaussian processes

In the previous section, we tested the ability of our model to learn damped sines. On the other hand,
real life sound is a lot more complex than sine waves. For example, real sound is made of several
harmonics (unlike a sine wave). To test the capabilities of our model on more realistic data, we
move on to training on Gaussian processes, specifically Matérn spectral mixtures (see Appendix
D). The experimental details are shown in Appendix C.2.

(a) (b)

Figure 3: (a) A sample xt of a Gaussian process with Matérn spectral mixture spectral function
defined by (σ, λ, ω0) = (2, 50, 300). (b) The increments ∆xt = xt+dt−xt of the sample
shown in (a).

We create a dataset of samples of a stationary Gaussian process of choice. We generate the data
using a discrete stochastic equation (see Appendix. G.1) instead of sampling from a multivariate
Gaussian distribution. We train on two different Matérn spectral mixture processes. In the first,
the spectral function consists of a single pair of Lorentzians centered at ω0 = ±300 and (σ, λ) =
(2, 50). In the second, we consider a mixture of three frequencies. The mixture is defined by the
parameters (σi, λi) = (2, 50) for i = 1, 2, 3 and (ω1, ω2, ω3) = (300, 500, 700). We show two
samples from each of the two datasets in Fig. 4.

7.2.1. RESULTS

Due to the higher complexity of the data compared to the damped sines in Sec. 7.1, instead of just
looking at plots of samples, we judge whether the model is successful at learning the above process
by 1) calculating the experimental covariance from N samples

Cexp(t, t′) ≡ 1

N

N∑
i=1

xi(t)xi(t
′), (26)

and comparing it with the exact covariance and 2) checking that the experimental covariance is
stationary, i.e. Cexp(t, t′) = Cexp(τ). We find that the model is successful at learning this process
and we show the results on Fig. 5. On the other hand, as explained in Sec. 6.6, sampling depends on
temperature. The experimental covariance only matches the exact covariance at a given temperature.
As one departs from this temperature, the two covariances start to differ. Similarly, the samples are
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(a) (b)

Figure 4: Samples from the two dataset we train on. Two Gaussian processes with Matérn spectral
mixture spectral function defined by (a) (σ′, λ, ω0) = (2, 50, 300) and (b) (σ′i, λi) =
(2, 50) for i = 1, 2, 3 and (ω1, ω2, ω3) = (300, 500, 700).

stationary only in a small range of temperatures around this temperature. Furthermore, we find that
the experimental covariance becomes stationary only after a few steps, not from the beginning.

(a) (b)

Figure 5: The time indicated in the horizontal axis is an integer index that specifies the time step
of the discrete covariance. (a) Perfect match of experimental (blue) and exact (yellow)
covariances. The exact covariance has parameters (σ′, λ, ω) = (2, 50, 300). The experi-
mental covariance is calculated using 40000 samples at T = 0.00051. The hyperparam-
eters used are D = 50, dt = 0.001 and σ = 1. (b) Experimental covariance Cexp(t1, t2)
for different initial times, showing stationarity. It reaches stationarity at t1 ≈ 20.

When trained on a mixture of three frequencies, the model succeeds at reproducing stationary
samples (after a given time) with the right covariance function. The results are shown in Fig. (6).
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(a) (b)

Figure 6: The time indicated in the horizontal axis is an integer index that specifies the time step
of the discrete covariance. (a) Perfect match of experimental (blue) and exact (yellow)
covariances. The exact covariance has parameters (σ′i, λi) = (2, 50) for i = 1, 2, 3
and (ω1, ω2, ω3) = (300, 500, 700). The experimental covariance is calculated using
40000 samples at T = 0.002. The hyperparameters used are D = 100 and dt = 0.001.
(b) Experimental covariance Cexp(t1, t2) for different initial times, showing stationarity.
Before t1 = 10 the experimental covariance is non-stationary.

7.3. Poisson processes

A feature of stationary Gaussian processes is that because the covariance function is symmetric
C(t, t′) = C(t′, t) and all diagonal elements are equal to C(t, t), the probability density of a given
sample x(t) is the same as the probability density of the time-inverted sample. We refer to this
symmetry as time-reversal symmetry (TRS).

Many real life sounds are not time-reversal symmetric. For example, the chirp of a bird will
sound different if played backward. Therefore time-reversal symmetric models like Gaussian mod-
els are not suitable to model this kind of sound.

Our cMPS based model is not constrained by time-reversal symmetry, as multivariate Gaussian
probability distributions are. We can see this by looking at the discretized time evolution of the
unnormalized state. The fact that the one-step time evolution operator does not commute with itself
at different times, implies the absence of the TRS constraint.

One can check whether a probability distribution is time-reversal symmetric, from certain cor-
relation functions. Consider the two correlators

E
[
x3(ti)x(tj)

]
=

∫
dx(t1)...dx(tN ) x3(ti)x(tj) p (x(t1), ..., x(ti), ..., x(tj), ..., ..., x(tN )) ,

E
[
x(ti)x

3(tj)
]

=

∫
dx(t1)...dx(tN ) x(ti)x

3(tj) p (x(t1), ..., x(ti), ..., x(tj), ..., ..., x(tN )) .

(27)

If these two quantities are different, the probability is not invariant under the swap of values of two
arguments which implies that it is not TRS.
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(a)
(b)

Figure 7: (a) Training samples generated according to the FPP defined in Eq. (28). (b) Exact corre-
lators of FPP defined in Eqs. (29) of the Poisson process defined in Eq. (28). The intensity
of the Poisson process is λ = 4. The amplitude Ak can take values ±1. The pulse decay
time is τ = 0.2 and the angular frequency ω = 20. The time indicated in the horizontal
axis is an integer index that specifies the step of the discrete correlator.

We test the ability of our model to learn non-TRS processes, by training it on filtered Poisson
processes. This process is defined as

X(t) =
∑
k

Akϕ(t− tk), where

ϕ(t− tk) = θ(t− tk)e−(t−tk)/τ sin[ω(t− tk)]. (28)

A filtered Poisson process (FPP) X(t) consists of a superposition of uncorrelated pulses ϕ (t− tk),
arriving at random times with a Poisson distriution. The overall amplitude Ak is random: at each
time, Ak can independently take the values ±A, with equal probabilities. In this process, the corre-
lators defined in Eq. (27) take the form (see the derivation in Appendix H)

E
(
X3(t1)X(t2)

)
= λI−∞,t13,1 + 3λ2I−∞,t11,1 I−∞,t12,0 ,

E
(
X(t1)X3(t2)

)
= λI−∞,t11,3 + 3λ2I−∞,t11,1

(
I−∞,t10,2 + It1,t20,2

)
,

It,t
′

n,m =

∫ t′

t
dα ϕn(t1 − α)ϕm(t2 − α). (29)

The two correlators are different due to the absence of TRS. We take the initial time t = −∞
because we are interested in the steady state correlators.

The experimental details are shown in C.2. The dataset contains samples of the FPP defined in
Eq. (28) with parameters A = 1 (i.e., Ak can take values ±1 at time tk), τ = 0.2, ω = 20. In
order to create steady state signals, we produce signals of length 500, and pick the last 400 points of
each signal. This corresponds to signals that have been running for a time 5τ , by when signals are
approximately stationary, because the process has a memory time of order τ due to the exponential
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(a) (b)

Figure 8: The time indicated in the horizontal axis is an integer index that specifies the time
step of the discrete correlator. (a) Experimental correlators Eexp

(
X(0)X(t)3

)
and

Eexp
(
X3(0)X(t)

)
. At T = 0.000012, they roughly match the exact correlator

E
(
X3(t1)X(t2)

)
shown in Fig. 7(b). The temperature can be tuned to approximately

match E
(
X(t1)X3(t2)

)
instead. But at a given temperature they are both equal, unlike

the exact correlators. The hyperparameters used are dt = 0.01, D = 100 and σ = 1. The
experimental correlators are calculated by averaging over 40000 samples. (b) The exper-
imental correlator Eexp

(
X(t1)X(t2)3

)
, for different values of t1. It becomes stationary

after t1 = 30, approximately.

decay of the pulses ϕ(t− tk). The Poisson intensity parameter is λ = 4. We show two steady state
training samples in Fig. 7(a).

7.3.1. RESULTS

By tuning the temperature, we can match the experimental correlators to either of the two exact
correlators. On the other hand, both experimental correlators we obtain are equal.

8. Conclusions

We introduce a quantum-inspired generative model for raw audio. It is the first machine learn-
ing model based on continuous Matrix Product States. Our model takes the form of a stochastic
Schrödinger equation describing the continuous time measurement of a quantum system. This con-
stitutes a deep autoregressive architecture in which the system’s state is a latent representation of
past observations.

We rephrase the model in the language of stochastic differential equations. We derive an ex-
pression to calculate the two-time characteristic function of a filtered Poisson process. We test our
model on three different synthetic datasets. The model is successful at learning single frequency
damped sines with random delays but it fails to capture the two frequency degree of freedom. It is
able to learn Matérn spectral mixtures. Finally, it captures the filtered Poisson process but it fails to
discern between E

(
X3(t1)X(t2)

)
and E

(
X(t1)X3(t2)

)
.

It remains to do a proper hyperparameter tuning considering all the hyperparameters, to see if
the performance of the model can be improved. Moreover, and most importantly, the model needs
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to be tested on real data: how expressive is the model and how is this related to the bond dimension?
How is the quantum entanglement of the model related to the the structure of correlations in the
generated samples?

This work opens a new avenue to use matrix product states to model continuous data and we
hope that it will set the beginning of the exploration of cMPS for machine learning.
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Appendix A. Continuous matrix product states

The physical lattice states are well-captured by matrix product states. In the context of continuous
quantum systems, there exist a continuum limit, without any reference to an underlying lattice
parameter. This family of states are called continuous matrix product states (cMPS). They describe
field theories in one spatial dimension. Just as MPS captures the entanglement structure of low
energy states of quantum spin systems, the entanglement structure of cMPS is tailored to describe
the low-energy states of quantum field theories Verstraete and Cirac (2010).

To define a cMPS, let us consider a one-dimensional system of bosons or fermions in a ring of
length L. The associated field operators ψ̂(x) obey [ψ̂(x), ψ̂(y)†] = δ(x − y) with 0 ≤ x, y ≤ L.
The cMPS is defined as

|Ψ〉 = Traux
[
Pe

∫ L
0 dx[Q(x)⊗1+R(x)⊗ψ̂(x)†]

]
|0〉 . (30)

The matrices Q(x) and R(x) have dimensions D ×D and they act in the D-dimensional auxiliary
space. P exp is the notation for the path-ordered exponential, Traux is a trace over the ancilla and
|0〉 is the vacuum of the field operators. The state becomes translationally invariant when Q and
R do not depend on x and a system with open boundary conditions can be obtained by replacing
the Traux by a left and right multiplication of the auxiliary system with a row and a column vector,
respectively:

|Ψ〉 = 〈vL| Pe
∫ L
0 dx[Q(x)⊗1+R(x)⊗ψ̂(x)†] |vR〉 ⊗ |0〉 . (31)

A.1. Connection between MPS and cMPS

As shown by Schön et al. in Schön et al. (2005), an MPS with bond dimension D can be seen
as a sequentially generated multiqubit state, arising from a D-level system. Let HA = CD and
HB = C2 be the Hilbert spaces of the ancilla and a single qubit respectively. In every step of the
sequential generation, we consider unitary evolution of the joint system HA ⊗HB . Assuming that
each qubit is initially empty |0〉, we disregard the qubit at the input, such that the evolution takes
the form of an isometry V : HA → HA ⊗HB . Choosing a basis in the ancilla space, the isometry
is expressed as

V =
∑
s

∑
a,b

Asa,b (|a〉 〈b| ⊗ |s〉) , (32)

where
∑

sA
s†As = 1 is the isometry condition and each As is a D ×D matrix. After applying V

n times to an initial state |ψI〉 ∈ HA,

|Ψ〉 =
∑
s

∑
ab

Asna, ...A
s1
,b 〈b|ψI〉 (|a〉 ⊗ |s〉) . (33)

The generated n qubits are in general entangled both with the ancilla and between themselves. If
the ancilla is decoupled in the last step, the final state is an MPS in the space of the n qubits:

|Ψ〉 = |ψF〉 ⊗
∑
s

∑
ab

〈ψF|a〉Asna, ...A
s1
,b 〈b|ψI〉 |s〉 . (34)
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This result shows that all sequentially generated multiqubit states, arising from a D-dimensional
ancillary systemHA, are instances of MPS with D×D matrices As and open boundary conditions
specified by |ψI〉 and |ψF〉.

Let us now consider the cMPS shown in Eq. (31), without projecting the ancilla onto |vL〉.
Taking L = dx and Q,R translationally invariant,

|Ψ〉 = Pedx[Q⊗1+R⊗ψ̂(x)†] |vR〉 ⊗ |0〉

=
[
1⊗ 1 +Qdx⊗ 1 +Rdx⊗ ψ̂(x)†

]
|vR〉 ⊗ |0〉

=
∑
ab

[
(δab +Qabdx) |a〉 |b〉 ⊗ 1 +Rabdx |a〉 |b〉 ⊗ ψ̂(x)†

]
|vR〉 ⊗ |0〉 (35)

=
∑
s

∑
ab

Asab (|a〉 〈b| ⊗ |s〉) |vR〉 ,

where A0
ab = δab + Qabdx, A

1
ab = Rabdx, ψ

†0(x) = 1 and ψ†
s
(x) |0〉 = |s〉. This is just the

isometry shown in Eq. (32).

Appendix B. Physical picture of cMPS

In the following we will see that a state of the form cMPS appears in the interaction picture time
evolution of a composite state of a D-level system (which we refer to as the ancilla), coupled to a
quantum field bath. In particular we consider a D-level atom coupled to an electromagnetic field in
the dipole approximation. The Hamiltonian of the composite system is

H = Ha +Hb + V, where

Ha =
∑
n

εn |n〉〈n| , (36)

Hb =
∑
k

ωkb
†
kbk, (37)

V = Ep =
∑
k

(
gkbk + gkb

†
k

)∑
nm

pnm |n〉〈m| . (38)

Here, {|n〉} are the D eigenstates of the atom, {bk} are bosonic annihilation operators for each
electromagnetic mode k (the quantum number k contains all the information specifying the mode),
and {pnm} are the matrix elements of the dipole moment of the atom between different eigenstates.
The coefficient gk can be assumed to be real without loss of generality and it depends on details of
the electromagnetic mode k, specifically the volume of the space that the modes occupy Gardiner
and Zoller (2015).

For the sake of simplicity, we will consider the case where the atom is a two-level system with
energy gap ∆, and so, calling the matrix element between the two levels p10 ≡ p,

V =
∑
k

(
gkbk + gkb

†
k

)(
p |1〉〈0|+ p∗ |0〉〈1|

)
. (39)

As a first step, we go to the interaction frame with respect to Hb∣∣Ψi
〉

= U †0 |Ψ〉 , U0 = e−iHbt. (40)
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The corresponding Schrödinger equation in the interaction picture is

∂t
∣∣Ψi
〉

= −i (VIF +Ha)
∣∣Ψi
〉
, (41)

where the coupling in the interaction frame takes the form

VIF = U †0V U0 =
∑
k

(
gkbke

−iωkt + gkb
†
ke
iωkt
)

(p |1〉〈0|+ p∗ |0〉〈1|) (42)

=
∑
k

(
gkbke

−iωkt + gkb
†
ke
iωkt
)(

ei∆t
p |1〉〈0|
ei∆t

+ e−i∆t
p∗ |0〉〈1|
e−i∆t

)
. (43)

Here, we introduced 1 = ei∆t/ei∆t to be able to perform a rotating wave approximation (RWA):

V RWA
IF =

∑
k

(
gkb
†
ke
−iδktp∗ |0〉〈1| ei∆t + gkbke

iδktp |1〉〈0| e−i∆t
)
, (44)

where δk ≡ ∆ − ωk is the detuning. We define the bath operator b(t) ≡ e−i∆t
∑

k gkbke
iδkt and

raising operator R† ≡ ip |1〉〈0|. The resulting Schrödinger equation takes the form

∂t
∣∣Ψi
〉

=
(
Rb†(t)−R†b(t)− iHa

) ∣∣Ψi
〉
. (45)

The time dependence of b(t) stems not only from the fact that we are in the interaction frame but
also the ei∆t we introduced to perform the RWA. This is equivalently an atomic system in the
Schrödinger picture, where the system is driven by these fields, which are regarded as known time-
dependent operators Gardiner and Zoller (2015).

These new operators do not follow bosonic commutation relations, instead

[b(t), b†(t′)] = e−i∆(t−t′)
∑
k

g2
ke
iδk(t−t′). (46)

For certain baths,
∑

k g
2
ke
iδk(t−t′) is sharply peaked at t = t′ Wiseman and Milburn (2009). There-

fore, we will approximate this function with a delta function:

[b(t), b†(t′)] = e−i∆(t−t′)δ(t− t′) = δ(t− t′). (47)

This corresponds to taking the Markovian limit Wiseman and Milburn (2009). In the remainder of
the derivation, we define the differential bath operator dBt ≡ b(t)dt. We note that

[dBt, dB
†
t ] = δ(0)dt︸ ︷︷ ︸

1

dt = dt. (48)

and so dBt ∼
√
dt. This can be understood by thinking of dt as the smallest unit into which time

can be devided. Then we have a discrete delta function with finite width and height, with area
δ(0)dt = 1.

We now consider the case where the electromagnetic field is in the vacuum state |0〉. Consider-
ing a differential step and expanding to order dt∣∣Ψi

dt

〉
= exp

(
RdB†dt −R

†dBdt − iHadt
) ∣∣ψi0〉⊗ |0〉

≈
(
1−

(
iHa +

R†R

2

)
dt+RdB†dt +

R2

2
dB†dtdB

†
dt

) ∣∣ψi0〉⊗ |0〉 . (49)
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Note that dBdt |0〉 = 0 and dBdtdB
†
dt |0〉 = dt |0〉 from Eq. (48). Neglecting the last term,

this is the first order expansion of the continuous matrix product state defined in Eq. (31), given we
identify Q = −iHa − R†R/2 and ψ̂†dt = dB†. A more careful analysis (beyond the scope of this
work) reveals that the last term dB†dB† need not be kept Gardiner and Zoller (2015). Thus we are
finally left with a continuous matrix product state Osborne et al. (2010); Verstraete and Cirac (2010)

∣∣Ψi
dt

〉
≈
[
1−

(
iHa +

R†R

2

)
dt+RdB†dt

] ∣∣ψi0〉⊗ |0〉 . (50)

As a last step let us consider the time evolution of
∣∣∣Ψi′

dt

〉
= eiHat

∣∣Ψi
dt

〉
so that the model takes a

more compact form. Then,

∣∣∣Ψi′
t+dt

〉
=

[
1− R†tRt

2
dt+RtdB

†
t+dt

] ∣∣∣ψi′t 〉⊗ |0〉 , (51)

where Rt = eiHatRe−iHat. In the remainder, we will not keep the i′ index but we will still be
referring to states whose time evolution is (51). Also we will use H to refer to Ha.

B.1. Balanced homodyne detection

Balanced homodyne measurement corresponds to mixing of the output field with a strong (classi-
cal) oscillator (mode a) on a balanced beam splitter, and measuring the photon number difference
between the two output fields c = (a+ b)/

√
2 and d = (a− b)/

√
2:

∆n = c†c− d†d = ab† + a†b ≈ αb† + α∗b, (52)

where the last approximation follows from the operator ∆n acting on the coherent state |α〉, i.e.,
a|α〉 ≈ α|α〉. In particular, the approximation becomes exact for the photon count divided by the
oscillator amplitude in the strong oscillator limit,

I ≡ lim
|α|→∞

c†c− d†d
|α|

= eiφb† + e−iφb. (53)

We now discuss the effect of the operator I = eiφb† + e−iφb being measured continuously on
the output of an open quantum system described by a cMPS. As shown in Eq. (51),

|Ψt+dt〉 =

[
1− 1

2
R†tRtdt+Rt ⊗ dB†t+dt

]
|ψt〉 ⊗ |0〉 (54)

=

[
1− 1

2
R†tRtdt+Rt ⊗ (dB†t+dt + e−i2φdBt+dt)

]
|ψt〉 ⊗ |0〉,

where we introduced e−i2φdBt+dt so that we can introduce the operator I in the equation of mo-
tion. If we make a measurement of I at time t + dt, projecting the state |Ψt+dt〉 onto |It+dt〉 ⊗
〈It+dt|Ψt+dt〉, we are left with the following state of the ancilla
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〈It+dt|Ψt+dt〉 ≡ |ψ̃t+dt〉 =

[
1− 1

2
R†tRtdt+Rt e

−iφIt+dtdt

]
|ψt〉 ×

√
P(It+dt), (55)

where P(It+dt) = | 〈0|It+dt〉 |2 =
√
dt/2π exp(−dtI2

t+dt/2) is the probability of measuring It+dt
on the vacuum state and

p(It+dt) = 〈ψ̃t+dt|ψ̃t+dt〉 = P(It+dt)

{
1 + 〈e−iφRt + eiφR†t 〉ψtIt+dtdt (56)

+

[
−1 +

(
It+dt

√
dt
)2
]
〈R†tRt〉ψt dt+O(It+dtdt

2, dt2)

}
is the probability density of obtaining It+dt. Recalling Eqs. 48 and 53, note that I ∼ 1/

√
dt. Then[

−1 +
(
It+dt

√
dt
)2
]

is of order one and

p(It+dt) =

√
dt

2π
exp

[
−dt

2
I2
t+dt + 〈e−iφRt + eiφR†t 〉ψtIt+dtdt+O(dt)

]
. (57)

We now add a term of order dt to complete the square so that we get a Gaussian probability density

p(It+dt) =

√
dt

2π
exp

[
−dt

2

(
It+dt − 〈e−iφRt + eiφR†t 〉ψt

)2
+O(dt)

]
≈
√
dt

2π
exp

[
−dt

2

(
It+dt − 〈e−iφRt + eiφR†t 〉ψt

)2
]

=

√√√√ 1

2π
(

1/
√
dt
)2 exp

−
(
It+dt − 〈e−iφRt + eiφR†t 〉ψt

)2

2
(

1/
√
dt
)2

 . (58)

Equivalently,

It+dt = 〈e−iφRt + eiφR†t 〉ψt + z, where z ∼ N(0, 1/dt), (59)

where N(0, 1/dt) is a Gaussian distribution with zero mean variance 1/dt. For the remainder of
the paper we fix φ = 0. The conditional joint probability density for a sequence of measurements
{It} is

p(IT , ..., I1|H,R) =

T−1∏
k=0

p(Ik+1|Ik, ..., I1;H,R), where

p(Ik+1|Ik, ..., I1;H,R) =

√√√√ 1

2π
(

1/
√
dt
)2 exp

−
(
Ik+1 − 〈Rt +R†t 〉ψk

)2

2
(

1/
√
dt
)2

 , (60)

where ψk is the state of the ancilla at time k.
Aside from a few last details and refinements that are described in the main text, this probability

distribution defines our quantum-inspired model.
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Appendix C. Experimental details

C.1. Damped sines

1. We consider the time derivative of the data as the homodyne current, i.e., It = dxt/dt. The
matrixR is complex and we set its diagonal elements to zero. Hence, we only keep oscillatory
parts of R(t), which we consider appropriate to model oscillatory data.

2. We learn the initial state |ψ0〉 (or ρ0). When using density matrices, we parameterize ρ0

by ρ0 = W †W
tr[W †W ]

to enforce normalization and real and positive eigenvalues. The matrix

W ∈ Cr×D defines the rank of the initial density matrix, with r = 1 corresponding to an
initial pure state |ψ0〉.

3. We use regularisers for the elements of H and R. These are set to σ2
ω = (16000π)2

400 and
σ2
R = 5, defined in Appendix F. They are included in the model as a refinement, but we do

not experiment with them. They will become important when training on real data, which is
more complex than the data considered here.

4. The hyperparameter dt remains fixed to dt = 1/16000. We experiment with different values
of D and σ but only show results with the values that give the best results.

5. The batch size is 8.

C.2. GP and FPP

1. We consider the data to be the homodyne current, i.e. It = xt. This is because as shown
in Fig. 3, on this dataset the increments of the signal are a lot more spiky than the signals
themselves, which makes learning difficult in the continuous formulation of the problem.

2. We learn the initial state |ψ0〉.

3. The hyperparameter dt is set to dt = 0.001 and σ = 1. We experiment with different values
of D and σ but only show results with the values that give the best results.

4. We do not use regularisers.

5. The batch size is 8.

Appendix D. Details about Gaussian Processes

A stochastic function x(t) is a Gaussian process (GP) if any finite collection of random variables
x(t1), ..., x(tn) have a multidimensional Gaussian distribution Särkkä and Solin (2019). A GP is
defined in terms of its mean m(t) and its covariance function (or kernel) C(t, t′), defined as

m(t) = E[x(t)], (61)

C(t, t′) = E
[
(x(t)−m(t))

(
x(t′)−m(t′)

)]
. (62)

A Gaussian process is stationary if the mean is time independent and the covariance function only
depends on time differences
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C(t, t′) = C(t− t′). (63)

We use the notation C(τ) (where τ ≡ t − t′) when considering stationary processes. The Wiener-
Khintchine theorem relates the stationary kernel to a corresponding spectral function

S(ω) =

∫ ∞
−∞

dτ C(τ)e−iωτ , (64)

C(τ) =
1

2π

∫ ∞
−∞

dω S(ω)eiωτ . (65)

A specific kind of stationary GPs that have been used to reflect the complex harmonic structure
of musical notes are Matérn spectral mixtures. They have been used for different sound related
machine learning tasks Alvarado and Stowell (2017). Consider the kernels

C1/2(τ) = σ2e−λτ , (66)

Ccos(τ) = cos(ω0τ). (67)

The corresponding spectral densities are

S1/2(ω) =
2σ2λ

λ2 + ω2
, (68)

Scos(ω) = π [δ(ω − ω0) + δ(ω + ω0)] . (69)

The spectral density of the product of the two kernels C(τ) = C1/2(τ)Ccos(τ) takes the form of a
pair of Lorentzians centered at ±ω0

S(ω;θ) = 2πσ2λ

[
1

λ2 + (ω − ω0)2
+

1

λ2 + (ω + ω0)2

]
, (70)

where θ = (σ, λ, ω0). The general form of Matérn spectral mixtures is a sum over different pairs of
Lorentzians

SSMS(ω; Θ) =

N∑
j=1

S(ω;θj), (71)

where Θ = {θj}. The corresponding covariance is

CMSM(τ ; Θ) =

N∑
j=1

σ2
j e
−λjτ cos(ωjτ). (72)
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Appendix E. Two frequencies experiment

We want to see if we can generate samples of two different frequencies, after training on a dataset
of damped sines with random delays and two different frequencies f = 600, 800Hz. The length of
the training sequences is 100 samples.

We start with the pure state model. We train the model on a dataset that only contains two
signals, shown in Fig. 9(a). After training, our model generates signals with different frequencies
that lie in between the two frequencies of the dataset, as shown in Fig. 9(b). The frequencies of the
samples seem to be closer to f = 800Hz than to f = 600Hz.

(a) (b)

Figure 9: (a) Training set made of two signals. (b) Four samples at T=100 and D = 50 and σ =
10−4, after having trained on the two signal dataset shown in (a).

We then move on to modeling a dataset of damped sines with random delays like we did in
Sec. 7.1.1, but this time the training set will contain damped sines of two different frequencies
as shown in Fig.10(a). We find that after training, samples are always quite close to the higher
frequency. Different generated samples have different shapes, but all look like damped sines. The
model learns the manifold of damped sines fairly well, but it fails to capture the two frequencies
degree of freedom of the dataset, in that there are no samples with frequencies close to f = 600Hz.
We show the result in Fig. 10(b).

We experiment considering the time evolution of a density matrix but the performance of the
model does not improve compared to the pure state case, i.e. it fails to capture the two frequencies
degree of freedom of the dataset.

Appendix F. Regularization

What should be the range of values of the learnt parameters? If we had any intuition or knowledge
about this question, we could use it to bias the learning. The way to bias or constrain learning is
to introduce regularizers. This is equivalent to introducing a prior and doing maximum a posteriori
instead of maximum likelihood.

Regularization of H
Consider the following discretized Scrödinger equation in the interaction picture

98
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(a) (b)

Figure 10: (a) Four signals of the dataset with different delays and frequencies f = 600, 800 Hz.
The length of the data samples is 100 and the sampling frequency 16 kHz. (b) Four
samples at T = 120, D = 100 and σ = 10−4.

|ψ̃t+∆t〉 =

[
1− σ2

2
R†(t)R(t)∆t+R(t)∆xt

]
|ψ̃t〉 (73)

where R(t) ≡ eiHtRe−iHt. If H is diagonal with eigenvalues ωn, the matrix elements of R are
Rab(t) = Rabe

i(ωa−ωb)t. Suppose we want to learn a single sequence, e.g., xt = sin(ωt) [i.e.,
∆xt/∆t ≈ ω cos(ωt)], such that the loss function is

loss =
∑
t

(
ω cos(ωt)−A〈R(t) +R†(t)〉t

)2
. (74)

The loss function is minimised whenA〈R(t)+R†(t)〉t = ω cos(ωt), i.e. when the expectation value
〈R(t) + R†(t)〉t oscillates with frequency ω. Since matrix elements of both R(t) and R†(t)R(t)
oscillate with frequencies that are differences of eigenvalues of H , it is intuitive that the learned
diagonal elements of H should be related to the frequency ω of the training data.

If we assume that H is related to the frequencies, it makes sense to limit it to the bandwidth of
audio. Nyquist’s theorem states that in order to correctly capture a discrete signal, the sampling rate
must be at least double the highest frequency contained in the signal. Conversely, the highest fre-
quency that can be captured at a given sampling rate is half the sampling frequency. This frequency
is called the Nyquist frequency. If differences of eigenvalues of H give frequencies, the spectrum of
H should be limited to ±s/4, where s is the sampling rate. Thus if we set the standard deviation of
the frequencies to be σf = s/4, and bearing in mind that ω = 2πf , the regularization term in the
loss should be

LH =
1

2σ2
ω

∑
n

ω2
n =

1

8π2σ2
f

∑
n

ω2
n =

2

π2s2

∑
n

ω2
n, (75)

which, up to a constant, corresponds to the logarithm of the Gaussian prior
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p(ω1, ..., ωD) =
D∏
n=1

√
1

2πσ2
ω

exp

(
− ω2

n

2σ2
ω

)
. (76)

Regularization of R
The scale of the signal is set by A〈R +R†〉t. If the typical scale of the matrix elements of R is

r, its value should be determined by ∆x = Ar∆t. If we set A = 1, we could introduce a Gaussian
prior so that σR = ∆x/∆t. The hyperparameter ∆x can be inferred from the data. Then,

LR =
1

2σ2
R

∑
ij

|rij |2. (77)

On the other hand, in general A is a learning variable and so it is not obvious what the regularizer
of R should be.

Appendix G. Relation between covariance functions and SDEs

Most of the theory explained in this appendix can be found in Chapters 6 and 12 of Särkkä and
Solin (2019). A stochastic differential equation (SDE) is a differential equation that contains terms
which are random functions. This implies that their solutions are also random functions. Consider
a Gaussian noise-driven ordinary differential equation of the form

dx = f(x, t)dt+ L(x, t)dβ(t), (78)

where β(t) is Brownian motion with diffusion matrix Q and f(x, t) and L(x, t) are arbitrary vector-
and matrix-valued functions, respectively. The solutions x(t) of SDEs are random processes and
therefore they have certain probability distribution p(x(t)) [also denoted p(x, t)]. This probability
density solves the Fokker–Planck–Kolmogorov (FPK) equation

∂p(x, t)

∂t
=−

∑
i

∂

∂xi
[fi(x, t)p(x, t)]

+
1

2

∑
i,j

∂2

∂xi∂xj

{[
L(x, t)QLT (x, t)

]
ij
p(x, t)

}
, (79)

given the initial condition p(x, t0). One can obtain the equations of motion for the mean, covariance
and other statistical quantities from this equation. Among others, denoting the mean m(t) = E[x(t)]

and the marginal covariance C(t, t) ≡P(t) = E
[
(x(t)−m(t)) (x(t)−m(t))T

]
,

dm
dt

= E [f(x, t)] , (80)

dP
dt

= E
[
f(x, t)(x−m)T

]
+ E

[
(x−m)fT (x, t)

]
+ E

[
L(x, t)QLT (x, t)

]
. (81)

Another useful quantity that we can obtain from the FPK equation (79) is the transition density
p(x(t)|x(s)) of the SDE in (78), which is the probability of the random process taking the value
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x(t) at time t, given the value at time s was x(s). This quantity is the solution of the FPK equation
(79), with the initial condition p(x(t)|x(s)) = δ(x(t)− x(s)) at t = s.

An SDE is linear if f = Fx. The covariance function C(t, t′) of linear stochastic differential
equations can be obtained from the marginal covariance

C(t, t′) =

{
P(t) exp [(t′ − t)F]T , if t < t′,

exp [(t− t′)F] P(t′), if t ≥ t′.
(82)

G.1. Equivalent discretisations of linear time-invariant SDEs

An SDE is time-invariant if f and L do not depend on time. Consider the linear time-invariant
stochastic differential equation

dx = Fxdt+ Ldβ, (83)

with initial conditions x(t0) ∼ N(m0,P0), where N(m0,P0) denotes a Gaussian distribution with
mean m0 and marginal covariance P0. From the FPK equation, one obtains the transition density

p (x(t)|x(s)) = N (m(t|s),P(t|s)) , (84)

where

m(t|s) = exp (F(t− s)) x(s), (85)

P(t|s) =

∫ t

s
exp (F(t− τ)) LQLT exp (F(t− τ))T dτ. (86)

Let us consider discrete times {tk}, separated by ∆tk. Eq. (84) then implies

x(tk+1)−m(tk+1|tk) = qk, qk ∼ N(0,P(tk+1|tk)). (87)

Therefore, we derive a discrete stochastic equation

x(tk+1) = exp (F(∆tk)) x(tk) + qk, qk ∼ N(0,P(∆tk|0)). (88)

This discretization is exact in that the probability distribution of the continuous and discrete models
defined in Eqs. (78) and (88), coincide at times {tk}.

G.2. From steady state covariance functions to discrete stochastic processes

As shown at the beginning of Appendix G, it is possible to derive the covariance function of an
SDE. Conversely, it is also possible to find the SDE that corresponds to a given covariance function.
Consider the following steady state covariance

C(τ) = Ccos(τ)Cexp(τ), where (89)

Ccos(τ) = cos(ωτ),

Cexp(τ) = σ2e−λ|τ |.
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As shown in Wilkinson et al. (2018); Solin and Särkkä (2014), the corresponding SDE is

dg(t) = Fg(t)dt+ Ldβ,

x(t) = Hg(t), (90)

where

F =

(
−λ −ω
ω −λ

)
, (91)

L = 12, (92)

H = (1, 0). (93)

This is called a continuous state space model, the vector H is the measurement model and g(t)
the state. The equivalent discretization of Eq. (90) is

gk+1 = Agk + qk, qk ∼ N(0,Σ), (94)

x(tk) = Hgk, (95)

where

A = exp(−λ∆t)

(
cos(ω∆t) − sin(ω∆t)
sin(ω∆t) cos(ω∆t)

)
, (96)

Σ = σ2(1− e−2λ∆t)12. (97)

When the kernel is a sum of N stationary kernels C(τ) =
∑N

i=1 Ci(τ), we get the corresponding
SDE by replacing F,L and H in Eq. (90) by

F = blkdiag(F1, ...,FN ), (98)

L = blkdiag(L1, ...,LN ), (99)

Q = blkdiag(Q1, ...,QN ), (100)

H = (H1, ...,HN ). (101)

Here Q is the diffusion matrix of Brownian motion β(t). The corresponding equivalent discretiza-
tion is obtained by performing the equivalent substitution of A,Σ and H in Eq. (94). The dimension
of the state vector g in Eqs. (90) and (94) is then increased by a factor of N .

Obtaining samples from these discrete stochastic processes is equivalent to sampling the corre-
sponding multidimensional Gaussian distributions.
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Appendix H. Filtered Poisson processes

H.1. Poisson process

A standard Poisson process Nt is a counting process that has jumps of size +1 at homogeneously
distributed random times and its path is constant in between two jumps. This is defined as

Nt =
∞∑
k=1

1[tk,∞), for t ≥ 0, (102)

where

1[tk,∞) =

{
1, if t ≥ tk,
0, if 0 ≤ t < tk.

(103)

Furthermore, a Poisson process satisfies the following conditions:

1. Independence of increments: for all 0 ≤ t0 < t1 < · · · < tn, the increments

Nt1 −Nt0 , ..., Ntn −Ntn−1, (104)

are independent random variables.

2. Stationarity of increments: Nt+h−Ns+h andNt−Ns have the same distribution for all h > 0
and 0 ≤ s ≤ t.

3. Conditions 1 and 2 imply that the probability distribution of the increments is a Poisson
distribution, i.e. for all 0 ≤ s ≤ t,

p(Nt −Ns = k) = e−λ(t−s) (λ(t− s))k

k!
. (105)

The parameter λ is called the intensity of the Poisson process.

From the last condition we can infer the sort time asymptotics

p(N∆t = 0) = e−∆tλ = 1−∆tλ+O(∆t2) ≈ 1−∆tλ,

p(N∆t = 1) = ∆tλe−∆tλ = ∆tλ+O(∆t2) ≈ ∆tλ, ∆t→ 0. (106)

H.2. One-time characteristic function of a filtered Poisson process

A filtered Poisson process (FPP)X(t) consists of the superposition of uncorrelated pulsesϕ (t− tk),
where the arrival times {tk} follow a Poisson distribution

X(t) =
∑
k

Akϕ (t− tk) . (107)

The overall amplitude Ak is random. Let us consider the case where at each time, Ak can indepen-
dently take the values ±A, with equal probabilities. The characteristic function of X(t) is
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ΦX(u, t) = E
(
eiuX(t)

)
, (108)

where the average is taken over all possible Poisson processes. Note that this involves averaging
over the random set of jump times {tk} as well as the value of the sequence of amplitudes {Ak} at
times {tk}. Using Campbell’s theorem Wikipedia contributors (2019),

E
(
eiuX(t)

)
= exp

{
−λ
∫ t

0
dα [1− ΦA(iuϕ(t− α))]

}
, where (109)

ΦA(iuϕ(t− α)) = EA
(
eiuAϕ(t−α)

)
. (110)

Naive proof :
Let us rewrite the process as a sum over all time steps {i∆t}, instead of the jump times {tk}

only

X(t) =
∑
k∈{tk}

Akϕ (t− tk) =

N∑
i=1

σiAiϕ (t− i∆t) , (111)

where t = N∆t. The parameter σi is 1 if there is a jump, and 0 otherwise. The expectation value
in (108) is an average over the random variables A and σ at each time step, i.e.,

ΦX(u, t) = E
(
eiuX(t)

)
= Eσ

[
EA
(
eiuX(t)

)]
. (112)

Let us define

ΦAi [uϕ(t− i∆t)] ≡ EAi

(
eiuσiAiϕ(t−i∆t)

)
. (113)

Then expectation value at time ti = i∆t is

E
(
eiuσiAiϕ(t−i∆t)

)
= Eσi {ΦAi [uϕ(t− i∆t)]} . (114)

The probability for there being a jump (i.e., σ = 1) is λ∆t and the probability of no jump (i.e.,
σ = 0) is 1− λ∆t. Then

E
(
eiuσiAiϕ(t−i∆t)

)
= 1+λ∆t (ΦAi [uϕ(t− i∆t)]− 1) ≈ exp (−λ∆t {1− ΦAi [uϕ(t− i∆t)]}) .

(115)
The product over all time steps yields (109). If the amplitude outcomes are ±A with equal proba-
bilities, then

E
(
eiuX(t)

)
= exp

{
−λ
∫ t

0
dα [1− cos (uAϕ(t− α))]

}
. (116)
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H.3. Two-time characteristic function

The two-time characteristic function is

Φx(u1, t1;u2, t2) = E
(
ei[u1X(t1)+u2X(t2)]

)
. (117)

Let us consider the case where t2 > t1. Then X(t1) depends on all the jumps before t1 and X(t2)
depends on all jumps before t2, which includes all those that contributed toX(t1): this is the source
of correlation between the two variables. If we split up X(t2) as

X(t2) =
∑

{k:t1<tk<t2}

Akϕ(t2 − tk) +
∑

{k:t1>tk}

Akϕ(t2 − tk), (118)

the exponent in Eq. (117) is expressed as the sum of independent quantities

u1X(t1) + u2X(t2) =
∑

{k:tk<t1}

Ak [u1ϕ(t1 − tk) + u2ϕ(t2 − tk)] +
∑

{k:t1<tk<t2}

u2Akϕ(t2 − tk).

(119)
Therefore, the characteristic function becomes

Φx(u1, t1;u2, t2) = E
(
e
i
∑

{k:t1>tk} Ak[u1ϕ(t1−tk)+u2ϕ(t2−tk)]
)
E
(
e
i
∑

{k:t1<tk<t2}
u2Akϕ(t2−tk)

)
.

(120)
Following the same procedure we followed to derive the one-time characteristic function, we arrive
to

ΦX(u1, t1;u2, t2) = exp

{
− λ

∫ t2

t1

[1− ΦA(iu2ϕ(t2 − α))] dα

− λ
∫ t1

0
[1− ΦA(iu1ϕ(t1 − α) + iu2ϕ(t2 − α))] dα

}
. (121)

If the amplitude outcomes are ±A with equal probabilities,

ΦX(u1, t1;u2, t2) = exp

{
− λ

∫ t2

t1

[1− cos (u2ϕ(t2 − α))] dα

− λ
∫ t1

0
[1− cos (u1ϕ(t1 − α) + u2ϕ(t2 − α))] dα

}
. (122)

The correlations arise from the second term. For stationary correlations the lower limit should be
taken to −∞. It’s clear that the coefficients of u1u

3
2 and u2u

3
1 will be different, which indicates

the absence of time reversal invariance. By Taylor expanding the characteristic function, we have
access to all two-time correlators. Specifically,
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E
(
X(t1)X3(t2)

)
= λI−∞,t11,3 + 3λ2I−∞,t11,1

(
I−∞,t10,2 + It1,t20,2

)
, (123)

E
(
X3(t1)X(t2)

)
= λI−∞,t13,1 + 3λ2I−∞,t11,1 I−∞,t12,0 , where (124)

It,t
′

n,m =

∫ t′

t
dα ϕn(t1 − α)ϕm(t2 − α). (125)

This result is general for any characteristic function of the form shown in Eq. (122), taking the lower
limit to −∞.
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