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Abstract
We consider a deep structured linear network under sparsity constraints. We study sharp condi-

tions guaranteeing the stability of the optimal parameters defining the network. More precisely, we
provide sharp conditions on the network architecture and the sample under which the error on the
parameters defining the network scales linearly with the reconstruction error (i.e. the risk). There-
fore, under these conditions, the weights obtained with a successful algorithms are well defined and
only depend on the architecture of the network and the sample. The features in the latent spaces
are stably defined. The stability property is required in order to interpret the features defined in the
latent spaces. It can also lead to a guarantee on the statistical risk. This is what motivates this study.

The analysis is based on the recently proposed Tensorial Lifting. The particularity of this paper
is to consider a sparsity prior. This leads to a better stability constant. As an illustration, we detail
the analysis and provide sharp stability guarantees for convolutional linear network under sparsity
prior. In this analysis, we distinguish the role of the network architecture and the sample input.
This highlights the requirements on the data in connection to parameter stability.
Keywords: Stable recovery, deep structured linear networks, convolutional linear networks, feature
robustess.

1. Introduction

1.1. The stability property

Artificial neural networks have improved the state of the art and continue to improve it in a large
number of applications in science and technology. Their empirical success far exceeds the un-
derstanding of their theoretical properties. In particular, despite the very significant efforts of a
very active research community, some behaviors remain partially understood: Why do optimization
algorithms find good solutions? Why do over-parameterized neural networks retain good general-
ization properties? What classes of functions can be approximated by neural networks? With which
minimal network architecture?

The work presented in this paper is of a theoretical nature and focuses on a stability property
for the parameters leading to a low objective function. The statements are for a regression problem.
To explain this stability property in a simplified context, we consider a parameterized family of
functions fw (e.g. neural networks), the parameter being w ; the parameter space is equipped with
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a metric1 d; we consider a sample (xi, yi)i=1..n of size n ∈ N. The stability statement then takes
the following form.

Informal theorem 1 Stability Guarantee
If a certain condition on the family f and the sample is satisfied then we have the following

stability property:
There exists C > 0 such that for η sufficiently small: For any w and w′ such that

n∑
i=1

‖fw(xi)− yi‖2 ≤ η and
n∑
i=1

‖fw′(xi)− yi‖2 ≤ η

we have
d(w,w′) ≤ Cη.

Notice first that the above informal theorem provides a sufficient condition guaranteeing the stability
property. Subsequently, depending on the nature of the network under consideration, necessary and
sufficient conditions or necessary conditions will be stated. The interest of the stability property is
that it guarantees:

• Feature stability and interpretability: When the optimal w is stable, the features in the
latent spaces and the output of the network are stably defined in the sense that the parameters
w and w′ for which η is small define similar features and output. The features and the output
only depend on the value of

n∑
i=1

‖fw(xi)− yi‖2

and do not depend on the algorithm used to find w. In particular, they do not depend on its
initialization, the numerical parameters, the order of the samples in the stochastic algorithm,
the numerical tricks etc The parameter w and therefore the function fw only depends on f
(i.e.: the network architecture, for neural networks) and the sample (xi, yi)i=1..n. For neural
networks, this is a strong guaranty when interpreting the influence of the features on the
output.

• Stable recovery: If we make the additional assumption that the data are generated from
the family f for an ideal parameter w (up to an accuracy smaller than η), then the stability
guaranty ensures that any parameter w′ for which

n∑
i=1

‖fw′(xi)− yi‖2

is sufficiently small is close to the ideal w.

The above additional assumption can be provided by approximation theory statement. This is,
for instance, the usual argument in compressed-sensing Elad (2010). When solving a linear
inverse problem under sparsity constraints, the sparsity hypothesis is not so restrictive be-
cause many signals/images classes are compressible. We can expect the same phenomenon to

1. To be accurate, the metric is defined between equivalence classes reflecting invariance properties of the family f . For
instance, in the case of neural networks, we would like to consider weight rescaling and/or neurons re-arrangement.
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happen for neural networks for which such statements are often referred to as “expressivity”
or “expressive power”. For instance, we can expect to have such guaranties when the neu-
ral network approximates a smooth function Boölcskei et al. (2019); Gühring et al. (2019);
Gribonval et al. (2019).

1.2. Existing results on the stable recovery

Establishing stable recovery guarantees for neural networks is a difficult subject which has not
been addressed very often. The subject remains largely unexplored. To the best of our knowledge
conditions guaranteeing the stability property for neural networks have been established in Arora
et al. (2014); Brutzkus and Globerson (2017); Li and Yuan (2017); Sedghi and Anandkumar (2014);
Zhong et al. (2017); Malgouyres and Landsberg (2016, 2019). A negative statement, exhibiting an
unstable configuration when the weights go to infinity is given in Petersen et al. (2019).

Among them, Brutzkus and Globerson (2017); Li and Yuan (2017); Zhong et al. (2017) consider
a family of networks with one hidden layer. The article Sedghi and Anandkumar (2014) focuses on
the recovery of the parameters defining one layer in a arbitrarily deep networks. The articles Arora
et al. (2014); Malgouyres and Landsberg (2016, 2019) consider networks without depth limitation.

In Brutzkus and Globerson (2017), the authors consider the minimization of the population risk.
The input is assumed Gaussian and the output is generated by a network involving one linear layer
followed by ReLU and a mean. The number of intermediate nodes is smaller than the input size.
They provide conditions guaranteeing that, with high probability, a randomly initialized gradient
descent algorithm converges to the true parameters. The authors of Li and Yuan (2017) consider
a framework similar to Brutzkus and Globerson (2017). They show that the stochastic gradient
descent converges to the true solution. In Zhong et al. (2017), the authors consider a non-linear
layer followed by a linear layer. The size of the intermediate layer is smaller than the size of the
input and the size of the output is 1. They prove that the gradient algorithm minimizing the empirical
risk converges to the true parameters, for the particular initialization described in the article.

The authors of Sedghi and Anandkumar (2014) consider a feed-forward neural network and
show that, if the input is Gaussian or its distribution is known, a method based on moments and
sparse dictionary learning can retrieve the parameters defining the first linear transform. Nothing is
said about the stability or the estimation of the other transformations.

The authors of Arora et al. (2014) consider deep feed-forward networks which are very sparse
and randomly generated. They show that they can be learned with high probability one layer after
another. However, very sparse and randomly generated networks are not used in practice and one
might want to study more versatile structures.

The article Malgouyres and Landsberg (2016) studies deep structured linear networks and uses
the same tensorial lifting we use here. This result has been extended in Malgouyres and Landsberg
(2019), where necessary and sufficient conditions of stable recovery have been established for a
general constraint on the parameters defining the network. In the present article, we specialize
the analysis to the sparsity constraint. We also obtain necessary and sufficient conditions of stable
recovery. However, we obtain a better stability constant (the constant C in Informal Theorem 1).
The difference is of the same nature as when the smallest singular value is replaced by a lower RIP
constant in compressed sensing Elad (2010). Moreover, in the analysis dedicated to convolutional
linear networks, we separate the hypotheses on the data (xi)i=1..n and the network architecture.
This highlights the importance of having a full row rank X , where X is the concatenation of the
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data (xi)i=1..n, and shows the role of the smallest singular value of X in this context. These are the
two main contributions of the paper.

Finally, denoting H the number of factors/layers, the approach developed in this paper extends
toH ≥ 3 existing compressed sensing results forH ≤ 2. In particular, whenH = 1, the considered
problems boils down to a compressed sensing problem Elad (2010). When H = 2 and when
extended to other constraints on the parameters w, the statements apply to already studied problems
such as: low rank approximation Candes et al. (2013), Non-negative matrix factorization Lee and
Seung (1999); Donoho and Stodden (2003); Laurberg et al. (2008); Arora et al. (2012), dictionary
learning Jenatton et al. (2012), phase retrieval Candes et al. (2013), blind deconvolution Ahmed
et al. (2014); Choudhary and Mitra (2014); Li et al. (2016). Most of these papers use the same
lifting property we are using. They further propose to convexify the problem. A more general
bilinear framework is considered in Choudhary and Mitra (2014).

1.3. The considered sparse networks

As in Malgouyres and Landsberg (2019), we consider structured linear networks. The layers can
be convolutional or feedforward. The network has at least one hidden layer and can be deep. The
network is not biased. We give in this section all the notations on networks.

Throughout the paper, we consider H ≥ 2, S ≥ 2, m0 . . .mH ∈ N and write mH = m.
We consider a network and assume its architecture fixed. It has H − 1 hidden layers. The layer 0
corresponds to the inputs, the layer H to the output. The hidden layers correspond to the indexes
1, · · · , H − 1. For h ∈ {0, · · · , H}, mh is the size of the layer h. We assume that the whole
network is parameterized by an element of RS×H , say w ∈ RS×H . The architecture of the network
is defined by linear mappings

Mh : RS −→ Rmh×mh−1 (1)

w 7−→ Mh(w)

for h ∈ {1, · · · , H}. For all h ∈ {1, · · · , H}, the linear part of the transformation that maps the
content of the layer h − 1 to the layer h is parameterized by wh ∈ RS and is defined by Mh(wh).
Modeling the architecture of the network with the operators Mh, we can consider many kind of
networks. Indeed, depending on the operators Mh, the network can include feedforward layers,
convolutional layers and other structured layers tailored to particular structures in the data. The
layers might not be fully connected.

The mapping from Rm0 to Rm defined by the network is called the prediction and it is defined
for any x ∈ Rm0 by

fw(x) = MH(wH)MH−1(wH−1) · · ·M2(w2)M1(w1)x.

We use the same notation fw when applying fw to every column of X ∈ Rm0×n and concatenating
the results in a matrix in Rm×n. The abuse of notation is not ambiguous, once in context.

Again, the considered networks do not involve activation functions and biases. However, as in-
dicated in Malgouyres and Landsberg (2019), the action of the ReLU activation function multiplies
the content of any neuron by an element of {0, 1}. The choice of the element depends on w and x.
However, considering x fixed, since {0, 1} is finite, there is a finite set of possibilities for the action
of the ReLU activation function. Said differently, there is a finite number of possibilities for the
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choice of the neurons that are kept. Therefore, there exists a partition of RS×H such that, on every
piece of the partition, the action of ReLU is constant. Therefore, on every piece of the partition,
the network is a structured linear network as studied in the present paper. Notice moreover that
the analysis in Choromanska et al. (2015a,b) take the expectation of the action of ReLU networks
(under an un-realistic independence hypothesis) and obtain a structured linear network. Beside,
structured linear network are significantly more general than the deep linear networks that are often
considered (see, among other, Baldi and Hornik (1989); Kawaguchi (2016)).

Throughout the paper, we consider a family of possible supportsM ⊂ P({1, · · · , S}H), where
P({1, · · · , S}H) denotes the set of all possible supports (the parts of {1, · · · , S}H ). A classical
example isM = {S|∀h = 1..h, |Sh| ≤ S′}, for a given S′ ≤ S. We constrain the parameter w to
satisfy a sparsity constraint of the form : there exists S = (Sh)h=1..H ∈M such that

supp (w) ⊂ S

(i.e.: ∀h, supp (wh) ⊂ Sh). Specializing the analysis to sparsity constraints is one of the main
differences between this paper and Malgouyres and Landsberg (2016, 2019). Sparse networks have
been considered in many contexts Ranzato et al. (2007, 2008); Lee et al. (2008); Srinivas et al.
(2017); Louizos et al. (2018); Zhang et al. (2016); sparse convolutional neural networks have also
been considered Liu et al. (2015).

1.4. The solutions of the problem

We assume that data are collected in the columns of matrices X ∈ Rm0×n and Y ∈ RmH×n.
To establish the stability property, we consider throughout the paper S and S ′ ∈ M, w and

w′ ∈ RS×H such that
supp (w) ⊂ S and supp

(
w′
)
⊂ S ′

and for which
‖fw(X)− Y ‖ = δ and ‖fw′(X)− Y ‖ = η (2)

are small. Generic parameters are denoted without the over-line: S, S ′, w, w′ etc
We want to establish a condition guaranteeing that, up to a multiplicative constant, the distance

between such w and w′ is upper-bound by δ + η. As already said, using a true distance would be
too restrictive and the true statements involve a distance between equivalence classes of parameters.

2. Notations and preliminaries on Tensorial Lifting

Set [[H]] = {1, . . . ,H} and RS×H∗ = {w ∈ RS×H |∀h = 1..H, ‖wh‖ 6= 0}, where we remind
that wh ∈ RS contains the parameters defining the transform between layers h − 1 and h. Define
an equivalence relation in RS×H∗ : for any w, v ∈ RS×H , w ∼ v if and only if there exists
(λh)h=1..H ∈ RH such that

H∏
h=1

λh = 1 and ∀h = 1..H,wh = λhvh.
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Denote the equivalence class of w ∈ RS×H∗ by [w]. For any p ∈ [1,∞], we denote the usual `p

norm by ‖.‖p and define the mapping dp :
(
(RS×H∗ / ∼)× (RS×H∗ / ∼)

)
→ R by

dp([w], [v]) = inf
w′∈[w]∩RS×H

diag

v′∈[v]∩RS×H
diag

‖w′ − v′‖p , ∀w, v ∈ RS×H∗ , (3)

where
RS×Hdiag = {w ∈ RS×H∗ |∀h = 1..H, ‖wh‖∞ = ‖w1‖∞}.

It is proved in Malgouyres and Landsberg (2019) that dp is a metric on RS×H∗ / ∼.
The real valued tensors of order H whose axes are of size S are denoted by T ∈ RS×...×S . The

space of tensors is abbreviated RSH
. We say that a tensor T ∈ RSH

is of rank 1 if and only if there
exists a collection of vectors w ∈ RS×H such that, for any i = (i1, . . . , iH) ∈ [[S]]H ,

Ti = w1,i1 . . .wH,iH .

The set of all the tensors of rank less than 1 is denoted by Σ1. We denote Σ2 = Σ1 + Σ1. Moreover,
we parameterize Σ1 ⊂ RSH

using the Segre embedding

P : RS×H −→ Σ1 ⊂ RSH

w 7−→ (w1,i1w2,i2 . . .wH,iH )i∈[[S]]H
(4)

As stated in the next two theorems, we can control the distortion of the distance induced by P
and its ‘inverse’.

Theorem 1 Stability of [w] from P (w), see Malgouyres and Landsberg (2019)
Let w and w′ ∈ RS×H∗ be such that ‖P (w′) − P (w)‖∞ ≤ 1

2 max (‖P (w)‖∞, ‖P (w′)‖∞).
For all p, q ∈ [1,∞],

dp([w], [w′]) ≤ 7(HS)
1
p min

(
‖P (w)‖

1
H
−1

∞ , ‖P (w′)‖
1
H
−1

∞

)
‖P (w)− P (w′)‖q. (5)

Theorem 2 ‘Lipschitz’ continuity of P , see Malgouyres and Landsberg (2019)
We have for any q ∈ [1,∞] and any w and w′ ∈ RS×H∗ ,

‖P (w)− P (w′)‖q ≤ S
H−1

q H
1− 1

q max

(
‖P (w)‖1−

1
H∞ , ‖P (w′)‖1−

1
H∞

)
dq([w], [w′]). (6)

The Tensorial Lifting (see Malgouyres and Landsberg (2019)) states that for any M1, . . . , MH

and any X there exists a unique linear map

A : RS
H −→ Rm×n,

such that for all w ∈ RS×H

MH(wH) · · ·M1(w1)X = AP (w). (7)

The intuition leading to this equality is that every entry in MH(wH) · · ·M1(w1)X is a multivariate
polynomial whose variables are in w. Moreover, every monomial of the polynomials is of the form

112



ON THE STABLE RECOVERY OF DEEP STRUCTURED LINEAR NETWORKS UNDER SPARSITY CONSTRAINTS

aiP (w)i for i ∈ [[S]]H , where ai is a coefficient which depends on M1, . . . , MH and X . The
Tensorial Lifting expresses any deep structured linear network using the Segre Embedding and a
linear operator A. The Segre embedding is non-linear and might seem difficult to deal with at the
first sight, but it is always the same whatever the network architecture, the sparsity pattern, the action
of the ReLU activation function. . . These constituents of the problem only influence the lifting linear
operator A.

In the next section, we study what properties of A are required to obtain the stable recovery. In
Section 4, we study these properties when A corresponds to a sparse convolutional linear network.

3. General conditions for the stable recovery under sparsity constraint

From now on, the analysis differs from the one presented in Malgouyres and Landsberg (2019). It is
dedicated to models that enforce sparsity. In this particular situation, we can indeed have a different
view of the geometry of the problem. In order to describe it, we first establish some notation.

We define a support by S = (Sh)h=1..H , with Sh ⊂ [[S]], and remind that we denote the set of
all supports by P([[S]]H) (the parts of [[S]]H ). For a given support S ∈ P([[S]]H), we denote

RS×HS = {w ∈ RS×H | wh,i = 0, for all h = 1..H and i 6∈ Sh}

(i.e., for all h, supp (wh) ⊂ Sh) and

RS
H

S = {T ∈ RS
H | Ti = 0, if ∃h = 1..H , such that ih 6∈ Sh}.

We also denote by PS the orthogonal projection from RSH
onto RSH

S . It has the closed-form
expression: for all T ∈ RSH

and all i ∈ [[S]]H

(PST )i =

{
Ti , if i ∈ S,
0 , otherwise.

(8)

We consider different operators and define for any S ∈ P([[S]]H)

AS = APS . (9)

We will use later on that for any S and S ′ ∈M and for any w ∈ RS×HS , or any w ∈ RS×HS′ , or any
w ∈ RS×HS∪S′ , we have

AS∪S′P (w) = AP (w), (10)

= MH(wH) · · ·M1(w1)X.

The introduction of the different operators AS leads to an analysis different from the one con-
ducted in Malgouyres and Landsberg (2019). Instead of considering the intersection of one linear
space with a subset of Σ2 (as in Malgouyres and Landsberg (2019)), we consider the intersection of
many linear sets (the kernels of the operator AS) with Σ1.

The following property will turn out to be necessary and sufficient to guarantee the stable re-
covery property.
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Definition 1 Sparse-Deep-Null Space Property
Let γ ≥ 1 and ρ > 0, we say thatA satisfies the sparse-deep-Null Space Property (sparse-deep-

NSP ) with constants (γ, ρ) for M if and only if for all S and S ′ ∈ M, any T ∈ P (RS×HS ) +
P (RS×HS′ ) satisfying ‖AS∪S′T‖ ≤ ρ and any T ′ ∈ Ker (AS∪S′), we have

‖T‖ ≤ γ‖T −PS∪S′T
′‖. (11)

Geometrically, the sparse-deep-NSP does not hold when PS∪S′ Ker (AS∪S′) intersects P (RS×HS )+
P (RS×HS′ ) away from the origin or tangentially at 0. It holds when the two sets intersect ”transver-
sally” at 0. Despite an apparent abstract nature, we will be able to characterize precisely when the
lifting operator corresponding to a convolutional linear network satisfies the sparse-deep-NSP (see
Section 4). We will also be able to calculate the constants (γ, ρ).

Proposition 1 Sufficient condition for sparse-deep-NSP
If Ker (A) ∩ RSH

S∪S′ = {0}, for all S and S ′ ∈ M, then A satisfies the sparse-deep-NSP with
constants (γ, ρ) = (1,+∞) forM.

Proof In order to prove the proposition, let us consider S and S ′ ∈M, T ′ ∈ Ker (AS∪S′). We have
APS∪S′T ′ = 0 and therefore PS∪S′T

′ ∈ Ker (A). Moreover, by definition, PS∪S′T ′ ∈ RSH

S∪S′ .
Therefore, applying the hypothesis of the proposition, we obtain PS∪S′T

′ = 0 and (11) holds for
any T , when γ = 1. Therefore, A satisfies the sparse-deep-NSP with constants (γ, ρ) = (1,+∞)
forM.

If [[S]]H ∈ M, the condition becomes Ker (A) = {0}, which is sufficient but obviously not
necessary for the sparse-deep-NSP to hold. However, whenM truly imposes sparsity, the condition
Ker (A) ∩ RSH

S∪S′ = {0} says that the elements of Ker (A) shall not be sparse in some (tensorial)
way. This nicely generalizes the case H = 1.

Definition 2 Deep-lower-RIP constant
There exists a constant σM > 0 such that for any S and S ′ ∈ M and any T in the orthogonal

complement of Ker (AS∪S′)
σM‖PS∪S′T‖ ≤ ‖AS∪S′T‖. (12)

We call σM a Deep-lower-RIP constant of A with regard toM.

Proof The existence of σM is a straightforward consequence of the fact that the restriction ofAS∪S′
on the orthogonal complement of Ker (AS∪S′) is injective. We therefore have for all T in the
orthogonal complement of Ker (AS∪S′)

‖AS∪S′T‖ ≥ σS∪S′‖T‖ ≥ σS∪S′‖PS∪S′T‖,

where σS∪S′ > 0 is the smallest non-zero singular value of AS∪S′ . The last inequality holds
because PS∪S′ is a contraction.

We obtain the existence of σM by taking the minimum of the constants σS∪S′ over the finite
family of S and S ′ ∈M.
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Theorem 3 Sufficient condition of stable recovery for structured linear networks
Consider a structured linear network defined by M1, . . . , MH , sparsity constraints defined by a

family of possible supportsM, data X and Y and the operator A satisfying (7).
Assume A satisfies the sparse-deep-NSP with the constants γ ≥ 1, ρ > 0 for M. For any

S ∈ M, w ∈ RS×HS and S ′ ∈M, w′ ∈ RS×H
S′

as in (2) with η + δ ≤ ρ, we have

‖P (w′)− P (w)‖ ≤ γ

σM
(δ + η),

where σM is the Deep-lower-RIP constant of A with regard toM.
Moreover, if γ

σM
(δ + η) ≤ 1

2 max (‖P (w′)‖∞, ‖P (w)‖∞), then

dp([w
′], [w]) ≤ 7(HS)

1
p min

(
‖P (w)‖

1
H
−1

∞ , ‖P (w′)‖
1
H
−1

∞

)
γ

σM
(δ + η).

Proof Because AS′∪S is linear and then because w ∈ RS×HS and w′ ∈ RS×H
S′

, using (10), we have

‖AS′∪S(P (w′)− P (w))‖ = ‖AS′∪SP (w′)−AS′∪SP (w)‖
= ‖AP (w′)−AP (w)‖
≤ ‖AP (w′)−X‖+ ‖AP (w)−X‖
≤ δ + η (13)

If we further decompose (the decomposition is unique)

P (w′)− P (w) = T + T ′, (14)

where T ′ ∈ Ker
(
AS′∪S

)
and T is orthogonal to Ker

(
AS′∪S

)
, we have

‖AS′∪S(P (w′)− P (w))‖ = ‖AS′∪ST‖ ≥ σM‖PS′∪ST‖,

where σM is the Deep-lower-RIP constant of A with regard toM. Combining with (13), we get

‖PS′∪ST‖ ≤
δ + η

σM
.

Combining this inequality with PS′∪SP (w′) = P (w′), PS′∪SP (w) = P (w) and (14), we obtain

‖P (w′)− P (w)−PS′∪ST
′‖ = ‖PS′∪S

(
P (w′)− P (w)− T ′

)
‖

= ‖PS′∪ST‖

≤ δ + η

σM
.

Combining the latter inequality with the hypotheses:A satisfies the sparse-deep-NSP with con-
stants (γ, ρ) forM and δ + η ≤ ρ; we have

‖P (w′)− P (w)‖ ≤ γ‖P (w′)− P (w)−PS′∪ST
′‖

≤ γ
δ + η

σM
.
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When δ + η satisfy the condition in the theorem, we can apply Theorem 1 and obtain the last
inequality.

Theorem 3 differs from the analogous theorem in Malgouyres and Landsberg (2019). In partic-
ular, it is dedicated to sparsity constraints. The constant of the upper bound is different. We replace
the smallest non-zero singular value of an operator by the min, over a finite number of linear space,
of the smallest non-zero singular value of the restriction of the operator on the linear space (see
Definition 2 and its proof). This is the usual role of the lower-RIP constant in compressed sensing
Elad (2010), hence the name Deep-lower-RIP.

One might again ask whether the condition “A satisfies the sparse-deep-NSP ” is sharp or not.
As stated in the following theorem, the answer is affirmative.

Theorem 4 Necessary condition for stable recovery for structured linear networks
Consider a structured linear network defined by M1, . . . , MH , , sparsity constraints defined by

a family of possible supportsM, data X and Y and the operator A satisfying (7).
Assume the stability property holds: There exists C and δ > 0 such that for any S ∈ M and

any w ∈ RS×HS , any Y = AP (w) + e, with ‖e‖ ≤ δ, and any S ′ ∈M and w′ ∈ RS×H
S′

such that

‖AP (w′)− Y ‖ ≤ ‖e‖

we have

d2([w
′], [w]) ≤ C min

(
‖P (w)‖

1
H
−1

∞ , ‖P (w′)‖
1
H
−1

∞

)
‖e‖.

Then, A satisfies the sparse-deep-NSP with constants

γ = CS
H−1

2

√
H σmax and ρ = δ,

forM, where σmax is the spectral radius of A.

Proof Let S and S ′ ∈M. Let w ∈ RS×HS and w′ ∈ RS×H
S′

be such that ‖A (P (w)− P (w′)) ‖ ≤
δ. We have, using (10),

A
(
P (w)− P (w′)

)
= AS∪S′

(
P (w)− P (w′)

)
.

Throughout the proof, we also consider T ′ ∈ Ker
(
AS∪S′

)
. We assume that ‖P (w)‖∞ ≤ ‖P (w′)‖∞.

When it is not the case, the proof is analogue. We denote

Y = AP (w′) and e = AP (w′)−AP (w).

We have Y = AP (w) + e with ‖e‖ ≤ δ. Moreover, since w ∈ RS×HS , ‖e‖ ≤ δ and since we
obviously have ‖AP (w′)− Y ‖ ≤ ‖e‖, the assumption that the stability property holds guaranties

d2([w
′], [w]) ≤ C‖P (w′)‖

1
H
−1

∞ ‖e‖.

Using (10) and the fact that e = AS∪S′(P (w)− P (w′)), for any T ′ ∈ Ker
(
AS∪S′

)
‖e‖ = ‖AS∪S′(P (w)− P (w′)− T ′)‖,

≤ σmax‖PS∪S′(P (w)− P (w′)− T ′)‖,
= σmax‖P (w)− P (w′)−PS∪S′T

′‖,
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input layer hidden layers output layer

Figure 1: Example of a convolutional linear network. To every edge is attached a convolution
kernel. The network does not involve non-linearities or sampling.

where σmax is the spectral radius of A. Therefore,

d2([w
′], [w]) ≤ C‖P (w′)‖

1
H
−1

∞ σmax ‖P (w)− P (w′)−PS∪S′T
′‖,

Finally, using Theorem 2 and the fact that ‖P (w)‖∞ ≤ ‖P (w′)‖∞, we obtain

‖P (w′)− P (w)‖ ≤ S
H−1

2 H1− 1
2 ‖P (w′)‖1−

1
H∞ d2([w

′], [w])

≤ CS
H−1

2

√
H σmax ‖P (w)− P (w′)−PS∪S′T

′‖
= γ‖P (w)− P (w′)−PS∪S′T

′‖

for γ = CS
H−1

2

√
H σmax .

Summarizing, we conclude that under the hypothesis of the theorem: For any S and S ′ ∈ M
and any T ∈ P (RS×HS ) + P (RS×H

S′
) (above P (w) − P (w′) has the role of T ) such that ‖AT‖ =

‖AS∪S′T‖ ≤ δ, we have for any T ′ ∈ Ker
(
AS∪S′

)
‖T‖ ≤ γ‖T −PS∪S′T

′‖.

In words, A satisfies the sparse-deep-NSP forM with the constants of Theorem 4.

4. Application to convolutional linear network under sparsity prior

We consider a sparse convolutional linear network as depicted in Figure 1. Formally, the considered
convolutional linear network is defined from a rooted directed acyclic graph G(E ,N ) composed of
nodes N and edges E . Each edge connects two nodes. The root of the graph is denoted by r (it
contains the output signal) and the set containing all its leaves is denoted by F (the leaves contain
the input signal). We denote by P the set of all paths connecting the leaves and the root. We assume,
without loss of generality, that the length of any path between a leaf and the root is independent of
the considered path and equal to H ≥ 0. We also assume that, for any edge e ∈ E , the length of the
paths separating e and any leaf is constant. This length is called the depth of e. For any h = 1..H ,
we denote the set containing all the edges of depth h, by E(h).
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Moreover, to any edge e is attached a convolution kernel of maximal support Se ⊂ [[N ]]. We as-
sume (without loss of generality) that

∑
e∈E(h) |Se| is independent of h (|Se| denotes the cardinality

of Se). We take
S =

∑
e∈E(1)

|Se|.

For any edge e, we consider the mapping Te : RS −→ RN that maps any w ∈ RS into the
convolution kernel Te(w) ∈ RN , attached to the edge e, whose support is Se. As in the previous
section, we assume a sparsity constraint and will only consider a family M of possible supports
S ⊂ [[S]]H .

At each h, the convolutional linear network computes, for all e ∈ E(h), the convolution between
the signal at the origin of e; then, it attaches to any ending node the sum of all the convolutions
arriving at that node. Examples of such convolutional linear networks includes wavelets, wavelet
packets Mallat (1998) or the fast transforms optimized in Chabiron et al. (2014, 2016). It is the usual
convolutional neural network, without bias, in which the activation function is the identity and the
supports are potentially scattered and not fixed. It is clear that the operation performed between
any pair of consecutive layers depends linearly on parameters w ∈ RS . The convolutional linear
network therefore depends on parameters w ∈ RS×H and its prediction takes the form

fw(x) = MH(wH) · · ·M1(w1)x
|F| , for all x ∈ RN

where the operators Mh satisfy the hypothesis of the present paper and x|F| = M0x where M0

concatenates vertically |F| identity matrix of size N ×N :

M0 =

 Id
...
Id

 ∈ R|F|N×N . (15)

Given a sample (xi, yi)i=1..n ∈ (RN ×RN )n and reminding that X is the horizontal concatenation
of the column vectors xi, we also denote X |F| = M0X ∈ RN |F|×n.

Given X |F| and a network architecture, this section applies the results of the preceding sec-
tions in order to identify sharp conditions guaranteeing that, for any supports S and S ′ ∈ M, any
parameters w and w′ ∈ RS×H satisfying supp (w) ⊂ S and supp (w)′ ⊂ S ′, and such that

‖MH(wH) · · ·M1(w1)X
|F| − Y ‖ = δ and ‖MH(w′H) · · ·M1(w

′
1)X

|F| − Y ‖ = η

are small enough, we can guarantee that w and w′ are close to each other.
In order to do so, we first establish a few simple properties and define relevant notations. Notice

first that, we can apply the convolutional linear network to any input u ∈ RN |F|, where u is the
(vertical) concatenation of the signals uf ∈ RN for f ∈ F . Therefore, MH(wH) · · ·M1(w1) is the
(horizontal) concatenation of |F| matrices Zf ∈ RN×N such that

MH(wH) · · ·M1(w1)u =
∑
f∈F

Zfuf , for all u ∈ RN |F|. (16)

Let us consider the convolutional linear network defined by w ∈ RS×H as well as f ∈ F and
n = 1..N . The column of MH(wH) · · ·M1(w1) corresponding to the leaf f and the entry n is the
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translation by n of ∑
p∈P(f)

T p(w) (17)

where P(f) contains all the paths of P starting from the leaf f and

T p(w) = TeH (wH) ∗ . . . ∗ Te1(w1) , where p = (e1, . . . , eH)

and we remind that Teh(wh) is the convolution kernel on the edge eh.
We define for any h = 1..H the mapping eh : [[S]] −→ E(h) which provides for any i = 1..S

the unique edge of E(h) such that the ith entry of w ∈ RS contributes to Teh(i)(w). Also, for any
i ∈ [[S]]H , we denote pi = (e1(i1), . . . , eH(iH)) and, for any S ∈ M,

IS =
{
i ∈ [[S]]H |i ∈ S and pi ∈ P

}
.

The latter contains all the indices of S corresponding to a valid path in the network. For any set of
parameters w ∈ RS×H and any path p ∈ P , we also denote by wp the restriction of w to its indices
contributing to the kernels on the path p. We also define, for any i ∈ [[S]]H , wi ∈ RS×H by

wi
h,j =

{
1 , if j = ih
0 otherwise

, for all h = 1..H and j = 1..S (18)

so-that P (wi) is a Dirac at position i. The difference between wp and wi will not be ambiguous,
once in context.

We can deduce from (17) that, when i ∈ IS ,MH(wi
H) · · ·M1(w

i
1) simply convolves the entries

at one leaf with a Dirac delta function. Therefore, all the entries of MH(wi
H) · · ·M1(w

i
1) are in

{0, 1} and we denote Di = {(i, j) ∈ [[N ]]× [[N |F|]]|
(
MH(wi

H) · · ·M1(w
i
1)
)
i,j

= 1}.
We also denote 1 ∈ RS a vector of size S with all its entries equal to 1. For any edge e ∈ E ,

1
e ∈ RS consists of zeroes except for the entries contributing to the convolution kernel on the edge
e which are equal to 1. For any S ⊂ [[S]]H , we define 1S ∈ RS×H which consists of zeroes except
for the entries corresponding to the indexes in S which are equal to 1.

The equivalence relationship ∼, defined in Section 2, does not suffice to group parameters lead-
ing to the same network prediction. Indeed, with the considered convolutional networks, we can
rescale the kernels on different path differently. Therefore, we say that two networks sharing the
same architecture and defined by the parameters w and w′ ∈ RS×H are equivalent if and only if

∀p ∈ P,∃(λe)e∈p ∈ Rp, such that
∏
e∈p

λe = 1 and ∀e ∈ p, Te(w′) = λeTe(w).

The equivalence class of w ∈ RS×H is denoted by {w}. It is not difficult to see that the prediction
of the networks defined by equivalent parameters are identical. For any p ∈ [1,+∞[, we define

∆p({w}, {w′}) =
(∑

p∈P
dp
(
[wp], [w′

p
]
)p) 1

p
, (19)

where we remind that dp is defined in (3). Since dp is a metric, ∆p is a metric between network
classes.
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The equivalence classes we have defined do not take into the account the fact it is possible
to modify w in a way that corresponds to permutation of the nodes of the network. Taking into
account this invariant is difficult and remains an open question. It has not been addressed in Arora
et al. (2014); Brutzkus and Globerson (2017); Li and Yuan (2017); Sedghi and Anandkumar (2014);
Zhong et al. (2017); Malgouyres and Landsberg (2016, 2019).

Finally, we remind that because of (7), there exists a unique mapping

A : RS
H −→ RN×n

such that
AP (w) = MH(wH) · · ·M1(w1)X

|F| , for all w ∈ RS×H ,

where P is the Segre embedding defined in (4).

Proposition 2 Necessary condition of identifiability of a sparse network
Only one of the two following alternatives can occur.

1. Either, there exist S and S ′ ∈ M such that some entries of MH(1S∪S
′

H ) · · ·M1(1
S∪S′
1 )M0

do not belong to {0, 1}.
When this holds, {w} is not always identifiable: there exists {w} 6= {w′} such that

MH(wH) · · ·M1(w1)M0 = MH(w′H) · · ·M1(w
′
1)M0.

2. Or, for any S and S ′ ∈M, all the entries of MH(1S∪S
′

H ) · · ·M1(1
S∪S′
1 )M0 belong to {0, 1}.

When this holds :

(a) For any S and S ′ ∈M, for any distinct i ∈ S and i′ ∈ S ′, we have Di ∩ Di′ = ∅.
(b) For any S and S ′ ∈ M, for any w ∈ RS×HS and w′ ∈ RS×HS′ and any distinct p and

p′ ∈ P , we have

supp
(
MH(wp

H) · · ·M1(w
p
1 )M0

)⋂
supp

(
MH((w′)p

′

H ) · · ·M1((w
′)p
′

1 )M0

)
= ∅.

(c) If moreover |P| = 1 and X is full row rank:

Ker (AS∪S′) = {T ∈ RS
H |∀i ∈ IS∪S′ , Ti = 0}.

The proof is in Appendix A.
Proposition 2, Item 1, expresses a necessary condition of stability: for any S and S ′ ∈ M,

all the entries of MH(1S∪S
′

H ) · · ·M1(1
S∪S′
1 )M0 belong to {0, 1}. The condition is restrictive but

not empty. We will see in the sequel that, when X is full row rank, the condition is sufficient to
guarantee the stability. Notice that the condition can be computed at a low cost by applying the
network to Dirac delta functions, when |M| is not too large.

Proposition 3 If |P| = 1 and X is full row rank. If, for any S and S ′ ∈ M, all the entries of
MH(1S∪S

′
H ) · · ·M1(1

S∪S′
1 )M0 belong to {0, 1}, then Ker (AS∪S′) is the orthogonal complement

of RSH

S∪S′ and A satisfies the sparse-deep-NSP with constants (γ, ρ) = (1,+∞) forM. Moreover,
σM =

√
Nσmin(X), where σmin(X) is the smallest singular value of X , is a deep-lower-RIP

constant of A with regard toM.
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The proof of the proposition is in Appendix B.
Let us remind: we consider X and Y ∈ RN×n, S and S ′ ∈ M and parameters w and w′ ∈

RS×H satisfying
supp (w) ⊂ S and supp

(
w′
)
⊂ S ′ (20)

and denote

δ = ‖MH(wH) · · ·M1(w1)X
|F|−Y ‖ and η = ‖MH(w′H) · · ·M1(w

′
1)X

|F|−Y ‖, (21)

where we will assume in the theorem that δ and η are small.
For any path p ∈ P , we denote

δp = ‖MH(wp
H) · · ·M1(w

p
1 )−MH((w′)pH) · · ·M1((w

′)p1 )‖

where we remind that wp (resp w′p) denotes the restriction of w (resp w′) to the path p. Under
the hypothesis of the following theorem, when δ + η is small, we will prove that δp is small too for
every p ∈ P (see (25)).

Theorem 5 Sufficient condition of stability
Let X , Y , S, S ′, w, w′, δ and η be as described above (see (20) and (21)). Assume X is full

row rank.
If for any S and S ′ ∈M, all the entries of MH(1S∪S

′
H ) · · ·M1(1

S∪S′
1 )M0 belong to {0, 1} and

if there exists ε > 0 such that for all e ∈ E , ‖Te(w)‖∞ ≥ ε and for all p ∈ P , δp√
Nσmin(X)

≤
1
2 max(‖P (wp)‖∞, ‖P ((w′)p)‖∞), then w and w′ are close to each other: for any p ∈ [1,∞[

∆p({w′}, {w}) ≤ 7
(HS)

1
p

√
Nσmin(X)2εH−1

(δ + η).

We remind that, according to Proposition 2, Item 1, the network is not identifiable when some
entries of MH(1S∪S

′
H ) · · ·M1(1

S∪S′
1 )M0 do not belong to {0, 1}.

The proof of the theorem is in Appendix C.

5. Conclusion

We provide a necessary and sufficient condition of stability for the optimal weights of a sparse linear
network. In the general setting, when no assumption is made on the architecture of the network,
the stability constant C is improved when compared to un-specified weight models Malgouyres
and Landsberg (2019). The gain is comparable to the gain obtained in compressed sensing when
replacing the smallest singular value by the lower RIP constant Elad (2010). We then specialize the
results to sparse convolutional linear networks. In this analyses, we detail the stability condition
in terms of a condition on the architecture and a condition on the sample inputs. The condition
on the architecture is restrictive but not empty. The condition on the sample inputs is rather weak
and basically requires to have as many (diverse) samples as the dimension of the input space. The
constant σmin(X) is a key component of the stability constant.
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Appendix A. Proof of Proposition 2

First notice that the entries of MH(1S∪S
′

H ) · · ·M1(1
S∪S′
1 ) are non-negative integers.

Let us first assume that: There exist S and S ′ ∈M and an entry of

MH(1S∪S
′

H ) · · ·M1(1
S∪S′
1 )M0

that does not belong to {0, 1}.
Using (15), (16) and (17), we know that there is n = 1..N such that∑

f∈F

∑
p∈P(f)

T p(1S∪S
′
) n ≥ 2.

As a consequence, there is i and j ∈ S ∪ S ′ with i 6= j and

T pi(wi) n = T pj(wj) n = 1.

Therefore, since both T pi(wi) and T pj(wj) are Diracs,

MH(wi
H) · · ·M1(w

i
1)M0 = MH(wj

H) · · ·M1(w
j
1)M0.
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Since i 6= j, {wi} 6= {wj} and the network is not identifiable. This proves Item 1.
Let us now assume that: For any S and S ′ ∈M, all the entries of

MH(1S∪S
′

H ) · · ·M1(1
S∪S′
1 )M0

belong to {0, 1}.
For any S and S ′ ∈ M and any distinct i ∈ S and i′ ∈ S ′, since T p(wi) and T p(wi′) are

Diracs, using (17), (16) and the hypothesis we establish Item 2a.
To prove Item 2b, we consider S and S ′ ∈ M, w ∈ RS×HS and w′ ∈ RS×HS′ , and distinct

p 6= p′ ∈ P . We have

supp
(
MH(wp

H) · · ·M1(w
p
1 )M0

)
⊂ supp

(
MH((1S∪S

′
)pH) · · ·M1((1

S∪S′)p1 )M0

)
and

supp
(
MH((w′)p

′

H ) · · ·M1((w
′)p
′

1 )M0

)
⊂ supp

(
MH((1S∪S

′
)p
′

H ) · · ·M1((1
S∪S′)p

′

1 )M0

)
.

Using the hypothesis, we know (as in the proof of Item 2a) that

supp
(
MH((1S∪S

′
)pH) · · ·M1((1

S∪S′)p1 )M0

)
⋂

supp
(
MH((1S∪S

′
)p
′

H ) · · ·M1((1
S∪S′)p

′

1 )M0

)
= ∅

and conclude that Item 2b holds.
To prove the Item 2c, notice first that (P (wi))i6∈IS∪S′ forms a basis of {T ∈ RSH |∀i ∈

IS∪S′ , Ti = 0}. We check using (17) and (9) that, for any i 6∈ IS∪S′ ,

AS∪S′P (wi) =

{
A0 = 0 , if i 6∈ S ∪ S ′
MH(wi

H) · · ·M1(w
i
1)X

|F| = 0 , if i ∈ S ∪ S ′ and pi 6∈ P.
As a consequence,

{T ∈ RS
H |∀i ∈ IS∪S′ , Ti = 0} ⊂ Ker (AS∪S′) . (22)

To prove the converse inclusion, we observe that

rk (AS∪S′) = dim
(

Span
(
AS∪S′P (wi)|i ∈ IS∪S′

))
= dim

(
Span

(
MH(wi

H) · · ·M1(w
i
1)X

|F||i ∈ IS∪S′
))

= dim
(

Span
(
MH(wi

H) · · ·M1(w
i
1)|i ∈ IS∪S′

))
where the last equality holds because, when |P| = 1, X |F| = X is full row rank. Moreover, under
the hypothesis of the proposition, for any distinct i and j ∈ IS∪S′ , Di ∩ Dj = ∅, and therefore

dim
(

Span
(
MH(wi

H) · · ·M1(w
i
1)|i ∈ IS∪S′

))
= |IS∪S′ |.

Therefore, rk (AS∪S′) = |IS∪S′ |; i.e.

SH − dim(Ker (AS∪S′)) = SH − dim({T ∈ RS
H |∀i ∈ IS∪S′ , Ti = 0})

and dim(Ker (AS∪S′)) = dim({T ∈ RSH |∀i ∈ IS∪S′ , Ti = 0}). Combined with (22), we obtain

Ker (AS∪S′) = {T ∈ RS
H |∀i ∈ IS∪S′ , Ti = 0}.

This proves Item 2c.
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Appendix B. Proof of Proposition 3

The fact that, Ker (AS∪S′) is the orthogonal complement of RSH

S∪S′ is a direct consequence of Propo-
sition 2, Item 2c, and the fact that, when |P| = 1, IS∪S′ = S ∪ S ′. We then deduce that, for any
T ′ ∈ Ker (AS∪S′), PS∪S′T ′ = 0. A straightforward consequence (see (11)) is that A satisfies the
sparse-deep-NSP with constants (γ, ρ) = (1,+∞) forM.

To calculate σM, let us consider S, S ′ ∈M and T in the orthogonal complement of Ker (AS∪S′).
Using Proposition 2, Item 2c, we express T under the form T =

∑
i∈S∪S′ TiP (wi), where wi is

defined by (18). Using (9) and (8), the linearity of A and the fact that, when |P| = 1, X |F| = X ,
we obtain

‖AS∪S′T‖2 = ‖
∑
i∈I

TiAP (wi)‖2,

= ‖
∑
i∈I

TiMH(wi) · · ·M1(w
i)X‖2,

≥ σ2min(X)‖
∑
i∈I

TiMH(wi) · · ·M1(w
i)‖2 (23)

Let us remind that, applying Proposition 2, Item 2a, the supports of MH(wi) · · ·M1(w
i) (i.e. Di)

and MH(wj) · · ·M1(w
j) (i.e. Dj) are disjoint, when i 6= j. Let us also add that, since AP (wi) is

the matrix of a convolution with a Dirac mass, we have |Di| = N , for all i ∈ I. Combining these
two properties with (23) and reminding that ‖.‖ is the Frobinius norm, we obtain

‖AS∪S′T‖2 ≥ σ2min(X)
∑
i∈I

T 2
i ‖MH(wi) · · ·M1(w

i)‖2

= σ2min(X)N
∑
i∈I

T 2
i = σ2min(X)N‖T‖2.

Using that PS∪S′T = T , we deduce the value of σM in the proposition.

Appendix C. Proof of Theorem 5

Let us consider a path p ∈ P , using (17), since all the entries of MH(1S∪S
′

H ) · · ·M1(1
S∪S′
1 )M0

belong to {0, 1}, the restriction of the network to p satisfy the same property. Therefore, we can
apply Proposition 3 and Theorem 3 to the restriction of the convolutional linear network to p, with

X ′ = Id and Y ′ = MH((w′)pH) · · ·M1((w
′)p1 )

and obtain, when δp√
Nσmin(X)

≤ 1
2 max(‖P (wp)‖∞, ‖P ((w′)p)‖∞), for any p ∈ [1,∞[

dp([(w
′)p], [wp]) ≤ 7

(HS)
1
p

√
Nσmin(X)

ε1−Hδp. (24)
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We also have, using the definition of X |F|,

δ + η = ‖MH(wH) · · ·M1(w1)X
|F| − Y ‖+ ‖MH(w′H) · · ·M1(w

′
1)X

|F| − Y ‖
≥ ‖MH(wH) · · ·M1(w1)M0X −MH(w′H) · · ·M1(w

′
1)M0X‖

≥ σmin(X)‖MH(wH) · · ·M1(w1)M0 −MH(w′H) · · ·M1(w
′
1)M0‖

= σmin(X)
∑
p∈P
‖MH(wp

H) · · ·M1(w
p
1 )M0 −MH((w′)pH) · · ·M1((w

′)p1 )M0‖

= σmin(X)
∑
p∈P

δp

where the penultimate equality is due to Proposition 2, Item 2b. Combining this inequality, the
definition of δp and a standard norm inequality, we obtain∑

p∈P
(δp)p

 1
p

≤
∑
p∈P

δp ≤ δ + η

σmin(X)
. (25)

Finally, combining the definition of the metric ∆p (19), (24) and the above inequality we obtain

∆p({w′}, {w}) ≤ 7
(HS)

1
p

√
Nσmin(X)

ε1−H

∑
p∈P

(δp)p

 1
p

,

≤ 7
(HS)

1
p

√
Nσmin(X)2

ε1−H (δ + η).
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