Proceedings of Machine Learning Research vol 107:451-475, 2020

Deep learning Markov and Koopman models with physical
constraints

Andreas Mardt
Freie Universitit Berlin, Department of Mathematics and Computer Science, Arnimallee 6, 14195
Berlin, Germany

Luca Pasquali
Freie Universitdt Berlin, Department of Mathematics and Computer Science, Arnimallee 6, 14195
Berlin, Germany

Frank Noé FRANK.NOEQFU-BERLIN.DE
Freie Universitit Berlin, Department of Mathematics and Computer Science, Arnimallee 6, 14195
Berlin, Germany

Freie Universitat Berlin, Department of Physics, Arnimallee 6, 14195 Berlin, Germany

Rice University, Department of Chemistry, Houston TX, 77005, United States

Hao Wu HWUQTONGJI.EDU.CN
Tongji University, School of Mathematical Sciences, Shanghai, 200092, P.R. China

Abstract

The long-timescale behavior of complex dynamical systems can be described by linear
Markov or Koopman models in a suitable latent space. Recent variational approaches
allow the latent space representation and the linear dynamical model to be optimized via
unsupervised machine learning methods. Incorporation of physical constraints such as time-
reversibility or stochasticity into the dynamical model has been established for a linear, but
not for arbitrarily nonlinear (deep learning) representations of the latent space. Here we
develop theory and methods for deep learning Markov and Koopman models that can
bear such physical constraints. We prove that the model is an universal approximator for
reversible Markov processes and that it can be optimized with either maximum likelihood
or the variational approach of Markov processes (VAMP). We demonstrate that the model
performs equally well for equilibrium and systematically better for biased data compared
to existing approaches, thus providing a tool to study the long-timescale processes of
dynamical systems.

1. Introduction

Markovian, or linear dynamical models are very successful in describing the effective or long-
term dynamics of complex dynamical systems, such as molecular dynamics (MD) Schiitte
et al. (1999); Noé et al. (2007); Swope et al. (2004); Chodera et al. (2007); Prinz et al.
(2011b); Chodera and Noé (2014), wireless communications Konrad et al. (2001); Ma et al.
(2001), and fluid dynamics Schmid (2010); Mezi¢ (2013); Tu et al. (2014); Froyland et al.
(2016). The cornerstone of modeling complex nonlinear dynamics with a linear and often
low-dimensional model, such as a Markovian transition matrix, is that the dynamics can be
linearized in the space of eigenfunctions or singular functions of the corresponding full-space
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dynamical operator Schiitte et al. (1999); Mezi¢ (2005); Wu and Noé¢ (2019). In stochastic
systems, such a linear model is often called Markov model, as it is convenient to describe
the long-time dynamics as a Markov chain or Markov jump process between discrete states,
whereas it is often called Koopman model in complex dynamical systems analysis or fluid
dynamics. Markov models and Koopman models greatly simplify analysis of the dynamical
systems when compared to models with explicit memory terms.

A wide variety of such linear dynamical models has been developed across different fields,
including Markov State Models (MSMs) Schiitte et al. (1999); Prinz et al. (2011b); Bowman
et al. (2014); Husic and Pande (2018); Wang et al. (2018); Narayan et al. (2020), Markov
transition models Wu and Noé (2015), Ulam’s Galerkin method Dellnitz et al. (2001);
Bollt and Santitissadeekorn (2013); Froyland et al. (2014), blind-source separation Molgedey
and Schuster (1994); Ziehe and Miiller (1998), the variational approach for conformational
dynamics (VAC) Noé and Niske (2013); Niiske et al. (2014), time-lagged independent
component analysis (TICA) Perez-Hernandez et al. (2013); Schwantes and Pande (2013),
dynamic mode decomposition (DMD) Rowley et al. (2009); Schmid (2010); Tu et al. (2014),
extended dynamic mode decomposition (EDMD) Williams et al. (2015), variational Koopman
models Wu et al. (2017a), variational diffusion maps Boninsegna et al. (2015), kinetic maps
Noé and Clementi (2015); Noé et al. (2016), the variational approach of Markov processes
(VAMP) Wu et al. (2017a), sparse identification of nonlinear dynamics Brunton et al. (2016)
and corresponding kernel embeddings Harmeling et al. (2003); Schwantes and Pande (2015);
Song et al. (2013) and tensor formulations Niiske et al. (2016); Schiitte and Klus (2016). All
these models approximate the Markov dynamics through a linear model:

E[(g(xt+r)] = KTE[f(x:)] (1)

where f, g transform the configuration x into a latent space representation in which the
dynamics are linear, usually the space of slow transitions or rare events Noé and Clementi
(2017). K is an MSM transition matrix, or a Koopman model, and can be interpreted as a
finite-rank approximation of the full-dimensional dynamical Markov operator Schiitte et al.
(1999); Koopman (1931); Mezi¢ (2005); Wu and Noé¢ (2019).

MSMs have been particularly successful as methods to extract the long-timescale kinetics
from high-throughput MD simulation data, e.g. of protein dynamics Bowman et al. (2009);
Prinz et al. (2011b); Buch et al. (2011); Shukla et al. (2014); Silva et al. (2014); Reubold
et al. (2015); Plattner et al. (2017). In recent years, the MD community has seen a rapid
increase in the available amount of simulated data of complex molecular systems due to
advances in both computing power and simulation techniques Lindorff-Larsen et al. (2011);
Plattner et al. (2017); Kohlhoff et al. (2014); Doerr et al. (2016). Unlike experiments, MD
simulations can resolve structure and dynamics simultaneously. The extraction of kinetic,
i.e. long-timescale information from simulation data, however, is not trivial, since kinetic
information cannot be inferred from structural similarity Keller et al. (2010); Krivov and
Karplus (2004); Niiske et al. (2014), as similar structures may be separated by high energy
barriers.

Whereas MSM construction has previously been a relatively complex pipeline of feature
selection, dimension reduction, clustering, estimating the transition matrix K, etc, these
choices have recently been guided by variational approaches Noé and Niiske (2013); Niiske
et al. (2014); Schwantes and Pande (2013); Perez-Hernandez et al. (2013); Wu and Noé
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(2019); Mardt et al. (2018); Chen et al. (2019). These variational methods aim to approximate
the leading eigenfunctions or singular functions of the Markov process, which parametrize
the long-time kinetics, and in which approximately linear Markovian models (1) can be
obtained. Mardt et al. (2018) recently proposed VAMPnet that simultaneously learns neural
networks for the latent space representations f and g as well as the transition matrix K in
a single end-to-end learning framework. VAMPnet uses the variational approach of Markov
processes (VAMP) Wu and Noé¢ (2019) in order to optimally find f and g. The VAMPnet
framework has been further developed, for example for learning directly the eigenfunctions
of the Markov operator rather than the MSM transition matrix Chen et al. (2019), and for
transferring parameters across chemical space Xie et al. (2019).

By means of their ability to represent very nonlinear latent space representations, VAMPnets
have been demonstrated to learn high-quality MSMs with little input from human experts
Mardt et al. (2018). However, there is an important aspect that is well established with
“shallow” manually constructed MSMs and is yet unsolved with deep learning methods for
MSMs such as VAMPnets: the incorporation of physical constraints into the transition
matrix K, especially reversibility (detailed balance) and stochasticity.

A dynamical system is statistically reversible when the absolute (unconditional) probability
of finding a transition from point x at time ¢ to point y at time ¢ 4 7 is equal to the reverse.
Physically, this occurs when the system, e.g. molecule is simulated in equilibrium, i.e.
without applying external forces. Consequences of statistical reversibility are that (i) there
is no probability flux in cycles, consistent with the second law of thermodynamics stating that
no work can be extracted from a system purely driven by thermal energy, (ii) the transition
matrix K has real eigenvalues and (iii) K can be symmetrized with an equilibrium matrix.
Even if the underlying MD system has been simulated in equilibrium, estimating a VAMPnet
from finite data will not guarantee a reversible model K. For standard MSMs, maximum
likelihood estimators have been developed to enforce reversibility Noé (2008); Bowman et al.
(2009); Trendelkamp-Schroer and Noé¢ (2013); Trendelkamp-Schroer et al. (2015). Chen
et al. (2019) approached the problem by symmetrizing the covariance matrices involved
in the estimation of K, which works well for long simulation trajectories, but introduces
significant bias for many short trajectories emerging from a non-equilibrium distribution.
As indicated in Mardt et al. (2018), reversible VAMPnets could be developed by using
the Koopman reweighting method proposed in Wu et al. (2017a), however that approach
reduces the bias at a cost of a quite large estimator variance. Here we develop a new deep
learning framework for Markov processes that can learn reversible transition models from
non-equilibrium data in a robust and end-to-end manner.

Furthermore, a transition matrix K estimated via a VAMPnet is not automatically a
stochastic matrix. Even when the VAMPnet encoders map to a state assignment, e.g. by
using a SoftMax output Mardt et al. (2018), the transition matrix will have probability
mass conservation, i.e. row sums equal 1, but may still have negative elements. With
such a Markov model we can compute valid observables, such as propagated probability
vectors, a valid equilibrium distribution and meaningful correlation functions. But the
individual matrix elements of K can no longer be interpreted as transition probabilities or
rates and therefore some analyses, such as transition path theory W. E and E. Vanden-
Eijnden (2006); Metzner et al. (2009); Noé et al. (2009), are no longer applicable. The
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deep learning framework for Markov processes introduced here can optionally enforce the K
matrix to be a stochastic matrix.
In summary, our contributions are as follows:

1.

We develop a flexible deep learning framework for Markov processes, in which deep
networks can be used to learn the latent space representation of the system and a
linear model K is learned to describe the time propagation in latent space.

. We develop a way to enforce K to be reversible or non-reversible, optionally. We proove

that when enforcing reversibility we obtain a universal approximator for reversible
Markov processes.

. We develop a way to optionally enforce K to be stochastic, i.e. have nonnegative

elements. We can combine both physical constraints in either way, obtaining four
choosable combinations of reversible /non-reversible and stochastic/non-stochastic VAMPnets
or deep MSMs.

. We provide two optimization targets for our method, using maximum likelihood or

VAMP as a loss function, and demonstrate that they provide asymptotically unbiased
results.

. We illustrate our learning method on benchmark data and demonstrate that it yields

accurate estimates in both the limit of single long simulation trajectories and many
short trajectories, whereas other methods fail in the latter case.

2. Theory

2.1. Markov processes, spectral decomposition and Koopman theory

The dynamics of a Markovian dynamical system can be modeled by the transition density,
i.e. the probability density to transition to a state space point y at time ¢ + 7, given that
the system was at state x at time ¢:

pT(XaY) = P(Xt+7 =Yy ’ Xt = X)-

Based on the transition density, we can characterize the time evolution of the ensemble of
system states as

mﬂmzwwmwé/mmwmmw

where p; is the probability density of the system being in any state at time ¢ and the lag
time 7 is the time resolution of the model. The propagation of general observable functions
f can be modeled as

EW&M&:ﬂ=MﬁMﬂé/%WWKWW.

The integral operators P, and K, are called propagator and Koopman operator respectively,
and are both able to fully describe the Markovian dynamics. From hereon, we only consider
the Koopman operator based modeling formalism, which is commonly used in the field
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of dynamical systems (see e.g., Mezi¢ (2005)), but all conclusions in this paper can be
equivalently established by using the propagator description.

The Koopman operator is linear but infinite-dimensional, and we can generally approximate
the essential part of the dynamics at long timescales by a finite-dimensional linear model
in the form of Eq. (1) with f and g being two sets of latent variables. Denoting by pg
the empirical distribution of x; and p; the empirical distribution of x;y, in all transition
pairs (X¢,X¢4r), it can be proven that an optimal finite-rank approximation of the transition
density can be written in the form

pr(x,y) = £(x)"Sg(y)n(y), (2)

where S = K (E[g(XHT)g(XHT)T])_l Wu and Noé (2019) (see Appendix 9.1 for derivation).
Based on conformation dynamics theory Schiitte et al. (1999), Koopman theory Mezi¢
(2005); Koopman (1931), and the variational approach of Markov processes (VAMP) Wu and
Noé (2019), the finite-dimensional model can accurately capture the essential or long-time
part of the dynamics by selecting f, g to be dominant singular functions or eigenfunctions
of the Koopman operator. Specifically, if we consider the modeling error of the Koopman
operator in the sense of Hilbert-Schmidt norm, the optimal model can be given by the
truncated singular value decomposition of the transition density

k
pr(xy) & Y othi(x)0i(y)pi(y), (3)

i=1
where (01,...,0k) are the largest singular values of the Koopman operator K., (11, ..., 1)
and (¢1,...,¢x) are the corresponding dominant left and right singular functions, and the

equality holds exactly if k& — oc.

If we further assume that the dynamics are statistically reversible, which implies that
the system does not contain net cycles and there is no work produced in equilibrium, then
the detailed balance condition

w(x)pr(x,y) = p(y)p- (¥, %), (4)

is satisfied, where p(x) is the equilibrium distribution of system states. This means that the
unconditional probability to observe the transition x — y is equal to that of transition y —
x. In this case, the Koopman operator is a self-adjoint operator, and the truncated singular
value decomposition of the dynamics is equivalent to the truncated eigendecomposition

K
pr(xy) = > Xipi(x)ei(y)u(y)
=1

with eigenfunctions ; = ; = ¢; and eigenvalues \; = o; when the equilibrium is achieved
by data.

The eigenvalues and eigenfunctions can be systematically approximated from data by
invoking the variational approach of conformation dynamics (VAC) Niiske et al. (2014);
Mardt et al. (2018); Wu and Noé (2019), which provides a loss function with which hyper-
parameter selection can be made in the traditional MSM construction pipeline McGibbon
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and Pande (2015), and which can be used in order to train a deep neural network to represent
the eigenfunctions Chen et al. (2019). Likewise, the singular values and singular functions of
nonreversible or even non-stationary dynamical models can be variationally approximated
with VAMP Wu and Noé (2019), which in turn can be used for hyper-parameter selection in
MSM pipelines Scherer et al. (2019) and deep learning molecular kinetics with VAMPnets
Mardt et al. (2018).

In this paper, we will also use neural networks as universal function approximators to
find latent variables with a suitable optimization principle. The main novelty is that our
framework allows to obtain a finite-dimensional model that incorporates desired physical
constraints such as stochasticity and reversibility in an asymptotically unbiased way even in
the case of systematically biased training data.

3. Deep Markov Model with physical constraints
3.1. Transition Model

The aim of this section is to construct a general model which approximates the Markovian
process defined by the transition density; this density can be learned with neural networks
and physical constraints for reversibility and stochasticity of the transition matrix can be
built into it. We propose the following model of the transition density:

pr(x,y) = x(x)"Sx(y)x(y) up1(y), (5)

which is a special representation of the general finite-dimensional model (2-3) with the
choices f(x) = x(x) and g(y) = x(y)x(y)"u. However, we will demonstrate that this
choice leads to an universal approximator for the Markov processes of interest. Here, x is
a neural network that maps a sample x from configuration space onto a fuzzy clustering,
which can be thought of indicating to what degree x belongs to each of the few metastable
states. The trainable vector u is necessary to reweight the empirical distribution towards the
equilibrium distribution of the system. Eq. (5) can be understood as mapping the starting
sample x to the state representation x(x), making a time propagation with S, and checking
how close it ends up to the state representation x(y), which is weighted with respect to the
system’s equilibrium probability (Fig. 1).

Here we work with stationary dynamical systems and thus assume that there exists a
unique equilibrium distribution p(x) = u” x(x)p(x). Hence our model needs to always fulfill
the following constraints to guarantee a normalized equilibrium and transition density (see
Appendix 9.2 for proof):

1. Normalization of state assignment: x(x)71 = 1.

2. Normalized reweighting vector: x”u = 1, where x = E [x(x¢4,)] is the empirical
state probability.

3. Normalization of transition density: SC. u = 1 where C. = E [x(x¢++)Xx(Xt4++) ' |
is the empirical covariance matrix of x(x+r). As a result the Koopman matrix
preserves probability mass by means of K1 = SC/_u = 1.
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Xt AB x(xe)
Xt .n X(Xeyr) —

Figure 1: Schematic of the proposed deep learning architecture for Markov
processes with physical constraints. For each time step ¢ of the training
data, the coordinates x; and x;i, are passed to two instances of the same
network x. The transformed outputs are then concatenated, and used together
with the trainable variables S, u to obtain an estimate of the transition density
p(y = X¢+r | x = x¢). This probability estimate allows us to train x, S, u using
a Maximum Likelihood loss. Alternatively, the whole architecture can be trained
using as an optimization target the VAMP-E score. The scheme is similar to a
classical VAMPnet Mardt et al. (2018), but has the ability to build in physical
constraints such as reversibility and stochasticity into the parameters S, u.

Maximum
Likelihood

- Loss Function
- Trainable Variable

By substituting the equilibrium distribution p(x) into (5), the finite-dimensional model
proposed in this section can be rewritten as

pr(x,y) = x(x)"Sx(y)u(y). (6)

So the equilibrium Koopman matrix K acts as:

E[x(xt1r)] = K E[x(xt)],

and can be estimated from:

with
== / X () u(y)x(y) dy

_ / X(3)p1(y)x(y) Tux(y)Tdy (8)

being the equilibrium covariance matrix of x. See Appendix 9.5 for an overview of the
relationship with traditional MSMs.
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3.2. Reversible deep Markov Model

In addition to the necessary constraints introduced above, we have the choice of enforcing
further physical constraints. In order to enforce detailed balance (4), or statistical reversibility,
into the model, we enforce:

S=g7 (9)

Proof of reversibility Inserting (9) into (5) leads to the detailed balance equation 4.
Therefore, the Markov process defined by p,(x,y) is a reversible Markov process with
stationary distribution p(x).

3.3. Reversible deep MSM

The mandatory constraints above already enforce ) j kij = 1 for all ¢ with k;; denoting
the (7, 7)-th element of K, and hence probability mass conservation. In order to force the
Koopman matrix K to be a stochastic Markov chain matrix, we additionally need to achieve
non-negative elements:

This can be enforced by the additional constraints:
All elements of u, S, and x are non-negative. (11)

The non-negativity (10) directly follows from (7-8), since all factors are positive.

Additionally, constraint (11) ensures that the full transition density is a real probability
density, i.e. pr(x,y) > 0 Vx,y. However, this condition may be violated when using a finite
rank approximation of a Koopman model Wu and Noé (2019).

3.4. Choosing physical constraints

By toggling the two optional physical constraints, reversibility and stochasticity, we can
change the class of Markov Model we want to build:

1. Non-reversible VAMPnet (VAMPnet): This is the most general case, where both
optional constraints are not enforced. This grants the model the highest flexibility to
approximate the Koopman operator. Hence the model will obtain the best approximation
of the eigenfunctions of the Koopman operator. It can be understood as an alternative
approach to VAMPnets Mardt et al. (2018), where the proposed model learns a
reweighting vector and the Koopman matrix via additional parameters.

2. Non-reversible deep MSM (DMSM): If we obey the non-negativity constraints
(Eq. 11), we obtain a model with a stochastic transition matrix K and a nonnegative
transition density p,(x,y). A DMSM can be viewed as a special case of the general
deep MSM Wu et al. (2018) with q(y) = Sx(y)p(y)x(y)Tu, where ¢;(y) is the
probability of jumping to configuration y when starting from state i.

3. Reversible VAMPnet (RevVAMPnet): Activating the reversibility constraint (Eq.
9) results in a reversible transition density with respect to the equilibrium distribution

Lb.
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4. Reversible deep MSM (RevDMSM): The last model combines both constraints (Eq.
9 & 11) to ensure a reversible model and a stochastic transition matrix. Such a model
is desirable when seeking a reversible dynamical model that should be analyzed with
algorithms operating on individual transition probabilities, such as transition path
theory or committor analyses. To the best knowledge of the authors no algorithm
exists to train a neural network framework which results in such a model.

Since for the first two models results are already reported, we will focus in our analysis on
the latter two models.

Symmetrized VAMPnet (SymVAMPnet)

We compare our reversible models to a previously proposed model Chen et al. (2019);
Wu et al. (2017a), which estimates a VAMPnet but additionally enforces reversibility by
symmetrizing the correlation matrices entering the VAMP score as follows:

Coo = 3 (EIXGeox(x0)T) + Elx (x4 )x(x)7)),
Co1 = %(E[X(xt)X(xt-i-T)T] + Elx (o) x (x0) "),
C11 = Copo.

In the limit of a long equilibrium simulation, this model is asymptotically unbiased, but
it can be subject to a strong bias in the case of short simulations starting from a non-
equilibrium distribution, which is the main application scenario of Markov modeling (see
also Wu et al. (2017a)).

4. Machine Learning Architecture and Algorithm

4.1. Loss function

For training the model two learning objectives can be used, the VAMP-E score Wu and
Noé (2019) and maximum likelihood (ML), respectively. In the case of ML we can directly
estimate the likelihood to observe all the data pairs (x¢, X;+-) in the trajectory according to
the transition density (5):

T—1 T—1
log(L) = log( [T pr(xt, x11:)) = > log(r (x4, X1+)).
t=1 t=1

In order to use ML training, it is necessary that p-(x,y) > 0, which is exclusively the case
for the non-reversible and reversible MSM, i.e. when enforcing constraint (11).
If we consider the VAMP-E score, we can rewrite:

Pr(xy) = x(x)"Sv(y)o(y),

with
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which is a weighted state representation compensating for non-equilibrium data. The
corresponding VAMP-E score to be maximized is then

R = tr[STC,,SC,, —287C,,],

where
Cw = E[X(Xt)X(Xt)T],
Cyy = E[X(Xt)'Y(XHT)T]a
Cyy = Efy(xe4r)v(xe17)"].

This score can be employed for all four different model classes and is the only score we
consider to train the Koopman models.

4.2. Enforcing physical constraints

Using either loss function, we have to fulfill the constraints by parameterizing S and u.
First we consider u. If we choose arbitrary weights w*, we can enforce the non-negativity by
squeezing the weights through an exponential and enforce X 'u = 1 by proper normalization:

exp(w")

x " exp(wt)’

For S we have arbitrary weights W*. The symmetry and non-negativity are enforced via:
W, = o(WS) + o(W5")

{exp(a:) ,ifx <0

o(r) = -
r+1 , otherwise

In addition, we need to take care of SC/_u = Sv = 1. In order to not reverse the symmetry,
we can still change the diagonal elements via wa.

S = W; + diag (Wz)
(Sv)i =) Wigvy, + wiv;

k
1-— Zk Wik Uk

Vg

= W; =

Since the expression could result into negative elements for S, we need to normalize Wy
beforehand, optimally by |[W1V||int. Any function which returns a value larger than the
maximum norm can be used, although it should be differentiable for gradient based optimization
methods; furthermore, the choice strongly influences the training properties, as if the value

is not a good approximation of the maximum norm S will be dominated by the diagonal
elements and thus harder to train. All the p-norms fulfill the requirements, and the higher
the order the closer to the maximum norm they will be; we considered p = 20 to be an
acceptable value.
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4.3. Training algorithm
1. Train a VAMPnet with SoftMax output as the x function with VAMP-2

2. Train S and u while keeping x fixed with VAMP-E score or ML with the whole training
set in one batch

3. Train everything with VAMP-E or ML

4. For the implied timescales keep x fixed and train only for S and u with the whole
training set in one batch.

The first two steps are included to stabilize the training, but are in principle not necessary.
The training might be further stabilized by setting u to its optimal value for a given x
calculated via a non-reversible Koopman K,,, model and the stationary distribution 7 =
7Koon as

u= C;;w,
which can be repeated during the training process, where u must still fulfill the non-negative
constraint.

5. Deep reversible Markov Models are universal approximators for
reversible Markov processes

In order to show that our model is flexible enough to approximate any reversible Markov
process, we will prove that the proposed model is an universal approximator for reversible
Markov processes. The non-reversible case was treated earlier by Mardt et al. (2018), and
we therefore do not focus on it here. (see Appendices 9.3 and 9.4 for proofs)

Proposition 1. For a reversible Markov process {x;} with Koopman operator K,, if
there are constants Cy, C, so that

po(x)pu(x)~" < Co,
p1(x) " u(x) < Cy

for any x, the Koopman operator IC}. of the optimal (d+1)-dimensional model in the form
of (5) with the largest VAMP-E score satisfies

(e.o]
1Ks — Krllfis < CoC1 Y A2,
i=d+1

where | is the stationary density, and A; denotes the i-th largest eigenvalue of K.

The following proposition shows that in equilibrium we can identify the dominant eigencomponents
with our model.

Proposition 2. If {x;} is a reversible and stationary Markov process with Koopman
operator K, the VAMP-E score Rg of the proposed model with dim(x) = d satisfies

d
Re <Y A, (12)
i=1

and the equality can hold in the case of span(xi, ..., Xa) = span(¢1, ..., ¢q), where \; denotes
the i-th largest eigenvalue of KCr with the corresponding eigenfunction ;.
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6. Results

Overview Below we demonstrate our model by applying it to a time-discretized one-
dimensional diffusion process x;yn; = —AtVV (z;) + v/2Atn; in the Prinz potential V (x)
Prinz et al. (2011b) (Fig. 2a) with time step At = 0.001 and 7; being standard normal
random variables. When generating training data we save the state x every five timesteps.
The neural network x has one input node, receiving the current value of the x coordinate.
We validate that when enforcing the nonnegativity and reversibility constraints, our models
will result in a valid transition matrix and real eigenvalues respectively, even in the case
of poorly sampled data. Furthermore, we show that our reversible models give unbiased
results for implied timescales and equilibrium probabilities even when using non-equilibrium
data for training, while a simple symmetrization of the correlation matrices (SymVAMPnet)
does not. Finally, we study the ability of the proposed methods to approximate the exact
eigenfunctions of the test system. We focus on the 1-D toy model system to demonstrate
the performance of the estimator for a system where exact solutions are available. However,
to show the outperforming or competitive performance on a larger system we conducted a
comparison of our method with standard MSM analysis on the NTL9 dataset Lindorff-Larsen
et al. (2011) (see 9.6).

Implementation and training data The methods were implemented using Keras Chollet
et al. (2015) with tensorflow et al. (2015) as a backend. For the full code and details
about the neural network architecture, hyper-parameters and training routine, please refer
to https://github.com/markovmodel /deep rev_msm.

Unless otherwise noted, we used the adam optimizer Kingma and Ba (2014), a batch-size
of 5000, and a six-layer-deep neural network with a constant width of 100 nodes for x.

As training data we use either a single simulation trajectory of variable length, or a
varying number of short trajectories with fixed length (see below). Non-equilibrium data
are sampled from a starting distribution with probabilities [15%, 70%, 9%, 6%)] to start at the
points [—0.75 + x1, —.25 4+ x9, .25 + x3, .75 4+ x4] where z; are independent random variables
sampled from a Gaussian distribution with zero mean and standard deviation 0.15.

Reversible VAMPnets and reversible deep MSMs obtain transition matrices
with real eigenvalues and nonnegative entries To simulate an insufficiently sampled
example, we created 1000 trajectories of 1 time step with the starting distribution as stated
above for training, validation, and test set respectively. We train a regular VAMPnet and
a reversible Deep Markov State Model (RevDMSM) on the training data with an early
stopping given by the performance on the validation set and estimate the resulting Koopman
matrix on the test set with a fixed number of output nodes d = 4. Fig. 2b) shows the
resulting eigenvalues of these matrices and Fig. 2c) the distribution of the entries. Using
the non-reversible VAMPnet, the poor sampling leads to complex eigenvalues and negative
entries for the Koopman matrix. Thus, we not only obtain a non-reversible model, but the
Koopman matrix also does not correspond to a valid transition matrix. The RevDMSM
model does not suffer from these shortcomings, nevertheless the constraints imposed on the
model result in slightly lower eigenvalues, which can be expected since the constraints hinder
the ability to approximate the eigenfunctions of the Koopman operator.
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Figure 2: Demonstration of incorporation of physical constraints: reversibility
and non-negativity. The eigenvalues and the distribution of elements of the
transition matrix K are shown for an unconstrained VAMPnet and a RevDMSM
trained on poorly sampled training data. a) Potential energy profile of the Prinz
model b) Imaginary and real part of the eigenvalues of a model estimated with
non-reversible VAMPnets and a RevDMSM. ¢) Entries of the matrix K of these
two models.

Reversible VAMPnets converge to unbiased timescales and state probabilities for
biased training data In furtherance of showing the necessity of new methods compared
to the already introduced SymVAMPnets, we demonstrate the shortcomings of it in the
case of systematically biased training data in Fig. 3. We restrict ourself to only compare
the performance with RevVAMPnets, since both methods result in a reversible Koopman
model. Thereby, a special focus lies on how well the two methods approximate the stationary
probability of the four main states ([(—oo, —.5], [-0.5,0.], [0.,.5], [.5, 00)]) and the estimated
values for the timescales of the dynamical system. We use as benchmark the Prinz potential,
using as training data a varying number of trajectories with fixed length of 11 frames, and
a single trajectory with a varying number of frames; we chose a fixed length of 11 frames
in order to estimate the timescales at 7 = 10. We test the convergence over an increasing
number of trajectories of the two models using 102,103, 10* trajectories, respectively. This
mimics the case of systematically biased training data, since the simulations are started from
a non-equilibrium distribution, which results in training data sampled from a distribution
different from the equilibrium distribution even in the case of infinitely many simulations.
We also vary the trajectory length between 2-102,10%,5-10* frames, respectively. The true
values of the timescales are numerical approximations by a transition matrix computed for
a direct uniform 1000-state discretization of the z-axis for 2-107 frames Prinz et al. (2011b),
while the true state probabilities were calculated directly from the analytical expression of
the potential.

The test of convergence in trajectory length shows how both methods converge to the
true values of the system’s timescales and state probabilities, as it is expected when the
training data distribution converges to the stationary distribution (Fig. 3 a-d). The test
of convergence in trajectory numbers shows how the RevVAMPnets method is able to
approximate the real state probabilities and timescale values already with a small number of
short trajectories within statistical uncertainty, and converges to a value consistently close
to the real one when the number of trajectories used as training data increases; we did not
observe this behavior for the SymVAMPnets, as this method is unable to recover the true
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Figure 3: Reversible VAMPnets converge to unbiased equilibrium probabilities
from biased data. Comparison of building a Koopman model with a
RevVAMPnet (left column) and SymVAMPnets (right column) on the Prinz
potential dataset with a varying number of trajectories of 11 frames each
starting from an off-equilibrium distribution (a-d), and varying length of a single
trajectory (e-h). Depicted is the state probability to be in the four intervals
([-1,-.5],[—.5,0],[0,.5],[.5,1]) and the three slowest timescales as the mean over
the lag times [6,8,10], where the horizontal black line marks the true value
(bottom). Errors are estimated over 5 runs as two sigma intervals.

dynamics and equilibrium distribution of the system when working with a heavily biased
sampling (Fig. 3 e-h), which results in a first timescale nearly a factor 3 too low.
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Figure 4: Estimating the three slowest eigenfunction on the Prinz dataset with a
RevVAMPnet, a SymVAMPnet, and a RevDMSM. a, ¢, e¢) Comparison of
the eigenfunction estimated on one long trajectory. b, d, f) Comparison for many
short trajectories having an off-equilibrium starting point distribution. Errors are
estimated over 5 runs as two sigma intervals.

Approximation of the true eigenfunctions Finally, we compare the approximation
quality of the three slowest non-trivial eigenfunctions for the Prinz potential for the three
methods (Fig. 4). The data from the analysis before is reused of a single trajectory of length
50,000 frames, and of 10,000 trajectories 11 frames each. We compare the eigenfunctions
against a numerical approximation of the true eigenfunctions by a transition matrix computed
for a direct uniform 1,000-state discretization of the z-axis for 2- 107 frames as before Prinz
et al. (2011b).

The RevVAMPnet is approximating accurately the true eigenfunctions for all settings

In particular, it is able to recover the eigenfunctions remarkably even in the case of
the biased data. The SymVAMPnet results are consistent with previous observations: the
approximation of the first two eigenfunctions of the non-equilibrium data (Fig. 4b,d) are
strongly biased, resulting in the underestimation of the implied timescales. The constraints
in the case of the RevDMSM lead to less smoothly changing eigenfunctions and therefore
less accurate approximations. In the case of the long trajectory, both the SymVAMPnet
and the RevDMSM exhibit a stepwise behavior of the eigenfunctions, as they tend to result
in a harder assignment of states x. Note that for SymVAMPnet this can be alleviated
by avoiding a SoftMax clustering in the last layer and rather directly mapping onto the
eigenfunctions Chen et al. (2019).

7. Conclusion

We have introduced an end-to-end deep learning framework for molecular kinetics that
allows us to learn high-quality Markov models with physical constraints such as reversibility
and non-negativity of the learned transition matrix. The proposed method is generally

465



DEEP LEARNING MARKOV AND KOOPMAN MODELS WITH PHYSICAL CONSTRAINTS

applicable for reversible/non-reversible Markov State and Koopman models depending on
which constraints are enforced, thus it can be seen as an extension and generalization of
previous models such as VAMPnets and DeepMSMs. Additionally, the optimization for the
state classification and the reversible transition matrix are not explicitly separate processing
steps compared to Chen et al. (2019). The proposed method is able to estimate dynamical
and stationary properties even from highly biased data and gives state of the art results
when studying the slow processes and stationary characteristics of a small toy model. We
also proved that our model is an universal approximator of reversible Markov Processes
and fulfills the reversibility property with respect to the estimated normalized stationary
distribution.

Despite these advantages, a remaining concern is the optimization procedure, which
requires a good balance when fitting the three trainable units at the same time. However,
we are confident that the used protocol of first fixing x and resetting u to optimal values
according to a non-reversible Koopman model during the training process establishes a
reproduceable procedure.

Furthermore, we expect that the maximum likelihood formulation of the proposed method
allows us to develop deep learning variants of multi-ensemble MSMs (Wu et al. (2016, 2014);
Chodera et al. (2011); Prinz et al. (2011a); Rosta and Hummer (2015); Mey et al. (2014)) that
alleviate rare event sampling, and augmented MSMs Olsson et al. (2017) that incorporate
experimental data into the model estimation.
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9. Appendix

9.1. Transition densities of finite-rank Koopman models

Thorough discussions on finite-rank Koopman models and their transition densities can be
seen in Wu et al. (2017b); Wu and Noé (2019), and a detailed derivation of (2) is provided
here for the completeness of the paper.

For given k latent variables g(x) = (gi(x),...,gr(x))” of system state x, which is
assumed to be linearly independent, we can decompose an arbitrary observable h(x) as

h=c'g+ht.
Here
<h’a gl>p1
¢ = Elg(x47)g(xi-)" ] :
<ha gk>p1
denotes the coordinates of the projection of h on the subspace spanned by {g1,...,gx} and
can be obtained by solving

min <h —c'g h— ch> ,
c pP1

ht denotes the residual of the projection, and the inner product is defined by (hi1,ho) o=
[ hi(x)ha(x)p1(x)dx. Thus, the finite-rank Koopman model (1) provides an approximation
of the Koopman operator K- as follows:
(K-h) (x) = E[h(xe1r)xe = x]
E [ch(xt_,_T)\xt = x]
= ¢ E[g(%esr)|xe = ]
~ c'KTf(x)
= <<h791>p1 7-"7<h7.qk>p1)
Elg(xt1+)g(xe7) "] 'K'E (%)

(I@Th) (x).

lI>
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In addition, it can be known from the definition of the Koopman operator that

mww@>=uﬂwa®wmw
= pT(va)7

where dy is the Dirac function centered at y. The transition density deduced from K, is
then

pr(x,y) = ( )

<< ¥ 91 py - <5y’gk>m)
Elg(x¢4r)g (Xt+T)T]_1KTf (x)
= f(x)'Sg(y)n(y)

9.2. Proof of normalization

We show that the dynamical model (5) has a normalized transition and equilibrium density.
By defining
p(x) = u' x(x)p1(x),

we can obtain that

9.3. Proof of proposition 1

Proof. Since {x;} is reversible, its transition density can be decomposed as

%,y) = > digi(x)ei(y)u(y),
=1

where ¢; is the eigenfunction corresponding to the eigenvalue \;, {¢1, 2, ...} is an orthonormal
basis of the Hilbert space { f|(f, f), < oo} defined by the inner product

<ﬁwu=/f@M@m&M&
and (A1, 1) = (1, 1).

Considering a (d+1)-dimensional model

x(x)" = (p(x)", wi(x)),

=[]

u=(0,.,0,17,
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we can obtain its transition density as

pr(x,y) = x(x)"Sx(¥)p1(y)x(y) u
= o(x)" Ap(y)u(y),

where @ = (91, 9a)T, A = diag(A, ., M) and w1 (x) = pr () ().
Then the Koopman operator K, deduced from this model satisfies

N h—(x — pr(x, 2

0o 2
://po(x) (Z Ai@i(")@z‘(y')) w1 (y)p(y)dxdy

z*d+1

SCl/ Z )\@SDZ

1= d+1

< COCI/ Z Api(x)2dx

i=d+1

= CyCy i 22

i=d+1

and the approximation error of the optimal (d-+1)-dimensional model is also bounded by
CoC1 320 AY-
9.4. Proof of proposition 2

Proof. Since {x;} is reversible, C; can be decomposed as

Kef =Y Xilf e

i=1

with Ay =1 and ¢ = 1. According to the VAMP theory and considering that the proposed
model is a specific case of

Pr(x,y) = x(x)"Sx(y)uly),

Eq. 12 can be proven.
If ¢ = (o1, ..., 04)7 can be represented by linear combinations of x(x), i.e., there is an
invertible matrix R = [R;;] € R¥? so that

= Rx.
We can then construct the following model

pr(x,y) = x(x)"Sx(y)x(y) uuly)
= o(x)"R"SR o (y)e(y) R up(y)

= p(x)" Ap(y)uly),
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where

S =R"AR,
u=R"(1,0,..,0)7T,

and A = diag(Aq, ..., A\g). It can be verified that the VAMP-E score of this model is equal
to 30, A7

9.5. Relationships to traditional Markov State Models

Since in traditional MSMs the state definition x usually consists of a set of indicator
functions partitioning the full state space into Markov States, we show how in that case,
for the right choices of u and S, our model obtains the expected stationary and transition
distribution.

Let x be the indicator functions of Markov states,  be the stationary distribution
vector, m, = X the empirical distribution vector of states, and

u= Hp_lﬂ',
S=PII !,

where IT = diag(w),II, = diag(m,), and P is the transition matrix. We can then express
u(x) as:

p(x) = u”x(x)p(x)
=7 I, x (%) p(x),

and

9.6. Performance on a larger system

In order to show that the proposed methods outperform or equally perform compared to
the standard pipeline of MSM analysis of protein simulations (time-lagged independent
component analysis (TICA) as dimension reduction followed by kmeans clustering and a
reversible MSM estimation Scherer et al. (2015); Perez-Hernandez et al. (2013)) we applied
our methods with 5 output nodes and the MSM estimation with 5 and 100 cluster centers
on the NTL9 dataset Lindorff-Larsen et al. (2011), where the minimal residue distances
acted as input features (as in Mardt et al. (2018)). We compare the VAMP-E score and the
estimated 4 highest timescales. The results show that our methods outperform the 5 state
MSM and exhibit a competitive performance to the 100 state MSM. However, our methods
have the advantages of yielding an easily interpretable model 1.
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MSM 5 MSM 100 | RevVAMPnet | RevDMSM
VAMP-E 42+0.3 | 4.86+0.01 4.92 +0.01 4.93 +0.01
Timescale 1 | 0.14 +=0.09 | 0.73 ==0.09 | 0.405 £ 0.004 | 0.424 + 0.005
Timescale 2 | 0.34+0.1 | 0.83 £0.05 0.56 £ 0.07 0.50 + 0.01
Timescale 3 | 0.6 0.4 1.6 +£0.3 1.4+04 1.24+0.2
Timescale 4 10+4 16 £2 12+3 13+1

Table 1: Comparison of the proposed models against ordinary MSM estimation on the NTL9
dataset. Reported is the VAMP-E score at a lag time of 7 = 10 ns and the
timescales in us as the mean and the standard deviation over 5 runs. Our methods
are outperforming the MSM estimation for the same number of states and exhibit
a competitive performance to the 100 state MSM while keeping the model easily
interpretable.
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