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Abstract
We present a method to obtain the average and the typical value of the number of critical points
of the empirical risk landscape for generalized linear estimation problems and variants. This rep-
resents a substantial extension of previous applications of the Kac-Rice method since it allows to
analyze the critical points of high dimensional non-Gaussian random functions. We obtain a rigor-
ous explicit variational formula for the annealed complexity, which is the logarithm of the average
number of critical points at fixed value of the empirical risk. This result is simplified, and extended,
using the non-rigorous Kac-Rice replicated method from theoretical physics. In this way we find
an explicit variational formula for the quenched complexity, which is generally different from its
annealed counterpart, and allows to obtain the number of critical points for typical instances up to
exponential accuracy.
Keywords: Landscape complexity, Empirical risk landscape, Generalized linear models, Kac-Rice

1. Introduction and main results

1.1. Introduction

Characterizing the landscape of the empirical risk is a key issue in several contexts. Many current
machine learning problems are both non-convex and high-dimensional. In these cases, the analysis
of optimization algorithms, such as gradient descent and its stochastic variants, represents a very
hard challenge. In recent years, there has been a series of works that developed a landscape-based
approach to tackle this challenge. The key idea is to study the statistical properties of the empirical
risk landscape, and to use these findings to obtain results on the performance of algorithms. Without
the aim of being exhaustive this research avenue includes analysis of the landscape of neural net-
works, matrix completion, tensor factorization and tensor principal component analysis(Fyodorov,
2004; Fyodorov and Nadal, 2012; Kawaguchi, 2016; Soudry and Carmon, 2016; Ge et al., 2016;
Freeman and Bruna, 2016; Bhojanapalli et al., 2016; Park et al., 2017; Du et al., 2018; Ge and
Ma, 2017; Ge et al., 2017; Lu and Kawaguchi, 2017; Ling et al., 2019; Ben Arous et al., 2019;
Ros et al., 2019; Mannelli et al., 2019; Sarao Mannelli et al., 2019; Ben Arous et al., 2018; Biroli
et al., 2019). The majority of these works identifies the region of parameters where the landscape
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is “easy”, i.e. it focuses on the regime where there shouldn’t be any bad local minima and it proves
that indeed there are none. However, gradient descent and other landscape-based algorithms are
often observed to work even very far from the region described above where the landscape can be
proved mathematically to be “easy”. A possible reason is that the bounds obtained rigorously are
not tight enough. Another, more interesting, is that the landscape is “hard”, i.e. spurious minima
are present, but their basins of attraction are small and the dynamics is able to avoid them (Mannelli
et al., 2019; Sarao Mannelli et al., 2019).
Here we develop a general method that allows to study and focus directly on the “hard” regime,
where the empirical risk displays a huge number of bad minima. Our aim is to obtain explicit for-
mulas for the number of critical points of the empirical risk landscape, to characterize their indices,
and the Hessian associated to them. For a given problem, this will allow to identify the topological
transition where the landscape becomes “easy”, and to analyze very precisely the “hard” regime.
In recent years, there has been remarkable progress on this subject in the field of spin-glasses and
probability theory through the Kac-Rice method (Fyodorov and Williams, 2007; Bray and Dean,
2007; Auffinger and Ben Arous, 2013; Auffinger et al., 2013; Subag, 2017; Ben Arous et al., 2019;
Ros et al., 2019). This line of research has allowed to put on a firm ground results previously
obtained in the physics literature (Bray and Moore, 1980; Kurchan, 1991; Crisanti and Sommers,
1995; Cavagna et al., 1999), and it has unveiled important relationships with random matrix theory.
Its main domain of application has been the study of the landscapes associated to Gaussian random
functions. Its extension to tackle the case of non-Gaussian high-dimensional random functions is
an open problem—one that is crucial to address in order to characterize the critical points of the
empirical risk.
Here we present an important step forward: an extension of the Kac-Rice method to compute the
number of critical points of the empirical risk arising in generalized linear estimation problems
(Nelder and Wedderburn, 1972; McCullagh, 1984; Barbier et al., 2019). Our approach contains
both mathematically rigorous analysis and exact results obtained by theoretical physics methods.
We work out a rigorous formula for the logarithm of the average of the number of the critical points,
called henceforth annealed complexity. This quantity already provides interesting information in
itself. A more refined quantity, but much more challenging to be analyzed rigorously, is the average
of the logarithm of the number of critical points. This so-called quenched complexity is truly repre-
sentative of the typical properties of the landscape for a given instance of the empirical risk and is
generically different from its annealed counterpart which is instead dominated by rare instances, see
for example the case of tensor PCA (Ros et al., 2019). In order to obtain the quenched complexity,
we develop a non-rigorous but exact approach that combines the Kac-Rice method with the replica
theory used by physicists (Ros et al., 2019).
Our main results are two explicit formulas for the quenched and annealed complexities. They open
the way towards a full fledged characterization of the landscape of generalized estimation problems
and variants, and the analysis of landscape-based algorithms, such as gradient descent. Note that
these models can also be viewed as the simplest neural network (single-node) in a teacher-student
setting (Engel and Van den Broeck, 2001).

1.2. Main results

We consider two classes of high-dimensional random functions. The first one is a kind of energy
that arises in a simple model of neural networks (the perceptron, cf. Engel and Van den Broeck
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(2001)) and in mean-field glass models (Franz and Parisi, 2016):

L1(x) ≡ 1

m

m∑
µ=1

φ(ξµ · x), (1)

where φ : R→ R is a smooth activation function (the hypotheses on φ are precised later), x ∈ Sn−1,
the unit sphere in n dimensions, and ξµ are i.i.d. random variables generated from the standard
Gaussian distribution in Rn. The second class of functions we will consider are related to the
loss functions of generalized linear models (GLMs) Nelder and Wedderburn (1972); McCullagh
(1984). In generalized linear estimation an observer has to infer a hidden vector x? ∈ Sn−1 from
the observation of the m-dimensional output vector Y = {φ(ξµ · x?)}mµ=1. In this sense, the GLMs
generalize the usual linear regression by allowing the output function to be non-linear1. We consider
here random GLMs, meaning that the data (or measurement) matrix ξ is taken random, with an i.i.d.
standard Gaussian distribution, and we assume that the function φ and the data matrix ξ are given
to the observer. This naturally leads to the mean square loss L2:

L2(x) ≡ 1

2m

m∑
µ=1

[φ(ξµ · x?)− φ(ξµ · x)]2 , (2)

GLMs (and their random versions) arise in many different areas of statistics, such as e.g. compressed
sensing, phase retrieval, logistic regression, or in random artificial neural networks; we refer to Bar-
bier et al. (2019) for a review of its numerous applications.
Here, we are interested in the statistics of the number of critical points, or more precisely the com-
plexity of the associated empirical risk (2). For any open intervals B ⊆ R+ and Q ⊆ (−1, 1), we
consider the (random) number Critn,L2(B,Q) of critical points of the function L2 with loss value
in B and overlap with the signal q ≡ x · x? in Q:

Critn,L2(B,Q) ≡
∑

x:gradL2(x)=0

1{L2(x) ∈ B, x · x? ∈ Q}. (3)

Here grad is the Riemannian gradient on Sn−1. For L1 we define the similar quantity Critn,L1(B),
dropping the notion of overlap. The average ECritn,L2(B,Q) is the quantity that can be ana-
lyzed rigorously. Its logarithm divided by n is called the annealed complexity. However, since
the random variable Critn,L2(B,Q) is in general strongly fluctuating and scales exponentially with
n, its typical value is different from the mean and can be obtained by taking the exponential of
E ln Critn,L2(B,Q). This last quantity (divided by n) is called the quenched complexity. It is in
general different from the annealed one, with very few exceptions (Subag, 2017; Crisanti and Som-
mers, 1995).
Our main results consist in explicit formulas for the annealed and quenched complexities for L1 and
L2. The formula for the annealed case is obtained by a rigorous Kac-Rice method, whereas the one
for the quenched complexity is obtained by theoretical physics methods combining the Kac-Rice
method with replica theory. We consider the limit n,m→∞ with m/n→ α > 1, a setting called
in the statistical physics literature the thermodynamic limit. The condition α > 1 is essential, as
can be seen for instance in eq. (1) : if m < n, for each realization of {ξµ}, the function L1 has an

1One can also consider GLMs in which the output function is stochastic. Here, we restrict to deterministic outputs.
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infinite number of critical points in the set of unit-norm x orthogonal to all the {ξµ}, and counting
the critical points in this case is meaningless (or one has to quotient the space to take care of the
degeneracy). Our results hold for many classical activation functions φ, such as e.g. the hyperbolic
tangent, the arctangent, the sigmoid, or a smoothed and leaky version of the ReLU activation func-
tion1. Henceforth we shall denote C+ the strict upper-half complex plane, andM(Rk) the set of
probability measures on Rk. For two probability measures µ and ν we define the relative entropy
H(µ|ν) ≡

∫
ln(dµ/dν)dµ if µ is absolutely continuous with respect to ν, and +∞ otherwise. Fi-

nally, µG is a generic notation for the standard Gaussian measure on any Rk.
We can now present our main results.

Theorem 1 (The annealed complexity of L1) Let B ⊆ R a non-empty open interval and denote
Mφ(B) the set of probability measures ν on R such that

∫
ν(dt)φ(t) ∈ B. Given:

• Eφ(ν) ≡ ln
[∫
ν(dx)φ′(x)2

]
,

• tφ(ν) ≡
∫
ν(dx)xφ′(x),

• Let z ∈ Rn×m an i.i.d. standard Gaussian matrix, and y ∈ Rm a vector with components
taken i.i.d. from a probability measure ν. LetD(ν) the diagonal matrix of sizemwith elements
D

(ν)
µ = φ′′(yµ). We define µα,φ[ν] as the asymptotic spectral measure of zD(ν)zᵀ/m.

• κα,φ(ν, C) ≡
∫
µα,φ[ν](dx) ln |x− C|,

one has2:

lim
n→∞

1

n
lnE Critn,L1(B) =

1 + lnα

2
+ sup
ν∈Mφ(B)

[
−1

2
Eφ(ν) + κα,φ(ν, tφ(ν))− αH(ν|µG)

]
.

A note on free probability Interestingly, the measure µα,φ[ν] can be interpreted as the free mul-
tiplicative convolution of the Marchenko-Pastur law (at ratio α) and the asymptotic spectral dis-
tribution of the matrix D(ν), cf. e.g. Voiculescu (1987); Anderson et al. (2010)3. We describe in
Section 3 how to explicitly compute the density of µα,φ[ν], or its linear spectral statistics (as e.g.
κα,φ(ν, C)), via the computation of its Stieljtes transform.

We turn to our second annealed result:

Theorem 2 (The annealed complexity of L2) LetB ⊆ R+ andQ ⊆ (−1, 1) two non-empty open
intervals. For q ∈ (−1, 1) we denoteMφ(B, q) the set of probability measures ν on R2 such that

∫
ν(dx,dy) y φ′(x)

[
φ
(
qx+

√
1− q2y

)
− φ(x)

]
= 0,∫

ν(dx,dy)
[
φ
(
qx+

√
1− q2y

)
− φ(x)

]2
∈ B.

(4)

Given:
1The precise hypotheses on the activation function φ are precised in Section 2.
2A fully rigorous statement would imply a lower and an upper bound given by a supremum over the adherence and

the interior ofMφ(B). For reasons of lightness and clarity of the presentation we write it in the simpler presented form.
3Free multiplication is usually defined for positively-supported measures, however one can generalize it here by

explicitly separating the positive and negative parts of φ′′ (we can show freeness of the resulting two random matrices).
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• Eφ(q, ν) ≡ ln

[∫
ν(dx,dy)φ′(x)2

[
φ
(
qx+

√
1− q2y

)
− φ(x)

]2
]

,

• tφ(q, ν) ≡
∫
ν(dx,dy)xφ′(x)

[
φ(x)− φ

(
qx+

√
1− q2y

)]
,

• fq is a function from R2 to R defined by:

fq(x, y) ≡ φ′ (x)2 − φ′′ (x)
[
φ
(
qx+

√
1− q2y

)
− φ (x)

]
, (5)

• Let z ∈ Rn×m an i.i.d. standard Gaussian matrix, and Y ∈ Rm×2 with components taken i.i.d.
from a probability measure ν on R2. Let D(ν,q) the diagonal matrix of size m with elements
D

(ν,q)
µ = fq(Yµ). We define µα,φ[q, ν] as the asymptotic spectral measure of zD(ν,q)zᵀ/m.

• κα,φ(q, ν) ≡
∫
µα,φ[q, ν](dx) ln |x− tφ(q, ν)|,

then one has:

lim
n→∞

1

n
lnE Critn,L2(B,Q) =

1 + lnα

2
(6)

+ sup
q∈Q

sup
ν∈Mφ(B,q)

[
1

2
ln(1− q2)− 1

2
Eφ(q, ν) + κα,φ(q, ν)− αH(ν|µG)

]
.

The proof of Theorem 1 is presented in Section 2. The proof of Theorem 2 is a straightforward
generalization, and sketched in Appendix C.1. The variational problems in Theorems 1 and 2 are
challenging, as they imply an optimization on a set of measures, and they involve transforms of this
measure that are very hard to access numerically. In Section 3 we present a drastic simplification:
a heuristic calculation that allows one to reduce the supremum over the probability measure ν to a
much more straightforward optimization over a small number of parameters.
As we have already stressed, the annealed complexity, although interesting in itself, is generically
not representative of the landscape corresponding to a given typical instance of the empirical risk. In
order to obtain the value of the quenched complexity we use the replicated Kac-Rice method, which
is an extension to non-Gaussian functions of the one developed in Ros et al. (2019). Although
the replica method is non-rigorous, it is considered an exact method in theoretical physics and it
has been proven to give correct results for spin-glasses and inference problems (Talagrand, 2006;
Barbier et al., 2019). We have obtained an explicit formula1 for the quenched complexity of L1 and
L2 at fixed values of the empirical risk, and overlap with the solution (in the L2 case).
For L1, using the notations of Theorem 1 we have:

Result 1 (Quenched complexity of L1) Let B ⊆ R an open interval.

lim
n→∞

1

n
E ln Critn,L1

(B) =
lnα− α ln 2π

2
+ sup
ν∈Mφ(B)
q∈(0,1)

extr

{
κα,φ(ν, C) +

1− α
2

ln(1− q)

+
1− αq

2(1− q)
−
∫
ν(dλ)g(λ)− AÂ− aâ

2
+ C(qĉ− Ĉ)− 1

2
ln[A− a]− a

2(A− a)
+ α

∫
R4

Dξ ln I(ξ)

}
.

1Here we used a replica symmetric structure, which is correct in many cases, and a very good approximation in others
were replica symmetry has to be broken (Mézard et al., 1987).
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Here, ξ = (ξq, ξa, ξc, ξ
′
c) and Dξ is the standard Gaussian probability measure on R4. The extr

denotes extremization with respect to all variables (A, Â, a, â, C, Ĉ, ĉ, {g(λ)}). We denoted

I(ξ) ≡
∫
R

dλ e
− λ2

2(1−q) +
g(λ)
α

+ Â−â
2α

φ′(λ)2+ Ĉ−ĉ
α
φ′(λ)λ+

√
q

1−q ξqλ+
√

â
α
ξaφ′(λ)+

√
ĉ

2α
[φ′(λ)(ξc+iξ′c)+λ(ξc−iξ′c)].

In this formula, the notation extr denotes that one should set the partial derivatives with respect
to the involved variables to zero. This notation arises from the replica calculation, which mixes
saddle-point computations with Lagrange multipliers associated to certain constraints, and the pre-
cise meaning of this extremization (as a supremum or infimum) would have to be clarified by a more
rigorous method. On a numerical point of view, one would have to solve the associated saddle-point
equations, so that this precise meaning is not crucial for applications. We can state a very similar
result for L2:

Result 2 (Quenched complexity of L2) Let B ⊆ R, Q ⊆ (−1, 1) two open intervals and:

• For m ∈ (−1, 1),Mφ(B,m) is the space of probability measures ν on R2 that satisfy:{
1
2

∫
ν(dλ0,dλ)[φ(λ)− φ(λ0)]2 ∈ B,∫

ν(dλ0,dλ)φ′(λ)[φ(λ)− φ(λ0)](λ0 −mλ) = 0.
(7)

• Let f(x, y) ≡ φ′′(y)[φ(y)−φ(x)]+φ′(y)2. Let z ∈ Rn×m an i.i.d. standard Gaussian matrix,
and Y ∈ Rm×2 with components taken i.i.d. from a probability measure ν on R2. LetD(ν) the
diagonal matrix of size m with elements D(ν)

µ = f(Yµ). We define µα,φ[ν] as the asymptotic
spectral measure of zD(ν)zᵀ/m.

• χα,φ(ν, C) ≡
∫
µα,φ[ν](dx) ln |x− C|.

One has:

lim
n→∞

1

n
E ln Critn,L2(B,Q) = sup

m∈Q
q∈(0,1)

sup
ν∈Mφ(B,m)

extr

[
lnα− α ln 2π

2
+ χα,φ(ν, C)

+
1− αq −m2

2(1− q)
+

1− α
2

ln(1− q)− 1

2
ln(A− a)− a

2(A− a)
− AÂ

2
+
aâ

2

−C0Ĉ0 − CĈ + cĉ−
∫
ν(dλ0, dλ)g(λ0, λ) + α

∫
R4×R

DξDλ0 ln I(λ0, ξ)

]
.

The extremum is made over all the variables (A, a,C0, C, c, Â, â, Ĉ, ĉ, Ĉ0, {g(λ0, λ)}). D denotes
the standard Gaussian measure, and the variables C0, c, C are related by the additional constraint

−m(1− q)C0 − (q −m2)C + (1−m2)c = 0.

I(λ0, ξ) is defined as, with ξ ≡ (ξq, ξa, ξc, ξ
′
c):

I(λ0, ξ) ≡
∫
R

dλ e
m

1−qλ
0λ− λ2

2(1−q) +

√
q−m2

1−q ξqλ+
g(λ0,λ)

α
+
Ĉ0
α
φ′(λ)[φ(λ)−φ(λ0)]λ0+ Ĉ−ĉ

α
λφ′(λ)[φ(λ)−φ(λ0)]

e
Â−â
2α

φ′(λ)2[φ(λ)−φ(λ0)]2+
√

â
α
ξaφ′(λ)[φ(λ)−φ(λ0)]+

√
ĉ

2α [φ′(λ)[φ(λ)−φ(λ0)](ξc+iξ′c)+λ(ξc−iξ′c)].

The derivation of Result 1 is given in Section 4. Result 2 can be derived by a straightforward
generalization of this computation, see Appendix C.1.
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1.3. Conclusion, outcomes and perspectives

We have obtained analytical results for the annealed and quenched complexities of statistical mod-
els with non-Gaussian loss functions arising in generalized linear estimation and simple models of
glasses and neural networks. Our method is versatile and can be easily extended to other cases. We
describe in Appendix C.2 three other inference models to which it applies: binary linear classifica-
tion, a mixture of two Gaussians, and a simple model of unsupervised learning.
As a sanity check of our results, we have analytically verified by explicit solution that for a linear
activation function, the annealed complexities of L1 is null. It is again a tedious but straightforward
computation to check that the annealed complexity of L1 with a quadratic activation φ(x) = x2 is
also null, as the number of critical points in this case is linear with n. Note that for L2, even the
case of a linear activation is non trivial, as shown in the very recent analysis of Fyodorov and Tublin
(2019).
Our results allow for a complete characterization of the empirical loss landscapes of generalized lin-
ear models. The main issue ahead is determining for which class of functions φ and in which regimes
(e.g. values of α), the annealed and quenched complexities become positive, i.e. when the associ-
ated landscape is rough. This will allow to study the connection between landscape properties and
dynamics induced by local algorithms. In particular, it will shed light on the relationship between
the roughness of the empirical loss landscape and the existence of “hard” phases in the learning of
generalized linear models (Barbier et al., 2019). It will also provide an interesting benchmark for
obtaining the algorithmic thresholds of gradient descent (and variants) only through the knowledge
of the landscape properties (Sarao Mannelli et al., 2019; Mannelli et al., 2018). Based on ongoing
works, we can for instance conjecture the existence of a rough landscape for small enough α in
phase retrieval (Lucibello et al., 2019) and retarded learning (Engel and Van den Broeck, 2001).
Addressing these questions requires additional work, which is beyond the scope of this paper. We
have explained in Section 3 how to make tractable the variational problem associated to the annealed
and quenched complexity. Its analysis for specific models is an ongoing direction of research and
will be presented elsewhere.
Another important extension of our results consists in counting the critical points of a fixed index
(i.e. with a fixed number of negative directions in the spectrum of the Hessian). This would provide
additional interesting information, in particular it would allow to differentiate local minima from the
other critical points of the landscape, as was done for spin glass models in Auffinger et al. (2013).
Such a counting would require to understand the large deviations properties of the eigenvalues of
the Hessian arising for generalized linear models, a random matrix problem that is hard but hope-
fully tractable by building on recent developments (Maida, 2007; Ben Arous et al., 2019). This is
an ongoing work that we are pursuing, with already promising results.
As final note, it is an open problem to generalize our methods to neural network models with many
nodes and hidden layers; the random matrix analysis of the Hessian in this case is a particularly
exciting challenge.

2. Proof of Theorem 1 for the annealed complexity

In this section we prove Theorem 1. The technique leverages the Kac-Rice formula and Sanov’s
theorem on the large deviations of the empirical measure of i.i.d. variables. First we precise our
hypotheses on φ, that we will take in the following set of “well-behaved” activation functions:
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Definition 1 φ : R→ R is “well-behaved” if it is of class C3 and if, for y ∼ N (0, 1), the random
variable a = φ′(y) admits a continuous probability density in a neighborhood of a = 0.

2.1. The Kac-Rice formula

The first step is to apply the Kac-Rice formula to the random function L1:

Lemma 1 (Kac-Rice formula) For any x ∈ Sn−1, denote gradL1(x) and HessL1(x) the (Rie-
mannian) gradient and Hessian of L1 at the point x. Then gradL1(x) has a well defined density (on
the tangent space TxSn−1 ' Rn−1) in a neighborhood of zero, that we denote ϕgradL1(x). Denote
µS the usual surface measure on Sn−1. One has:

ECritn,L1(B) =

∫
Sn−1

ϕgradL1(x)(0)E
[
1L1(x)∈B |det HessL1(x)|

∣∣∣gradL1(x) = 0
]
µS (dx) .

The proof of this lemma uses necessary conditions for a random function to be a.s. Morse1, that are
stated in Azaı̈s and Wschebor (2009). The details are given in Appendix A.1.

2.2. The complexity at finite n

In this section we state the result of the Kac-Rice method. For y ∈ Rm, let Λ(y) ∈ Rm×m:

Λ(y) ≡
(

Im −
φ′(y)φ′(y)ᵀ

‖φ′(y)‖2

)
D(y)

(
Im −

φ′(y)φ′(y)ᵀ

‖φ′(y)‖2

)
, (8)

in which we (abusively) denote φ′(y) ≡ (φ′(yµ))mµ=1, and D(y) ∈ Rm×m the diagonal matrix with
elements D(y)µ = D(yµ) = n

mφ
′′(yµ). The main result of this section is:

Lemma 2 (Complexity at finite n)

E Critn,L1(B) = Cnen
1+lnα

2 Ey

[
1 1
m

∑
µ φ(yµ)∈B e−

n−1
2

ln( 1
m

∑
µ φ
′(yµ)2)Ez

[
|detHΛ

n (y)|
]]
,

in which Cn is exponentially trivial, meaning limn→∞(1/n) ln Cn = 0. The variable y ∈ Rm
follows N (0, Im), and z ∈ R(n−1)×m has i.i.d. standard Gaussian matrix elements, independent of
y. HΛ

n (y) is a square matrix of size (n− 1) with the following distribution :

HΛ
n (y)

d
=

1

n
zΛ(y)zᵀ −

 1

m

m∑
µ=1

yµφ
′ (yµ)

 In−1. (9)

The rest of the section is devoted to the proof of Lemma 2. We start from the result of Lemma 1.
The following proposition specifies the joint distribution of (L1(x), gradL1(x),HessL1(x)):

1A Morse function is a function whose critical points are all non-degenerate.
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Proposition 3 (Distribution of the gradient and Hessian) Let x ∈ Sn−1. Then
(L1(x), gradL1(x),HessL1(x)) follows the following joint distribution:

L1(x)
d
=

1

m

m∑
µ=1

φ(yµ), (10a)

gradL1(x)
d
=

1

m

m∑
µ=1

φ′(yµ)zµ, (10b)

HessL1(x)
d
=

1

m

m∑
µ=1

φ′′(yµ)zµzᵀµ −

 1

m

m∑
µ=1

yµφ
′(yµ)

 In−1, (10c)

in which y = (yµ)mµ=1 ∼ N (0, Im), (zµ)mµ=1
i.i.d.∼ N (0, In−1), and all {yµ, zν} are independent. We

identified in these equations the tangent spaces Tx Sn−1 with Rn−1.

Proof Denote P⊥x the orthogonal projection on {x}⊥. For a smooth function f : Sn−1 → R, ∇f
and ∇2f are its Euclidean gradient and Hessian. The Riemannian structure on Sn−1 induces the
gradient and Hessian of f as grad f(x) = P⊥x ∇f and Hess f(x) = P⊥x ∇2fP⊥x − (x · ∇f(x))P⊥x .
Applying these formulas yields:

gradL1(x) =
1

m

m∑
µ=1

(P⊥x ξµ)φ′(ξµ · x), (11)

HessL1(x) =
1

m

m∑
µ=1

φ′′(ξµ · x)
(
P⊥x ξµ

)(
P⊥x ξµ

)ᵀ
−

 1

m

m∑
µ=1

(ξµ · x)φ′(ξµ · x)

P⊥x . (12)

Letting yµ ≡ ξµ · x and zµ ≡ P⊥x ξµ (identified to an element of Rn−1) yields the result.

The joint distribution of eq. (10) is invariant with respect to x, thus we can chose x to be the North
pole x = en = (δi,n)ni=1. With ωn ≡ 2πn/2/Γ(n/2) the volume of Sn−1, we obtain from Lemma 1:

ECritn,L1(B) = ωnϕgradL1(en)(0)E
[
|det HessL1(en)|1L1(en)∈B

∣∣∣gradL1(en) = 0
]
. (13)

Removing the en indication and conditioning on the distribution of y in eq. (10), we reach:

ECritn,L1(B) = ωnEy

[
1 1
m

∑
µ φ(yµ)∈B ϕgradL1|y(0)Ez

[
|det HessL1|

∣∣∣gradL1 = 0, y
]]
.

Once conditioned on y, eq. (10b) describes a Gaussian density so we can directly compute:

ωnϕgradL1|y(0) =
2πn/2

Γ(n/2)
exp

−n− 1

2
ln

 2π

m2

m∑
µ=1

φ′(yµ)2

 ,
= Cn exp

n
2

+
n

2
ln
m

n
− n− 1

2
ln

 1

m

m∑
µ=1

φ′(yµ)2

 , (14)
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in which ln Cn = On(n) (using Stirling’s formula). The conditioning of the Hessian by gradL1 = 0
at fixed y reduces to a linear conditioning on z. One thus obtains by classical Gaussian conditioning:

Ez

[
|det HessL1|

∣∣∣gradL1 = 0, y
]

= Ez
[
| detHΛ

n (y)|
]
, (15)

in which HΛ
n (y) is defined by eq. (9). This ends the proof of Lemma 2.

2.3. Large deviations

This section is devoted to the end of the proof of Theorem 1. Denote νmy ≡ 1
m

∑m
µ=1 δyµ the

empirical distribution of y. We take the notations of Theorem 1 and Lemma 2. We first state an
important lemma on the concentration of Ez

[
| detHΛ

n (y)|
]

1:

Lemma 4 There exists η > 0 such that for all t > 0:

lim
n→∞

1

n1+η
lnP

[∣∣∣∣ 1n lnEz
[∣∣detHΛ

n (y)
∣∣]− κα,φ (νmy , tφ(νmy )

)∣∣∣∣ ≥ t] = −∞. (16)

The proof of Lemma 4 is detailed in Appendix A.2. Note that we expect this result to actually be
valid up to η = 1, as the large deviations of the spectral distribution of random matrices is typically
on the n2 scale (Ben Arous and Guionnet, 1997; Hiai and Petz, 1998). The following moment
condition, proven in Appendix A.3, will be important:

Lemma 5 For every γ ∈ (1, α) we have:
lim sup
n→∞

1

n
lnEy

[
eγn[−

1
2

ln( 1
m

∑
µ φ
′(yµ)2)+κα,φ(νmy ,tφ(νmy ))]

]
< +∞, (17a)

lim sup
n→∞

1

n
lnEy

[
eγn[−

1
2

ln( 1
m

∑
µ φ
′(yµ)2)+ 1

n
lnEz[|detHΛ

n (y)|]]
]
< +∞. (17b)

Then we can conclude using Sanov’s large deviation principle (Sanov, 1958; Dembo and Zeitouni,
1998), and Varadhan’s lemma. Using our previous lemmas, we obtain the statement of Theorem 1:

lim
n→∞

1

n
lnE Critn,L1(B) = sup

ν∈Mφ(B)

[
1 + lnα

2
−
Eφ(ν)

2
+ κα,φ(ν, tφ(ν))− αH(ν|µG)

]
. (18)

The proof of eq. (18) is detailed in Appendix A.4.

3. Towards a numerical solution to the variational problem

3.1. The logarithmic potential of µα,φ[ν]

Let ν ∈ M(R). The Stieltjes transform g(z) ≡
∫
µ(dt)(t− z)−1 of µα,φ[ν] is given by the unique

solution in C+ to the implicit equation (as shown for instance in Silverstein and Bai (1995)):

∀z ∈ C+, g(z) = −
[
z − α

∫
φ′′(t)

α+ φ′′(t)g(z)
ν(dt)

]−1

. (19)

1In the proofs of this section we assume that xφ′(x) and φ′′(x) are bounded. As one can always smoothly truncate
the largest values of φ without affecting the complexity, this does not remove any generality to our results.

296



LANDSCAPE COMPLEXITY FOR THE EMPIRICAL RISK OF GENERALIZED LINEAR MODELS

For any µ ∈M(R) and t ∈ R we define the logarithmic potential as U [µ](t) ≡
∫
µ(dx) ln |x− t|.

It is well defined with values in R ∪ {±∞}, see Faraut (2014) for a review on this subject. Our
goal is to numerically compute U [µ](t) for µ = µα,φ[ν] and an arbitrary t ∈ R, see Theorem 1. For
clarity, we will write µ for µα,φ[ν] for the remainder of this section. Let us define for any z ∈ C+,
G(z) ≡

∫
µ(dx) ln(z − x). G(z) is well defined and holomorphic on C+. Moreover, from the

Chapter II of Faraut (2014), we know that U [µ](t) = limε→0+ ReG(t+ iε).
From this it is clear that in order to get the logarithmic potential in the bulk, we need to be able

to evaluate G(z) for z ∈ C+. Define, for z, g ∈ C+
1:

F (z, g) ≡ − ln(g)− zg + α

∫
ν(dλ) ln(α+ φ′′(λ)g)− 1− α lnα. (20)

At any fixed z, F (z, g) is an holomorphic function of g on C+. Its Wirtinger derivative is:

∂F

∂g
(z, g) = −1

g
− z + α

∫
ν(dλ)

φ′′(λ)

α+ φ′′(λ)g
. (21)

Thus g(z) (the Stieltjes transform of µ, cf. eq. (19)) is the only g ∈ C+ such that ∂F
∂g (z, g) = 0.

Moreover, by definition g(z) is an holomorphic function on C+ with values in C+. We can thus
apply the usual composition of derivatives and obtain:

dF

dz
(z, g(z)) = −g(z). (22)

Furthermore we know dG
dz = −g(z). Computing the remaining constant by investigating the limit

Re[z]→∞, we reach that G(z) = F (z, g(z)) for every z ∈ C+. We thus have the crucial relation:

∀t ∈ R, U [µ](t) = lim
ε→0+

ReF (t+ iε, g(t+ iε)). (23)

This allows for an efficient numerical derivation of the logarithmic potential of µα,φ[ν], as we will
see in more details below.

3.2. Heuristic derivation of the simplified fixed point equations corresponding to Theorem 1

We present here an heuristic derivation of scalar fixed point equations for the numerical resolution
of Theorem 1. This technique could be easily extended to Theorem 2 as well as the quenched
calculations presented afterwards, but we restrict to this simpler case for the sake of the presentation.

3.2.1. EXPRESSING κα,φ(ν, t)

From eq. (23) we know that for every t ∈ R:

κα,φ(ν, t) = lim
ε→0+

Re
[
− ln(g(t+ iε))− (t+ iε)g(t+ iε) + α

∫
ν(dλ) ln

[
α+ φ′′(λ)g(t+ iε)

]
− 1− α lnα

]
.

1g ∈ C+, and (since α > 1) α+φ′′(λ)g ∈ C\(−∞, 1], thus we can use the principal determination of the logarithm.
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For every t ∈ R, g(t+iε) is the only solution in C+ to the partial derivative of the previous equation:

−1

g
− (t+ iε) + α

∫
ν(dλ)

φ′′(λ)

α+ φ′′(λ)g
= 0. (24)

So heuristically, we can write that for a small enough ε:

κα,φ(ν, t) = extr
g∈C+

[
− ln |g| − tgr + εgi + α

∫
ν(dλ) ln

∣∣α+ φ′′(λ)g
∣∣− 1− α lnα

]
, (25)

with g = gr + igi (in practice one iterates over gr and gi successively).

3.2.2. HEURISTIC SOLUTION TO THEOREM 1

We start from the result of Theorem 1. For a function f , we write E[f(X)] ≡
∫
ν(dt)f(t). We in-

troduce Lagrange multipliers to fix the conditions E[φ(X)] ∈ B, and we fix the values of E[φ′(X)2]
and E[Xφ′(X)]. We obtain:

lim
n→∞

1

n
lnE Critn,L1(B) = sup

l∈B
ν∈M(R)

extr
λ0,λ1,λ2

sup
A,t

[1 + lnα

2
− 1

2
lnA+ λ0l + λ1A+ λ2t

+ κα,ν(ν, t)− αH(ν|µG)− λ0E[φ(X)]− λ1E[φ′(X)2]− λ2E[Xφ′(X)]
]
. (26)

Note that now the supremum over ν is unconstrained over the setM(R) of probability distributions.
We now make use of eq. (25) to write, with 2K(α) ≡ −1 + lnα− 2α lnα and a small ε > 0:

lim
n→∞

1

n
lnE Critn,L1(B) = sup

l∈B
ν∈M(R)

extr
{λi},A,t
g∈C+

[
K(α)− 1

2
lnA+ λ0l + λ1A+ λ2t

− ln |g| − tRe[g] + εIm[g] + α

∫
ν(dλ) ln

∣∣α+ φ′′(λ)g
∣∣− αH(ν|µG)− λ0E[φ(X)]

− λ1E[φ′(X)2]− λ2E[Xφ′(X)]
]
. (27)

For any scalar functionF , the maximum supν [E[F (X)]− αH(ν|µG)] is attained in ν∗ with density
proportional to e−x

2/2+F (x)/α, which is called the Gibbs measure in statistical physics. This gives
(D is the standard Gaussian measure on R):

sup
ν∈M(R)

[E[F (X)]− αH(ν|µG)] = α ln

[∫
R
Dx eF (x)/α

]
. (28)

Plugging this into our previous equation for the annealed complexity yields:

lim
n→∞

1

n
lnE Critn,L1(B) = sup

l∈B
extr
{λi}
g∈C+

sup
A,t

{
K(α) + λ0l + λ1A+ λ2t

− 1

2
lnA− ln |g| − tRe[g] + εIm[g] (29)

+ α ln

[∫
R
Dx exp

{
−λ0φ(x) + λ1φ

′(x)2 + λ2xφ
′(x)

α
+ ln |α+ φ′′(x)g|

}]}
.
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This can be further simplified, as the extrema over A, t are trivially solved and give the value of
λ2 = Re[g] and λ1 = (2A)−1. Thus we obtain:

lim
n→∞

1

n
lnE Critn,L1(B) = (30)

sup
l∈B

extr
{λ0,λ1}
g∈C+

{
K(α) + λ0l +

1 + ln 2

2
+

1

2
lnλ1 − ln |g|+ εIm[g]

+ α ln

[∫
R
Dx exp

{
−λ0φ(x) + λ1φ

′(x)2 + Re[g]xφ′(x)

α
+ ln |α+ φ′′(x)g|

}]}
.

Let us now denote

〈· · · 〉λ0,λ1,g ≡
∫
RDx(· · · ) exp

{
−α−1

[
λ0φ(x) + λ1φ

′(x)2 + Re[g]xφ′(x)
]

+ ln |α+ φ′′(x)g|
}∫

RDx exp {−α−1 [λ0φ(x) + λ1φ′(x)2 + Re[g]xφ′(x)] + ln |α+ φ′′(x)g|}
,

then the fixed point equations of eq. (30) can be written as:

l = 〈φ(x)〉λ0,λ1,g, (31a)
1

2λ1
= 〈φ′(x)2〉λ0,λ1,g, (31b)

−Re[g]

|g|2
=
〈
xφ′(x)− αφ′′(x)(α+ φ′′(x)Re[g])

|α+ φ′′(x)g|2
〉
λ0,λ1,g

, (31c)

ε− Im[g]

|g|2
= −

〈αφ′′(x)2Im[g]

|α+ φ′′(x)g|2
〉
λ0,λ1,g

. (31d)

These equations are to be iterated over λ0, λ1, g, and l (while enforcing the constraint l ∈ B). From
experience, the best procedure is to start from the solution of the unconstrained problem (without
any constraint on the loss value), before smoothly following the solution while adding the constraint.
In the case of L2(x), one would follow a similar procedure.

4. The quenched complexity and the replica method

In this section we detail the principle of the quenched calculation that gives rise to Results 1-2. For
the sake of the presentation we restrict to Result 1, while Result 2 will be discussed in Appendix C.1.
We therefore focus on the function L1 of eq. (1). As the very basis of this calculation is non-rigorous
we present this calculation in a fashion closer to theoretical physics standards, differently from
Section 2 in which we present rigorous results on the annealed complexity. Some technicalities will
be postponed to Appendix B.

4.1. The replica trick and the p-th moment

The replica method is a heuristic tool of theoretical physics that allows to compute the quenched
values of observables in the thermodynamic (i.e. n→∞) limit from the knowledge of their integer
moments, under some assumptions. It is based on the non-rigorous identity (note that it involves an
inversion of limits), for a strictly positive function f of a n-dimensional random vector x:

lim
n→∞

E ln f(x) = lim
p→0+

lim
n→∞

1

p
ln [Ef(x)p] . (32)
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Mézard et al. (1987) gives a comprehensive introduction to the replica method and its (many) phys-
ical insights and consequences. Let B ⊆ R an open interval. The Kac-Rice formula can be stated
for the p-th moment of the complexity (Azäis and Wschebor, 2008; Adler and Taylor, 2009):

ECritn,L1(B)p =

[
p∏
a=1

∫
Sn−1

µS(dxa)

]
1 [{L1(xa) ∈ B}pa=1] ϕ{gradL1(xa)}pa=1

(0)

× E

[
p∏
a=1

|det HessL1(xa)|

∣∣∣∣∣{gradL1(xa)}pa=1 = 0

]
. (33)

Here, ϕ{gradL(xa)}pa=1
(0) represents the joint density of the p gradients, taken at 0. Note that the non-

linearity L1(x) only depends on the parameters yaµ ≡ ξµ ·xa, so we will often write L1(y) ≡ L1(x).
Proceeding as in the annealed case, we can rewrite the expectations by conditioning over {ya}pa=1:

ECritn,L1(B)p =

[
p∏
a=1

∫
µS(dxa)

]
E{ya}

1 [{L1(ya) ∈ B}pa=1] ϕ
{gradL1(xa)}pa=1

∣∣∣{ya}(0)

E

[
p∏
a=1

|det HessL1(xa)|

∣∣∣∣∣{gradL1(xa) = 0, ya}pa=1

]]
. (34)

The gradient and Hessian at xa live in the tangent plane to the sphere at xa, identified with Rn−1.
Note that the {yaµ} are Gaussian variables with zero mean and covariance E[yaµy

b
ν ] = δµνqab, with

qab ≡ xa · xb the “overlap” between replicas a and b. We introduce the variables {qab} via delta
functions in eq. (34):

E Critn,L1(B)p =

[
p∏
a=1

∫
µS(dxa)

][∏
a<b

∫
dqabδ(qab − xa · xb)

]
E{ya}

{
1 [{L1(ya) ∈ B}pa=1]

ϕ
{gradL1(xa)}pa=1

∣∣∣{ya}(0)E

[
p∏
a=1

|det HessL1(xa)|

∣∣∣∣∣{gradL1(xa) = 0, ya}pa=1

]}
. (35)

Since we fixed the {qab}, the distribution of the {ya} is fixed, as well as the joint distribution of
the loss, gradients and Hessians, as we will explicit in the following. As the number of overlap
variables is p(p − 1)/2 = On(1), we will perform a saddle-point over the variables {qab} in the
thermodynamic limit. The replica-symmetric assumption (see Mézard et al. (1987)) is a crucial
hypothesis that can be made in the framework of the replica method. It amounts to assume that, once
the saddle-point is performed, the extremizing {qab} are “symmetric” over the different replicas of
the system. Concretely, we assume that the variables {qab} satisfy qaa = 1, qab = q for a 6= b.
Assuming this structure of the overlap matrix allows to extend the expression of the moments to
arbitrary non-integer p, and then to take the p → 0+ limit as needed in eq. (32). We used a replica
symmetric structure, which is correct in many cases, and a very good approximation in others were
replica symmetry has to be broken.
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4.1.1. THE PHASE VOLUME FACTOR

Let us first compute the phase space factor in eq. (35). More precisely, the term:[
p∏
a=1

∫
µS(dxa)

][∏
a<b

δ(qab − xa · xb)

]
= n−

p(p−1)
2

 p∏
a=1

∫
Rn

dxa
∏
a≤b

δ
(
nqab − nxa · xb

) ,
in which we denoted qaa = 1. As we detail in Appendix B.1 we reach, when p→ 0+ and n→∞:

1

np
ln

 p∏
a=1

∫
Rn

dxa
∏
a≤b

δ
(
nqab − nxa · xb

) ' 1

2
log

2π

n
+

1

2

[
1

1− q
+ log(1− q)

]
. (36)

4.1.2. THE JOINT DENSITY OF THE GRADIENTS

We will now compute the joint density of the gradients at {xa}, conditioned on the values of {ya}.
The calculation is an extension of Sections V.C and V.E of Ros et al. (2019). We consider two vectors
xa and xb of overlap qab = q. It is easy to see that E[gradL(xa)|{yb}pb=1] = 0 from eq. (10b), so we
will focus on the covariance matrix E[gradL(xa)gradL(xb)ᵀ|{yc}pc=1]. After some calculations
detailed in Appendix B.2 we get the gradient density at leading exponential order:

ϕ{gradL1(xa)}pa=1|{ya}(0) '
∏
a6=b

δ

 1

m

m∑
µ=1

φ′(yaµ)

zp(q)yaµ + f0
p (q)ybµ + fp(q)

∑
c(6=a,b)

ycµ


× exp

np2 log
m

2π
− n

2
ln det

 1

m

m∑
µ=1

φ′(yaµ)φ′(ybµ)


1≤a,b≤p

 , (37)

in which the auxiliary functions (zp(q), fp(q), f
0
p (q)) are defined in eq. (87).

4.1.3. FACTORIZATION OF THE MEAN PRODUCT OF DETERMINANTS

The argument of this section is very close to Section V.F of Ros et al. (2019). We consider the term:

E

[
p∏
a=1

|det HessL1(xa)|

∣∣∣∣∣{gradL1(xa) = 0, ya}pa=1

]
. (38)

We make two important remarks, which are straightforward transpositions of the arguments of Ros
et al. (2019) to our problem, and we refer to this work for more extensive physical justifications.

• The conditioning over the gradients being zero, as in the annealed calculation, only gives a
finite-rank change to the Hessians HessL1(xa) and thus does not modify the limit at the scale
eΘ(n). At this scale, the statistics of the p matrices {HessL1(xa)}pa=1 are identical.

• The spectral measure of HessL1(xa) concentrates at a rate at least n1+ε for a small enough
ε > 0 (we expect that the actual rate is n2), so that at the order eΘ(n) the expectation value
factorizes and we can assume all the Hessians to be independent.

Before stating the consequences of such remarks, we give some definitions:
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• µG,q is the Gaussian probability measure on Rp with zero mean and covariance E[XaXb] =
(1− q)δab + q. Note that {yµ}mµ=1 are i.i.d. variables distributed according to µG,q.

• We define νy as the empirical measure of (y1, · · · , ym), that is νy ≡ 1
m

∑
µ δyµ . For every

a, we denote νay its marginal distribution: νay (dλa) ≡
∫ ∏

b(6=a) νy(dλ). Then νay is also the
empirical distribution of (yaµ)mµ=1.

Our remarks show that we can use the results of the annealed calculation, and we have here by
factorization of the expectation of the determinants, at leading exponential order:

E

[
p∏
a=1

|det HessL1(xa)|

∣∣∣∣∣{gradL1(xa)}pa=1 = 0, {ya}

]
' en

∑p
a=1 κα,φ(νay ,tφ(νay )). (39)

4.2. Decoupling the replicas and the p→ 0+ limit

We can then apply Sanov’s theorem to the empirical measure νy ∈ M(Rp). Recall that we have
constraints on this measure by the density of the gradient and the fixation of the energy level. More
precisely, we denoteM(p)

φ (q,B) the set of probability measures on Rp that satisfy the following:
∀1 ≤ a ≤ p,

∫
ν(dλ)φ(λa) ∈ B, (40a)

∀1 ≤ a 6= b ≤ p,
∫
ν(dλ)φ′(λa)

zp(q)λa + f0
p (q)λb + fp(q)

∑
c(6=a,b)

λc

 = 0. (40b)

Recall that the functions (zp(q), f
0
p (q), fp(q)) are defined in eq. (87). Leveraging from the results

of eqs. (36), (37) and (39), we obtain from Sanov’s theorem and Varadhan’s lemma:

lim
n→∞

1

n
lnE [Critn,L1(B)p] =

p

2
lnα+ sup

q∈(0,1)
sup

ν∈M(p)
φ (q,B)

[
p

2

(
1

1− q
+ ln(1− q)

)
(41)

− 1

2
ln det

[(∫
ν(dλ)φ′(λa)φ′(λb)

)
1≤a,b≤p

]
+

p∑
a=1

κα,φ (νa, tφ(νa))− αH(ν|µG,q)

]
.

Recall that νa is the marginal distribution of ν for the variable λa. We can then decouple the replicas
under an assumption on the measure ν that amounts for replica symmetry. We stress that this
replica symmetric assumption in the Kac-Rice calculation actually corresponds to a 1-step replica
symmetry breaking (1RSB) structure of the zero-temperature Gibbs measure, that is an exponential
number of single-point metastable states that all have the same two-point overlap. While possibly
not exact, this assumption should already yield a good approximation to the landscape, and could
be analytically checked by studying the stability of the replica-symmetric ansatz within replica
theory. This allows to take subsequently the p→ 0+ limit, and after some simplifications, we reach
from eq. (41) the expression of Result 1. These steps are fairly technical, and are postponed to
Appendix B.3.
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Appendix A. Technical steps of the proof of Theorem 1

A.1. Proof of Lemma 1

We will apply the Kac-Rice machinery in the form of the remark made in Paragraph 6.1.4 of Azäis
and Wschebor (2008). We recall it as a theorem:

Theorem 6 (Azais-Wschebor) Let k, d ∈ N?. Let Z : U → Rd be a random field, in which U is
an open subset of Rd. Assume that for every t ∈ U , we can write Z(t) = H [Y (t)], such that:

(i) {Y (t), t ∈ U} is a Gaussian random field with values in Rk, C1 paths, and such that for every
t ∈ U , the distribution of Y (t) is non-degenerate.

(ii) H : Rk → Rd is a C1 function.

(iii) For all t ∈ U , Z(t) has a density ϕZ(t)(x), which is a continuous function of (t, x) ∈ U×Rd.

(iv) P [∃ t ∈ U s.t. Z(t) = 0 and det [∇Z(t)] = 0] = 0.

Define, for every compact set B ⊆ U , N(Z,B) to be the (finite) number of zeros of Z in B. Then:

E [N(Z,B)] =

∫
B
E
[
|det∇Z(t)|

∣∣∣Z(t) = 0
]
ϕZ(t)(0)dt. (42)

We wish to apply this theorem to the gradient gradL1(x). Verifying its hypotheses will end the
proof of Lemma 1. We denote ξ ∈ Rn×m the matrix {ξiµ} = {(ξµ)i}, ∇L1 the Euclidean gradient
of L1, and P⊥x the orthogonal projection on TxSn−1. Since gradL1(x) = P⊥x ∇L1(x) we have:

gradL1(x) =
1

m

m∑
µ=1

(
P⊥x ξµ

)
φ′ (ξµ · x) . (43)

We will apply Theorem 6 with d = n−1 and k = m×n. The Gaussian random field Y (x) ∈ Rn×m

is defined as Y (x) ≡
(
P⊥x ξ1 · · · P⊥x ξm
ξ1 · x · · · ξm · x

)
. Since Y (x) is just ξ written in an orthonormal basis

of Rn whose first vector is x, its distributions is non-degenerate. H : Rn×m → Rn−1 is defined as:

∀1 ≤ i < n, H(Y )i ≡
1

m

m∑
µ=1

Yi,µφ
′(Yn,µ), (Y ∈ Rn×m). (44)

Since φ is C2, H is C1. This verifies (i) and (ii). We turn our attention to verifying (iii). One can

write the distribution of the gradient of eq. (43) as gradL1(x)
d
= (1/m)

∑m
µ=1 φ

′ (yµ) zµ, in which

yµ
i.i.d.∼ N (0, 1), zµ

i.i.d.∼ N (0, In−1), and all {yµ, zν} are independent. Since the distribution of
gradL1(x) does not depend on x, it is enough to check that its density exists and is a continuous
function. To do so, we will show that its characteristic function ϕ̂gradL1(x) ∈ L1(Rn−1). We denote
ϕ̂a the characteristic function of the random variable a ≡ φ′(y), and one obtains:∥∥ϕ̂gradL1(x)

∥∥
1

=

∫
Rn−1

dt
∣∣∣∣Ez∼N (0,In−1) ϕ̂a

(
t · z
m

)∣∣∣∣m =

∫
Rn−1

dt
∣∣∣∣Ez∼N (0,1) ϕ̂a

(
‖t‖ z
m

)∣∣∣∣m ,
=

2π
n−1

2 mn−1

Γ
(
n−1

2

) ∫ ∞
0

dq qn−2 |Ez ϕ̂a (qz)|m .
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Since α > 1, if [qEz ϕ̂a (qz)] = Oq→∞(1) we can conclude that
∥∥ϕ̂gradL1(x)

∥∥
1
<∞. And:

q Ez ϕ̂a (qz) =

∫
R

dz√
2π
e
− z2

2q2 ϕ̂a(z) =

∫
R

dz√
2π

E
[
e
− z2

2q2 eiaz
]

=
1

q
E
[
e−

q2a2

2

]
,

by Fubini’s theorem. Therefore q Ez ϕ̂a (qz) →q→∞ ϕa(0) by continuity of ϕa around a = 0
(Definition 1), so

∥∥ϕ̂gradL1(x)

∥∥
1
<∞. Thus, gradL1(x) admits the following probability density:

ϕgradL1(x)(u) =
1

(2π)n−1

∫
Rn−1

dt eiu·t
[
Ez
{
ϕ̂a

(
‖t‖ z
m

)}]m
, (45)

which is a continuous function of u, since ϕ̂gradL1(x) ∈ L1(Rn−1). This shows (iii). In order to
show (iv), we will use Proposition 6.5 of Azäis and Wschebor (2008), that we recall here:

Lemma 7 (Azais-Wschebor) Let d ∈ N∗, and U a compact subset of Rd. Consider Z : U → Rd
a random field, such that (a): The paths of Z are of class C2, and (b): There exists C > 0 such that
for all t ∈ U and all u in a neighborhood of 0, the density ϕZ(t) of Z verifies ϕZ(t)(u) ≤ C. Then
P [∃t ∈ U s.t. Z(t) = 0 and detZ ′(t) = 0] = 0.

Since φ is assumed to be of class C3, hypothesis (a) is verified for Z = gradL1. Notice then that
we can fix C > 0 such that

∣∣Ez∼N (0,1) ϕ̂a (qz)
∣∣ ≤ C

1+q for all q ≥ 0. Starting from eq. (45):

|ϕgradL1(x)(u)| ≤ Cn
∫ ∞

0
dq

qn−2

(1 + q)m
≤ Dn,

with Cc, Dn constants depending only on n, using that m ≥ n (α > 1). This shows (b), so by
Lemma 7, hypothesis (iv) of Theorem 6 follows. This ends the proof of Lemma 1.

A.2. Proof of Lemma 4

The proof is done in several parts, of which some are inspired by arguments of Silverstein (1995);
Silverstein and Bai (1995); Silverstein and Choi (1995); Bai and Silverstein (2010).

A.2.1. TECHNICALITIES ON THE HESSIAN

We begin by a quick lemma on Λ(y), defined in eq. (8).

Lemma 8 (Low-rank perturbation) Since the distributions of z and y are independent, by rota-
tion invariance we can assume that Λ(y) is a diagonal matrix with elements Λµ(y). There exists a
constant, denoted ||D||∞, such that for all n, y, |D(y)| ≤ ||D||∞. Then we have:

(i) supy∈Rm sup1≤µ≤m |Λµ(y)| ≤ 4||D||∞.

(ii) Let Z ∈ R(n−1)×m be i.i.d. variables with zero mean and unit variance. We denote µ(n)
D and

µ
(n)
Λ the empirical eigenvalue distributions of 1

nZD(y)Zᵀ and 1
nZΛ(y)Zᵀ respectively. Then

for all η ∈ (0, 1),
{
nηEz

[
µ

(n)
D − µ

(n)
Λ

]}
→n→∞ 0 weakly and uniformly in y ∈ Rm.

We have some control of the boundedness of the Hessian:
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Lemma 9 Denote ρn(y) the spectral radius of HΛ
n (y). There exists C > 0 such that:

(i) With probability 1, lim supn→∞ supy∈Rm ρn(y) < C.

(ii) The support of µα,φ[νmy ] is included in (−C,C) uniformly over y and n.

(iii) For all y ∈ Rm, µα,φ[νmy ] has a well-defined and continuous density outside x = 0.

Points (ii) and (iii) of Lemma 9 are consequences of Theorem 1.1 of Silverstein and Choi (1995),
while item (i) follows from the boundedness of Λ(y) by Lemma 8, and the one of xφ′(x). We now
prove Lemma 8.
Proof Recall that |D(y)| = (n/m)|φ′′(y)|. Since m/n → α > 1 and φ′′ is bounded, |D(y)| is
bounded (uniformly over n, y) by a constant that we denote ||D||∞. Note that sup1≤µ≤m |Λµ(y)| =
sup||u||=1 uᵀΛ(y)u. Using eq. (8) and denoting v(y) ≡ φ′(y)/||φ′(y)||, we reach

sup
||u||=1

uᵀΛ(y)u ≤ ||D||∞ + sup
||u||=1

[
|vᵀDv|(uᵀv)2 + 2(uᵀv)|vᵀDu|

]
,

≤ 2||D||∞ + 2 sup
||u||=1

[(uᵀv)|vᵀDu|] ≤ 4|D||∞,

in which we used the uniform boundedness of |D(yµ)|, and the Cauchy-Schwarz inequality. This
proves (i). We note that 1

nzΛ(y)zᵀ and 1
nzD(y)zᵀ differ by a rank-2 matrix. (ii) is thus an immedi-

ate application of the following lemma (from a course of C. Bordenave):

Lemma 10 Let n ≥ 1, and A,B two symmetric matrices of size n, such that the rank of A−B is
r. Denote FA (resp. FB) the c.d.f. of the empirical spectral distribution of A (resp. B). Then

sup
t∈R
|FA(t)− FB(t)| ≤ r

n
.

This ends the proof of Lemma 8.

Proof [Lemma 10] We note λ1(A) ≥ · · · ≥ λn(A) the eigenvalues of A (and similarly for B).
Recall weak Weyl’s interlacing inequalities (Weyl, 1912): for every 1 ≤ i ≤ n, λi+r(A) ≤ λi(B) ≤
λi−r(A) (we use the convention λ1−i = +∞ and λn+i = −∞ for i ≥ 1). Let t ∈ R, and i, j be the
smallest indices such that λi(A) ≤ t and λj(B) < t. By the interlacing inequalities, |i − j| ≤ r.
And n|FA(t)− FB(t)| = |(n+ 1− i)− (n+ 1− j)| ≤ r.

A.2.2. THE CUT-OFF AND THE LOGARITHMIC POTENTIAL

For any ε > 0, define lnε : x ∈ R?+ 7→ ln (max(x, ε)), then x 7→ lnε |x| is a ε−1-Lipschitz function
on R. Let δ ∈ (0, 1). In this section, we show that a cut-off εn = n−δ on the smallest eigenvalues
does not perturb the logarithmic potential at the thermodynamical scale. We rely on the following
result, proven in an ongoing work of Ben Arous, Bourgade and McKenna. For any δ ∈ (0, 1), there
exists η > 0 such that for all t > 0:

lim
n→∞

1

n1+η
lnP

∣∣∣∣∣∣ 1n
∑

λ∈Sp(HΛ
n (y))

ln |λ|1
{
|λ| ≤ n−δ

}∣∣∣∣∣∣ ≥ t
 = −∞, (46a)

lim
n→∞

1

n1+η
lnP

[∫
|x−tφ(νmy )|≤n−δ

µα,φ[νmy ](dx) ln
∣∣x− tφ(νmy )

∣∣ ≤ −t] = −∞. (46b)
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Physically, this makes explicit that, with large probability, there should not be enough eigenvalues
of HΛ

n (y) around zero so that they contribute macroscopically to the logarithmic potential. This is
a consequence the natural fluctuations and repulsion of the eigenvalues of HN

n (y). Denote {λi}n−1
i=1

the (sorted) eigenvalues of HΛ
n (y). We can now state:

Lemma 11 There exists η > 0 such that for all K > 0:

lim
n→∞

1

n1+η
lnP

[∣∣∣∣ 1n lnE
∣∣detHΛ

n (y)
∣∣− 1

n
lnE e

∑n−1
i=1 lnεn |λi|

∣∣∣∣ ≥ K] = −∞. (47)

Proof Since this lemma is not used in the proofs of the following Lemma 15 and Proposition 16,
we will refer to them. We consider η given by eq. (46a). Let t > 0. We denote A(n)

t the event

A
(n)
t ≡

{∣∣∣∣∣ 1n
n−1∑
i=1

ln |λi|1
{
|λi| ≤ n−δ

}∣∣∣∣∣ ≥ t
}
. (48)

We have for all y and t > 0 (Ā(n)
t being the complementary event to A(n)

t ):

1

n
lnEz e

∑n−1
i=1 ln |λi| ≥ 1

n
lnEz

[
e
∑n−1
i=1 ln |λi|1

[
Ā

(n)
t

]]
≥ −t+

1

n
lnEz

[
e
∑n−1
i=1 lnεn |λi|1

[
Ā

(n)
t

]]
.

So that (using lnεn(x) ≥ ln(x) for all x > 0):

0 ≤ 1

n
lnE e

∑n−1
i=1 lnεn |λi| − 1

n
lnE

∣∣detHΛ
n (y)

∣∣ ≤ t− 1

n
ln

1−
Ez

[
e
∑n−1
i=1 lnεn |λi|1

[
A

(n)
t

]]
Ez

[
e
∑n−1
i=1 lnεn |λi|

]
 .

We know lnεn |x| ≥ −δ ln(n) and moreover, by Lemma 15 and Proposition 16, for every γ > 0:

lim sup
n→∞

sup
y∈Rm

1

n
lnEz

[
eγ
∑n−1
i=1 lnεn |λi|

]
= lim sup

n→∞
sup

y∈Rm

γ

n
Ez

n−1∑
i=1

lnεn |λi| < +∞,

in which the last inequality is a consequence of (i) of Lemma 9. Fixing γ > 1 and using Hölder’s
inequality, there exists therefore C > 0 such that for all K > 0 and t ∈ (0,K):

lim sup
n→∞

1

n1+η
lnPy

[∣∣∣∣ 1n lnEz
∣∣detHΛ

n (y)
∣∣− 1

n
lnEz e

∑n−1
i=1 lnεn |λi|

∣∣∣∣ ≥ K]
≤ lim sup

n→∞

1

n1+η
lnPy

[
Pz

[
A

(n)
t

]1/γ
≥ e−n(δ ln(n)+C)

[
1− en(t−K)

]]
,

(a)

≤ lim sup
n→∞

1

n1+η
ln

{
P[A

(n)
t ]

e−γn(δ ln(n)+C)
[
1− en(t−K)

]γ
}

(b)
= −∞,

in which we used the Markov inequality in (a) and eq. (46a) in (b).

In the following, for simplicity we will often abusively denote lnεn |detHΛ
n (y)| ≡ e

∑n−1
i=1 lnεn |λi|

and lnεn E| detHΛ
n (y)| ≡ lnE e

∑n
i=1 lnεn |λi|.
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A.2.3. TRUNCATION AND RENORMALIZATION OF THE VARIABLES {ziµ}

Truncation of the distribution of the matrix elements of z will be needed in the following sec-
tion A.2.4, to circumvent some difficulties arising in the concentration. The idea is to truncate
the variables {ziµ}, and to show that this does not perturb the result. Let γ ∈ (0, 1/2) such that
γ + 2δ < 1 and define a truncated and normalized version of the z variables:

z̃iµ ≡
(
ziµ1

[
|ziµ| ≤ n

γ
2

])
/
(
E
{
z2
iµ1
[
|ziµ| ≤ n

γ
2

]})1/2
. (49)

Note that {z̃iµ} are still i.i.d. variables, with zero mean and unit variance. We denote the corre-
sponding version of the Hessian:

H̃Λ
n (y) ≡ 1

n
z̃Λ(y)z̃ᵀ −

 1

m

m∑
µ=1

yµφ
′(yµ)

 In−1. (50)

The following shows that truncation does not impact the logarithmic potential at exponential scale:

Proposition 12 There exists C1, C2 > 0 such that for all Lipschitz function f : R → R with
Lipschitz constant ‖f‖L, and uniformly over y:

Ez

∣∣∣Trf(HΛ
n (y))− Trf(H̃Λ

n (y))
∣∣∣ ≤ C1 ‖f‖L n

3/2e−C2nγ .

Proof Denote λ1 ≤ · · · ≤ λn−1 the (sorted) eigenvalues of HΛ
n (y) and λ̃1 ≤ · · · ≤ λ̃n−1 the ones

of H̃Λ
n (y). One has:

Ez

∣∣∣Trf(HΛ
n (y))− Trf(H̃Λ

n (y))
∣∣∣ (a)

≤ ‖f‖L
n−1∑
i=1

E
∣∣∣λi − λ̃i∣∣∣ ,

(b)

≤ ‖f‖L n
1/2E

[
n−1∑
i=1

(
λi − λ̃i

)2
]1/2

,

(c)

≤ ‖f‖L n
−1/2E ‖zΛ(y)zᵀ − z̃Λ(y)z̃ᵀ‖2 ,

in which (a) uses the Lipschizity of f , (b) Cauchy-Schwarz inequality and (c) uses Hoffman-
Wielandt inequality (Hoffman and Wielandt, 2003) that we recall here:

Lemma 13 (Hoffman-Wielandt inequality for L2 norm) Let k ∈ N?, and A,B ∈ Rk×k be two
symmetric matrices with respective eigenvalues λ1(A) ≤ · · · ≤ λk(A) and λ1(B) ≤ · · · ≤ λk(B).
Then

∑k
i=1 (λi(A)− λi(B))2 ≤ ‖A−B‖22.

Coming back to our original problem:

Ez

∣∣∣Trf(HΛ
n (y))− Trf(H̃Λ

n (y))
∣∣∣ ≤ ‖f‖L√

n
E

 ∑
1≤i,j<n

 m∑
µ=1

Λµ(y) (ziµzjµ − z̃iµz̃jµ)

21/2

,
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(a)

≤ 4 ‖f‖L ‖D‖∞
(m
n

)1/2
E

 ∑
1≤i,j<n

m∑
µ=1

(ziµzjµ − z̃iµz̃jµ)2

1/2

,

(b)

≤ 4 ‖f‖L ‖D‖∞
(
m2

n

)1/2
E ∑

1≤i,j<n
(zi1zj1 − z̃i1z̃j1)2

1/2

,

(c)

≤ 4 ‖f‖L ‖D‖∞
(
m2n

)1/2 [
nE (z11z21 − z̃11z̃21)2 + nE

(
z2

11 − z̃2
11

)2]1/2
, (51)

in which we used Cauchy-Schwarz in (a), the concavity of x 7→ x1/2 in (b), along with the fact that
all the variables ziµ are independent and identically distributed in (c). We can now bound each one
of the two remaining terms. To do so, we use a simple technical lemma that we will use for each of
these terms, its proof is deferred to Section A.6.

Lemma 14 Let z11 ∼ N (0, 1). There exists strictly positive constants (Ki)
4
i=1 such that:

E
[
E
(
z2

111|z11|≤nγ/2
)
− 1|z11|≤nγ/2

]4
≤ K1e

−K2nγ ,

E
[(

E
(
z2

111|z11|≤nγ/2
))1/2

− 1|z11|≤nγ/2

]8

≤ K3e
−K4nγ .

Let us bound the two terms of eq. (51). We start with the second one:

E
(
z2

11 − z̃2
11

)2
= E

[
z4

11

(
E
(
z2

111|z11|≤nγ/2
)
− 1|z11|≤nγ/2

)2
]
/
(
Ez2

111|z11|≤nγ/2
)2
.

This last equation, combined with Cauchy-Schwarz inequality, the first part of Lemma 14, and the
fact that E

[
z2

111|z11|≤nγ/2
]
≥ 1/2 for large enough n yields constants C1, C2 > 0 such that

E
(
z2

11 − z̃2
11

)2 ≤ C1e
−C2nγ . (53)

Similarly, one can show:

E (z11z21 − z̃11z̃21)2

≤ 4E

z2
11z

2
21

√E
[
z2

111|z11|≥nγ/2
]√

E
[
z2

121|z12|≥nγ/2
]
− 1|z11|≥nγ/2

|z12|≥nγ/2

2 ,
≤ 4

[
Ez4

11z
4
21

]1/2 E
√E

[
z2

111|z11|≥nγ/2
]√

E
[
z2

121|z12|≥nγ/2
]
− 1|z11|≥nγ/2

|z12|≥nγ/2

41/2

.

For all positive x, y, x′, y′, one has (xy − x′y′)2 ≤ 2y2(x − x′)2 + 2x′2(y − y′)2. Combined with
Cauchy-Schwarz inequality, and since all {ziµ} are identically distributed, this gives a constant
K > 0 such that :

E (z11z21 − z̃11z̃21)2 ≤ KE
[(

E
(
z2

111|z11|≤nγ/2
))1/2

− 1|z11|≤nγ/2

]8

.
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The second part of Lemma 14 finally yields C3, C4 > 0 such that:

E (z11z21 − z̃11z̃21)2 ≤ C3e
−C4nγ . (54)

Recall that lim m
n = α > 1. Combining eqs. (51),(53),(54) finishes the proof of Proposition 12.

Recall that εn = n−δ with δ ∈ (0, 1). We can apply Proposition 12 to f(x) = lnεn |x|, which
has a Lipschitz constant ||f ||L = nδ. In particular, this implies the following lemma:

Lemma 15 (Truncation and renormalization)

lim
n→∞

{
sup

y∈Rm
Ez

∣∣∣∣ 1n lnεn
∣∣detHΛ

n (y)
∣∣− 1

n
lnεn

∣∣∣det H̃Λ
n (y)

∣∣∣∣∣∣∣
}

= 0.

A.2.4. CONCENTRATION OF THE LOGARITHMIC POTENTIAL WITH A CUT-OFF

We show here that discarding the eigenvalues of the Hessian1 that are close to 0 using a cutoff
εn ≡ n−δ (recall that γ ∈ (0, 1/2) and γ + 2δ < 1), we have concentration of the logarithmic
potential. Let us thus fix a couple (γ, δ) verifying the above conditions. Once we are in this setting,
it is actually an easy consequence of the classical Lipschitz concentration for random variables:

Proposition 16 (Concentration of the logarithmic potential) There exists constantsK1,K2 > 0
(independent of y) such that almost surely over y and for all n:

∀t > 0, Pz

[
1

n

∣∣∣∣∣ lnεn ∣∣∣det H̃Λ
n (y)

∣∣∣− Ez lnεn

∣∣∣det H̃Λ
n (y)

∣∣∣ ∣∣∣∣∣ ≥ t
]
≤ K1 exp

{
−K2n

2−γ−2δt2
}
.

Proof Using traditional Lipschitz concentration bound (cf for instance Anderson et al. (2010)), we
will end the proof if we can show that, y being fixed, the function G(z) ≡ (1/n) lnεn |det H̃Λ

n (y)|
is a Lipschitz function of z ∈ R(n−1)×m, with Lipschitz norm bounded as ‖G‖L ≤ Cn

γ+2δ
2 , for a

constant C > 0. We will do it by bounding ‖∇zG‖∞. Let fn(x) ≡ lnεn |x| for x ∈ R. We have:

n−1∑
i=1

m∑
µ=1

(
∂G(z)

∂ziµ

)2

=
1

n4

n−1∑
i=1

m∑
µ=1

[
Tr

{
f ′n

(
1

n
zΛ(y)zᵀ

)
∆iµ

}]2

, (55)

in which ∆iµ ∈ R(n−1)×(n−1) with (∆iµ)jk ≡ Λµ(y) (δijzkµ + δikzjµ). So one shows easily:

n−1∑
i=1

m∑
µ=1

(
∂G(z)

∂ziµ

)2

=
4

n3
Tr

[(
f ′n

(
1

n
zΛ(y)zᵀ

))2( 1

n
zΛ(y)2zᵀ

)]
. (56)

By Lemma 13, if A and B are positive matrices with sorted eigenvalues {λi(A), λi(B)}, one has
Tr [AB] ≤

∑
i λi(A)λi(B). Using this identity in eq. (56) and the nδ-Lipschitzity of fn yields:

n−1∑
i=1

m∑
µ=1

(
∂G(z)

∂ziµ

)2

≤ 4n2δ

n4
Tr
[
zΛ(y)2zᵀ

]
≤

43n2δ ‖D‖2∞
n4

m∑
µ=1

n−1∑
i=1

z2
iµ,

1With truncated {ziµ}, see section A.2.3.
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in which we used Lemma 8. Recall (cf section A.2.3) that we truncated the z variables so that we
impose |ziµ| ≤ n

γ
2 , which yields:

n−1∑
i=1

m∑
µ=1

(
∂G(z)

∂ziµ

)2

≤
43nγ+2δ ‖D‖2∞

n2
. (57)

Recall the Lipschitz concentration of independent variables with laws satisfying the logarithmic
Sobolev inequality with a uniform constant c (see for instance Anderson et al. (2010)):

Lemma 17 (Herbst) Let n ∈ N? and P be a probability distribution on Rn satisfying the Loga-
rithmic Sobolev Inequality with constant c > 0. Let G be a Lipschitz function on Rn with Lipschitz
constant ‖G‖L. Then for all t > 0, P [|G− EG| ≥ t] ≤ 2 exp

[
−t2/(2c ‖G‖2L)

]
.

It is easy to check that the truncated law of the {ziµ} satisfies the Logarithmic Sobolev Inequality
with constant c = 1. Applying Lemma 17 alongside eq. (57) finishes the proof.

A.2.5. THE LOGARITHMIC POTENTIAL OF THE ASYMPTOTIC MEASURE

In this part, we relate the expected logarithmic potential to the logarithmic potential of the measure
µα,φ[νmy ], cf Theorem 1.

Proposition 18 (Concentration on κα,φ) There exists η > 0 such that for all t > 0:

lim
n→∞

1

n1+η
lnP

[∣∣∣∣Ez
1

n
lnεn

∣∣∣det H̃Λ
n (y)

∣∣∣− κα,φ (νmy , tφ(νmy )
)∣∣∣∣ ≥ t] = −∞. (58)

Proof The proof goes in two parts. First, we show that there exists η1 > 0 such that1:

lim
n→∞

[
nη1 sup

y∈Rm

∣∣∣∣Ez
1

n
lnεn

∣∣∣det H̃Λ
n (y)

∣∣∣− ∫
R

lnεn
∣∣x− tφ(νmy )

∣∣µα,φ[νmy ](dx)

∣∣∣∣
]

= 0. (59)

We will then conclude by showing that there exists η2 > 0 such that for all t > 0:

lim
n→∞

1

n1+η2
P
[∣∣∣∣∫

R
lnεn

∣∣x− tφ(νmy )
∣∣µα,φ[νmy ](dx)− κα,φ

(
νmy , tφ(νmy )

)∣∣∣∣ ≥ t] = −∞. (60)

We begin by eq. (60). We take η2 given by eq. (46b). We have∫
R

lnεn
∣∣x− tφ(νmy )

∣∣µα,φ[νmy ](dx)− κα,φ
(
νmy , tφ(νmy )

)
= −δ ln(n)µα,φ[νmy ]

(
tφ(νmy )− εn, tφ(νmy ) + εn

)
−
∫ tφ+εn

tφ−εn
ln
∣∣x− tφ(νmy )

∣∣µα,φ[νmy ](dx).

1Note that this result is uniform over y, and thus stronger than what is needed to show Proposition 18.
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Since lnε(x) ≥ ln(x) , we reach from this:

lim sup
n→∞

1

n1+η2
P
[∣∣∣∣∫

R
lnεn

∣∣x− tφ(νmy )
∣∣µα,φ[νmy ](dx)− κα,φ

(
νmy , tφ(νmy )

)∣∣∣∣ ≥ t] ,
≤ lim sup

n→∞

1

n1+η2
P

[∫ tφ+εn

tφ−εn
ln
∣∣x− tφ(νmy )

∣∣µα,φ[νmy ](dx) ≤ −t

]
,

and using eq. (46b), we reach eq. (60). Let us show eq. (59). Its proof is based on the following
lemma, a consequence of the analysis of Silverstein and Bai (1995); Bai and Silverstein (2010):

Lemma 19 Denote gn(z) the Stieltjes transform of 1
n z̃Λ(y)z̃ᵀ, and gα,φ[νmy ](z) the one of µα,φ[νmy ],

for z ∈ C+. Then there exists η ∈ (0, 1) such that for all z ∈ C+:

lim
n→∞

{
sup

y∈Rm
nη
∣∣Ez(gn(z))− gα,φ[νmy ](z)

∣∣} = 0. (61)

The proof of this lemma is postponed to Appendix A.5. Let us fix η given by this lemma. As stated
for instance in Theorem 2.4.4 of Anderson et al. (2010), a consequence of the Stieltjes inversion
theorem is that for every Borel set E ⊆ R: supy∈Rm

[
nη
∣∣Eµn(E)− µα,φ[νmy ](E)

∣∣]→ 0, in which
µn is the empirical spectral distribution of 1

n z̃Λ(y)z̃ᵀ. Fix η1 < η. We have, uniformly over y:

nη1

∣∣∣∣Ez
1

n
lnεn

∣∣∣det H̃Λ
n (y)

∣∣∣− ∫
R

lnεn
∣∣x− tφ(νmy )

∣∣µα,φ[νmy ](dx)

∣∣∣∣
≤ nη1

∫
|x−tφ(νmy )|>1

ln
∣∣x− tφ(νmy )

∣∣ [Eµn − µα,φ[νmy ]
]

(dx) (62)

+ δ ln(n)nη1

∫
|x−tφ(νmy )|<1

[
Eµn − µα,φ[νmy ]

]
(dx).

Let us fix C > 0 given by item (i) of Lemma 9. Moreover, we can also bound tφ(νmy ) by ||xφ′||∞.
This gives that for n large enough the quantity of eq. (62) is bounded (uniformly over y) by:

nη1
[
ln
(
C + ||xφ′||∞

)
+ δ ln(n)

] {[
Eµn − µα,φ[νmy ]

]
(−C,C)

}
.

Using the remark below Lemma 19 and since η1 < η, this shows eq. (59).

A.2.6. CONCLUSION OF THE PROOF

Let us conclude from the rest of Section A.2. We fix δ, γ > 0 such that γ + 2δ < 1 and γ < 1/2.
First, note that Lemma 15 and Proposition 16, as they are uniform results on y, are much stronger
than what we required. In particular, they imply that there exists η > 0 such that for all t > 0:

lim
n→∞

1

n1+η
lnP

[∣∣∣∣ 1n lnεn Ez
∣∣detHΛ

n (y)
∣∣− 1

n
lnεn Ez

∣∣∣det H̃Λ
n (y)

∣∣∣∣∣∣∣ ≥ t] = −∞, (63a)

lim
n→∞

1

n1+η
lnP

[∣∣∣∣∣ 1n lnεn Ez

∣∣∣det H̃Λ
n (y)

∣∣∣− 1

n
Ez lnεn

∣∣∣det H̃Λ
n (y)

∣∣∣ ∣∣∣∣∣ ≥ t
]

= −∞. (63b)

From this and Lemma 11 and Proposition 18, we reach the conclusion of Lemma 4.
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A.3. Proof of Lemma 5

Proof Let γ ∈ (1, α). We fix C > 0 given by Lemma 9. Then for all y ∈ Rm:

κα,φ
(
νmy , tφ(νmy )

)
≤
∫
µα,φ[νmy ](dx) ln (1 + |x|) + ln

(
1 + |tφ(νmy )|

)
,

≤ ln(1 +
∥∥xφ′(x)

∥∥
∞) + ln(1 + C).

Furthermore, using lnεn(x) ≥ ln(x)1, along with Lemma 15 and Proposition 16, we have:

lim sup
n→∞

sup
y∈Rm

[
1

n
lnE|detHΛ

n (y)|
]
≤ lim sup

n→∞
sup

y∈Rm
Ez ln ρn(y),

in which ρn(y) is the spectral radius of H̃Λ
n (y) (see Section A.2.3 for the definition of H̃Λ

n (y)).
Using item (i) of Lemma 9, this implies that lim supn→∞ supy∈Rm

[
1
n lnE| detHΛ

n (y)|
]
< ∞.

Therefore, in order to prove Lemma 5, it only remains to show that

lim sup
n→∞

1

n
lnEy

[
e−

γn
2

ln( 1
m

∑
µ φ
′(yµ)2)

]
<∞. (64)

Let us now prove eq. (64). We denote m ≡ Ey∼N (0,1)[φ
′(y)2] and A ≡ ‖φ′‖2∞ . Since A <∞, we

can apply Cramer’s theorem to S ≡ 1
m

∑
µ φ
′(yµ)2, so that we have:

lim sup
n→∞

1

n
lnEy

[
e−

γn
2

ln( 1
m

∑
µ φ
′(yµ)2)

]
≤ sup

S∈(0,A)

[
−γ

2
lnS − αΛ?(S)

]
, (65)

in which Λ?(S) is defined as the Legendre transform of the moment generating function of φ′(y)2:

Λ?(S) ≡

supθ≥0

{
θS − lnEy∼N (0,1)

[
eθφ
′(y)2

]}
if S ≥ m,

supθ≥0

{
−θS − lnEy∼N (0,1)

[
e−θφ

′(y)2
]}

if S ≤ m.

By continuity of the involved functions, in order to conclude from eq. (65) we just need to be able
to show that (i) : lim supS→A (−Λ?(S)) < ∞ and (ii) : lim supS→0

[
−γ

2 lnS − αΛ?(S)
]
< ∞.

Point (i) is trivial since Λ?(S) ≥ 0 for all S ∈ (0, A) (it is a rate function). To show (ii), we use the
fact that for all S ∈ (0,m) and θ ≥ 0 we have Λ?(S) ≥ −θS − lnE[e−θφ

′(y)2
]. In particular, for

θ = S−1 we have Λ?(S) ≥ −1− lnE[e−S
−1φ′(y)2

]. Since a = φ′(y) has by Definition 1 a density
ϕa continuous around 0, we fix a0 > 0 such that ϕa is continuous in [−a0, a0]. For every θ > 0:

lnE[e−θφ
′(y)2

] ≤ ln
[
E
(
e−θa

2
1|a|≤a0

)
+ e−θa

2
0

]
≤ ln

[(
sup
|a|≤a0

|f(a)|

) √
π√
θ

+ e−θa
2
0

]
,

and thus lnE[e−θφ
′(y)2

] ≤ C − (1/2) ln θ with a constant C > 0. Using this bound and the remark
before we reach

−γ
2

lnS − Λ?(S) ≤ α− γ
2

lnS + α(1 + C).

Since α − γ > 0, we have limS→0

[
−γ

2 lnS − αΛ?(S)
]

= −∞, which obviously implies point
(ii), which in turn shows eq. (64).

1Recall that εn = n−δ and δ ∈ (0, 1).
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A.4. Proof of eq. (18)

Let t > 0, and fix η > 0 given by Lemma 4. We define E(t)
n , An, Bn:

E(t)
n ≡

{∣∣∣∣ 1n lnEz
[∣∣detHΛ

n (y)
∣∣]− κα,φ (νmy , tφ(νmy )

)∣∣∣∣ ≥ t} , (66a)

An ≡
1

n
lnE

[
1[L1(y) ∈ B]e−

n
2

ln( 1
m

∑
µ φ
′(yµ)2)E| detHΛ

n (y)|
]
, (66b)

Bn ≡
1

n
lnE

[
1[L1(y) ∈ B]e−

n
2

ln( 1
m

∑
µ φ
′(yµ)2)+nκα,φ(νmy ,tφ(νmy ))

]
. (66c)

An is related to the complexity by Lemma 2, and by Varadhan’s lemma (and Lemma 5), we have:

lim
n→∞

Bn = sup
ν∈Mφ(B)

[
−1

2
Eφ(ν) + κα,φ(ν, tφ(ν))− αH(ν|µG)

]
∈ [−∞,+∞). (67)

The factor α in front of the relative entropy arises as we consider the empirical distribution of
m = αn i.i.d. variables. For all t > 0, we have by definition of An, Bn:

An −Bn ≥ −t+
1

n
ln

1−
E
[
1
L1(y)∈B;E

(t)
n
e−

n
2 ln( 1

m

∑
µ φ
′(yµ)2)+nκα,φ(νmy ,tφ(νmy ))

]
E
[
1L1(y)∈B e

−n2 ln( 1
m

∑
µ φ
′(yµ)2)+nκα,φ(νmy ,tφ(νmy ))

]
 , (68a)

An −Bn ≤ t+
1

n
ln

1 + e−nt
E
[
1
L1(y)∈B;E

(t)
n
e−

n
2 ln( 1

m

∑
µ φ
′(yµ)2)E|detHΛ

n (y)|
]

E
[
1L1(y)∈Be

−n2 ln( 1
m

∑
µ φ
′(yµ)2)E|detHΛ

n (y)|
]
 . (68b)

Using Hölder’s inequality and Lemma 5, there exists γ > 1 and a constant C > 0 such that:

−t+
1

n
ln

[
1− P[E

(t)
n ]

1
γ

enBn−nC

]
≤ An −Bn ≤ t+

1

n
ln

[
1 +

P[E
(t)
n ]

1
γ

ent+nAn−nC

]
. (69)

Assume that limBn = −∞ and lim supAn > −∞. Let us fix a lower-bounded sub-sequence
Aϕ(n) of An, so that lim[Aϕ(n) − Bϕ(n)] = +∞. However, by eq. (69) and Lemma 4, we have

lim sup[Aϕ(n) − Bϕ(n)] ≤ t, as (1/n) lnP[E
(t)
n ] → −∞. So we showed that limBn = −∞ ⇒

limAn = −∞, which shows eq. (18) in this case. Let us now assume that limBn > −∞. Using
the left inequality of eq. (69) and Lemma 4, we reach in the same way that lim inf[An−Bn] ≥ −t,
which implies that lim inf An > −∞. Thus we can use the right inequality of eq. (69) to show
similarly that lim sup[An −Bn] ≤ t. Taking the t→ 0 limit finishes the proof of eq. (18).

A.5. Proof of Lemma 19

Proof This proof is a generalization of the arguments of Silverstein and Bai (1995). To fix the
notations here, (µn, gn(z)) are the ESD1 and Stieltjes transform of 1

n z̃Λ(y)z̃ᵀ, (µDn , g
D
n (z)) the

ones of 1
n z̃D(y)z̃ᵀ, and gα,φ[νmy ](z) is the Stieltjes transform of µα,φ[νmy ]. We show:

(i) There exists η1 ∈ (0, 1) such that for all z ∈ C+:

lim
n→∞

{
nη1 sup

y∈Rm

∣∣Ezgn(z)− Ezg
D
n (z)

∣∣} = 0.

1Empirical Spectral Distribution.
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(ii) There exists η2 ∈ (0, 1) and K > 0 such that for all z ∈ C+:

lim sup
n→∞

{
nη2 sup

y∈Rm

∣∣Ezg
D
n (z)− gα,φ[νmy ](z)

∣∣} < K.

Points (i)− (ii) obviously imply Lemma 19, so we now prove them.

Proof of (i) This is a direct consequence of the second part of Lemma 8, which implies that we
can fix η1 ∈ (0, 1) such that uniformly in y,

{
nη1Ez

[
µDn − µn

]}
→n→∞ 0 weakly. By a classical

characterization of the Stieltjes transform (cf for instance Theorem 2.4.4 of Anderson et al. (2010)),
this implies (i).

Proof of (ii) This part is more involved. Let us give some definitions and conventions. We define
Mn ≡ 1

n z̃D(y)z̃ᵀ. If zµ is the column of z̃ indexed by µ, we denote M (µ)
n ≡ 1

n

∑
ν(6=µ)D(yµ)zνzᵀν ,

which is independent of zµ, and g(µ)
n (z) its Stieltjes transform1. Finally, we define x and x(µ) as:

x ≡ α

m

m∑
µ=1

φ′′(yµ)

α+ φ′′(yµ)gn(z)
, x(µ) ≡ α

m

∑
ν(6=µ)

φ′′(yν)

α+ φ′′(yν)gn(z)
. (70)

We fix z = z1 + iz2 ∈ C+ and we start from the trivial identity:

− 1

z − x
In = (Mn − zIn)−1 − 1

z − x
(Mn − xIn)(Mn − zIn)−1. (71)

For every invertible matrix B, vector q, and τ ∈ R, we have by the Sherman–Morrison formula:

qᵀ(B + τqqᵀ)−1 =
1

q + τqᵀB−1τ
qᵀB−1.

Plugging it into the last equation and taking the averaged trace yields

− 1

z − x
− gn(z) = − 1

z − x
1

n
Tr

[(
1

n

∑
µ

φ′′(yµ)zµzᵀµ − xIn

)
(Mn − zIn)−1

]
,

=
1

m

m∑
µ=1

αφ′′(yµ)

α+ φ′′(yµ)gn(z)
dµ, (72)

in which we defined

dµ ≡
gn(z)

z − x
− 1

z − x
α+ φ′′(yµ)gn(z)

α+ φ′′(yµ) 1
nzᵀµ(M

(µ)
n − zIn)−1zµ

1

n
zᵀµ(M (µ)

n − zIn)−1zµ. (73)

Let us denote Ln(z, g) ≡ −g −
[
z − α

m

∑m
µ=1

φ′′(yµ)
α+φ′′(yµ)g

]−1
. We know by Silverstein and Bai

(1995) that gα,φ[νmy ](z) is defined as the only solution in C+ to Ln(z, g) = 0. Let us first show,
using eq. (72), that there exists η ∈ (0, 1) such that:

lim
n→∞

nη sup
y∈Rm

|Ln(z,Egn(z))| = 0. (74)

1To lighten the results, we state the results as if these matrices were of size n, even though they are of size (n− 1),
as it does not change anything to the argument.
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Proof of eq. (74). We use Lemma 3.1 of Silverstein and Bai (1995), which gives a K > 0 (inde-
pendent of y and z) such that uniformly over y:

Ez

∣∣∣∣∣ 1

z − x(µ)

1

n
zᵀµ(M (µ)

n − zIn)−1zµ −
g

(µ)
n (z)

z − x(µ)

∣∣∣∣∣
6

≤ Kz−12
2 n6γ−3. (75)

Moreover, let us denote ∆ ≡ z2
2(C2+z2

1)+z2
2

, in which C is the constant of Lemma 9. Thanks to this
lemma, we have that (uniformly in y and a.s.) lim infn→∞ Im[gn(z)] ≥ ∆. In particular, using
this bound, we can easily show (cf Part 4 of Silverstein and Bai (1995) for a completely similar
argument) that, uniformly in y and almost surely:

max
1≤µ≤m

∣∣∣∣ αφ′′(yµ)

α+ φ′′(yµ)gn(z)

∣∣∣∣ ≤ α

∆
, (76a)

lim
n→∞

[
max

1≤µ≤m
max

{∣∣∣∣∣ α+ φ′′(yµ)gn(z)

α+ φ′′(yµ) 1
nzᵀµ(M

(µ)
n − zIn)−1zµ

∣∣∣∣∣ , |x− x(µ)|

}]
= 0. (76b)

Since γ < 1/2, combining eqs. (75),(76) into eqs. (72),(73) yields that there exists η ∈ (0, 1) such
that eq. (74) is satisfied.
By eq. (74) there exists K > 0 and a function K(y) ∈ C, such that for all y: |K(y)| ≤ K, and

Egn(z) = −

z − α

m

m∑
µ=1

φ′′(yµ)

α+ φ′′(yµ)Egn(z)

−1

+
K(y)

nη
. (77)

We write gα,φ[νmy ](z) = m1(z) + im2(z) and Egn(z) = mn,1(z) + imn,2(z). Note that all imagi-
nary parts are strictly positive. Taking the imaginary part of eq. (77):

mn,2(z) =
Im(K(y))

nη
+
z2 + α

m

∑m
µ=1

φ′′(yµ)2mn,2(z)

|α+φ′′(yµ)Egn(z)|2∣∣∣z − α
m

∑m
µ=1

φ′′(yµ)
α+φ′′(yµ)Egn(z)

∣∣∣2 . (78)

Using eq. (77) and its counterpart for gα,φ[νmy ](z) (which does not have a second term), we reach

gα,φ[νmy ](z)− Egn(z) =
K(y)

nη
+
[
gα,φ[νmy ](z)− Egn(z)

]
An(z), (79)

with

An(z) ≡
α
m

∑
µ

φ′′(yµ)2

(α+φ′′(yµ)Egn(z))(α+φ′′(yµ)gα,φ[νmy ](z))[
z − α

m

∑m
µ=1

φ′′(yµ)
α+φ′′(yµ)Egn(z)

] [
z − α

m

∑m
µ=1

φ′′(yµ)
α+φ′′(yµ)gα,φ[νmy ](z)

] . (80)

By the Cauchy-Schwarz inequality, |An(z)| ≤
√
A1(z)A2(z), with

A1(z) ≡ α

m

m∑
µ=1

φ′′(yµ)2

|α+ φ′′(yµ)Egn(z)|2

∣∣∣∣∣∣z − α

m

m∑
µ=1

φ′′(yµ)

α+ φ′′(yµ)Egn(z)

∣∣∣∣∣∣
−2

, (81a)

A2(z) ≡ α

m

m∑
µ=1

φ′′(yµ)2

|α+ φ′′(yµ)gα,φ[νmy ](z)|2

∣∣∣∣∣∣z − α

m

m∑
µ=1

φ′′(yµ)

α+ φ′′(yµ)gα,φ[νmy ](z)

∣∣∣∣∣∣
−2

.(81b)
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In particular, using the counterpart of eq. (78) for m2(z), we have:

A1(z) =
α

m

m∑
µ=1

φ′′(yµ)2m2(z)

|α+ φ′′(yµ)Egn(z)|2
1

z2 + α
m

∑m
µ=1

φ′′(yµ)2mn,2(z)

|α+φ′′(yµ)Egn(z)|2
. (82)

Using items (i) and (ii) of Lemma 9, we have the inequalities: z2
2(C2+z2

1)+z2
2
≤ m2(z) ≤ 1

z2
and

z2
2(C2+z2

1)+z2
2
≤ mn,2(z) ≤ 1

z2
. This implies from eq. (82):

A1(z) ≤ z2

2(C2 + z2
1) + z2

2

1

z2 + z2
2(C2+z2

1)+z2
2

. (83)

In particular, there exists a constant Γ ∈ (0, 1) such that A1(z) ≤ Γ uniformly in n, y. Similarly,
we find that A2(z) ≤ Γ(1 + K

z2nη
) uniformly in y. So we have from eq. (79):

lim sup
n→∞

{
nη sup

y∈Rm

∣∣EgDn (z)− gα,φ[νmy ](z)
∣∣} ≤ K

1− Γ
<∞, (84)

which proves item (ii).

A.6. Proof of Lemma 14

For simplicity, we denote here z11 by z. Since Ez2 = 1, one has:

E
[
E
(
z21|z|≤nγ/2

)
− 1|z|≤nγ/2

]4
= E

[
E
(
z21|z|>nγ/2

)
− 1|z|>nγ/2

]4
,

≤ 8

[
E
(
z21|z|>nγ/2

)4
+ P|z|>nγ/2

]
≤ 80P|z|>nγ/2 .

This immediately yields the first part of Lemma. 14. We now tackle with the second part:

E
[(

E
(
z21|z|≤nγ/2

))1/2
− 1|z|≤nγ/2

]8

≤ 27

[(
E
(
z21|z|≤nγ/2

))4
+ P|z|>nγ/2

]
≤ 285P|z|>nγ/2 ,

which finishes the proof.

Appendix B. Technical aspects of the quenched calculation

B.1. The phase volume factor

Introducing the Fourier transform of the delta functions, we reach at leading exponential order in n:

1

n
ln

 p∏
a=1

∫
Rn

dxa
∏
a≤b

δ
(
nqab − nxa · xb

) ' p

2
ln

2π

n
+

1

2
sup
{q̂ab}

∑
a,b

qabq̂ab − ln det q̂

 .
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The replica symmetric assumption can be made on the variables q̂ that achieve this supremum :
q̂aa = q̂0 and q̂ab = −q̂ for a 6= b. This leads to det q̂ = (q̂0 + q̂)p−1(q̂0 − (p − 1)q̂), and after
taking the p→ 0+ limit, we reach:

1

np
ln

 p∏
a=1

∫
Rn

dxa
∏
a≤b

δ
(
nqab − nxa · xb

) ' 1

2
log

2π

n
+

1

2
sup
q̂0,q̂

[
q̂0 + qq̂ − log(q̂0 + q̂) +

q̂

q̂0 + q̂

]
.

The diverging term −1
2 log n will be canceled out by the joint density of the gradients as we will

see later. The solution of the supremum is easy to carry out, and we finally reach eq. (36).

B.2. The joint density of the gradients

We denote S = Span ({xa}pa=1). Following Ros et al. (2019), for every 1 ≤ a ≤ p we can
construct an orthonormal basis of S, denoted (eab )1≤b≤p for which xa is the first vector, that is
eaa = xa. This basis is convenient, since {xa}⊥ ∩ S = Span ({eab}b(6=a)). We can also chose an
arbitrary orthonormal basis (ep+1, · · · , en) of S⊥. With this choice of basis, we can see that the
gradient gradL(xa) is identified with the vector in Rn−1 with components:

gradL(xa) =
(
{∇L(xa) · eai }a−1

i=1 , {∇L(xa) · eai }
p
i=a+1, {∇L(xa) · ei}ni=p+1

)
. (85)

Recall that∇L(xa) = 1
m

∑
µ ξµ φ

′(yaµ). Let us make a few remarks:

• For every a, the basis (eab )
p
b=1 is only a function of the values of the overlaps {qab}.

• We consider the joint density of the gradients conditioned by the value of {ya}. In particular,
this means that for every a 6= b,∇L(xa) ·eab is fixed by the values of {yc}pc=1 and the overlaps
qab. In particular, the first (p− 1) components of eq. (85) are deterministic, thus their density
will yield delta functions that are constraints on {ya} and {qab}.

• The last n−p components of eq. (85) are (at fixed {ya}) zero mean Gaussian random variables
with covariance given by E

[
gradL(xa)i gradL(xb)j

]
=

δij
m2

∑
µ φ
′(yaµ)φ′(ybµ). Their joint

density taken at 0 is thus at leading exponential order in the n→∞ limit:

exp

np2 log
m

2π
− n

2
log det

 1

m

m∑
µ=1

φ′(yaµ)φ′(ybµ)


1≤a,b≤p

 . (86)

Given these remarks and eq. (86), in order to complete the calculation of the joint gradient density
we need to compute the quantities (∇L(xa) · eab ) for every a 6= b as a function of {yaµ} and {qab}.
In order to simplify the calculation, we will already make use of the replica-symmetric assumption
on q, that is we assume qaa = 1 and qab = q for a 6= b. Let us now describe a possible construction
for the basis (eab )

p
b=1. We introduce three auxiliary quantities that are functions of q and p:

f0
p (q) ≡ 1

p− 1

[
p− 2√
1− q

+
1√

1 + (p− 2)q − (p− 1)q2

]
, (87a)

fp(q) ≡
1

p− 1

[
− 1√

1− q
+

1√
1 + (p− 2)q − (p− 1)q2

]
, (87b)

zp(q) ≡ −
q√

1 + (p− 2)q − (p− 1)q2
. (87c)
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With these definitions, we can consider:{
eaa ≡ xa,
eab ≡ zp(q)xa + f0

p (q)xb + fp(q)
∑

c(6=a,b) xc, (b 6= a).
(88)

It is straightforward to check from eq. (88) that we have for all a, b, c that eab · eac = δbc. We can now
see that the delta term of the joint density of the gradients taken at 0 is:

∏
a6=b

δ [∇L1(xa) · eab ] =
∏
a6=b

δ

 1

m

m∑
µ=1

φ′(yaµ)

zp(q)yaµ + f0
p (q)ybµ + fp(q)

∑
c(6=a,b)

ycµ

 . (89)

The product of eq. (86) and eq. (89) gives eq. (37).

B.3. Decoupling the replicas and taking the p→ 0+ limit

B.3.1. REPLICA SYMMETRY AND DECOUPLING

In order to apply the replica method, we need to be able to take the p → 0 limit, by analytically
extending eq. (41) to all p > 0. The main idea is that we expect replica symmetry to influence the
measure ν that appears in eq. (41). More precisely, we expect that for all permutation π ∈ Sp, we
have ν(dλ1, · · · , dλp) = ν(dλπ(1), · · · , dλπ(p)). We make in eq. (41) the substitution:

sup
ν∈M(p,q)

→ sup
{µa}pa=1∈M(R)

sup
ν∈M(p,q)

s.t. {νa=µa}

(90)

In this last expression, the replica symmetric assumption leads us in particular to assume that µa = µ
for all a. In order to make the remaining calculation tractable we will also need to fix some linear
statistics of ν via Lagrange multipliers:

• For every a ≤ b, we will fix the linear statistics
∫
ν(dλ)φ′(λa)φ′(λb) = Aab, with Lagrange

multipliers Âab. Note that by replica symmetry, we actually assume that Aab = a for a 6= b
and Aaa = A (and samely for the Lagrange multipliers).

• For all a, bwe will fix the linear statistics
∫
ν(dλ)φ′(λa)λb = Bab, with Lagrange multipliers

B̂ab. By replica symmetry, we assume that Baa = B and Bab = b.

Combining these remarks, we reach that the ν-dependent term of eq. (41) is equal to:

sup
µ∈Mφ(B)

sup
A,a
B,b

extr
Â,â

B̂,b̂

sup
ν∈M(Rn)
s.t. {νa=µ}

[
pκα,φ [µ, tφ(µ)]− 1

2
ln det [{Aab}]−

∑
a,b

[
1

2
AabÂab +BabB̂ab

]

+
∑
a,b

[
1

2
Âab

∫
ν(dλ)φ′(λa)φ′(λb) + B̂ab

∫
ν(dλ)φ′(λa)λb

]
− αH(ν|µG,q)

]
. (91)

Note that here we did not always explicit the replica-symmetry assumption on all the variables
to obtain more compact expressions. The supremum over B, b is moreover constrained by the
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following condition of eq. (40b): ∀a 6= b, zp(q)Baa + f0
p (q)Bab + fp(q)

∑
c(6=a,b)Bac = 0. Under

the replica symmetric assumption, this becomes:

zp(q)B + f0
p (q)b+ fp(q)(p− 2)b = 0. (92)

Again, we introduce Lagrange multipliers Cab to fix these conditions, that reduce to Cab = C
because of replica symmetry. Finally, in order to fix the marginal distributions of ν, we will have to
introduce ’functional’ Lagrange multipliers ga(λa). Again, by replica symmetry, we expect all of
them to be equal to g(λa). In the end, we reach the simplification of eq. (91):

sup
µ∈Mφ(B)
ν∈M(Rn)

sup
A,a
B,b

extr
C,Â,â

B̂,b̂,{g(λ)}

{
pκα,φ [µ, tφ(µ)]− 1

2
ln det [{Aab}]−

∑
a,b

[
1

2
ÂabAab + B̂abBab

]
(93)

− p
∫
µ(dλ)g(λ) + p(p− 1)C

[
Bzp(q) + b

(
f0
p (q) + (p− 2)fp(q)

)]
− αH(ν|µG,q)

+
∑
a,b

[
Âab
2

∫
ν(dλ)φ′(λa)φ′(λb) + B̂ab

∫
ν(dλ)φ′(λa)λb

]
+
∑
a

∫
ν(dλ)g(λa)

}
.

We can now solve exactly the supremum over ν. By a classical Gibbs measure calculation that we
already detailed in section 2, we obtain (recall that Q ∈ Rp×p is the overlap matrix):

sup
ν∈M(Rn)


∫
ν(dλ)

∑
a,b

(
Âab
2
φ′(λa)φ′(λb) + B̂abφ

′(λa)λb

)
+
∑
a

g(λa)

− αH(ν|µG,q)


= α ln

[∫
Rp

dλ√
2π

p√
detQ

e

∑
a,b

(
− 1

2
(Q−1)abλ

aλb+
Âab
2α

φ′(λa)φ′(λb)+
B̂ab
α
φ′(λa)λb

)
+
∑
a
g(λa)
α

]
. (94)

To completely decouple the replicas, we will make use of two classical identities, for any x, y:

e
x2

2 =

∫
Dξ eξx , exy =

∫
DξDξ′ e

x√
2

(ξ+iξ′)+ y√
2

(ξ−iξ′)
.

Thanks to replica symmetry, we can compute Q−1 and detQ as:
detQ = (1− q)p−1[1 + (p− 1)q], (95a)

Q−1
ab =

1 + (p− 1)q

1 + (p− 2)q − (p− 1)q2
δab −

q

(1− q)(1 + (p− 1)q)
. (95b)

We define 
d0,p(q) ≡

1 + (p− 1)q

1 + (p− 2)q − (p− 1)q2
, (96a)

dp(q) ≡
q

(1− q)(1 + (p− 1)q)
. (96b)

Using all the above, we can now simplify eq. (94):

α ln

[∫
Rp

dλ√
2π

p√
detQ

e

∑
a,b

(
− 1

2
(Q−1)abλ

aλb+
Âab
2α

φ′(λa)φ′(λb)+
B̂ab
α
φ′(λa)λb

)
+
∑
a
g(λa)
α

]

= −αp
2

ln 2π − α(p− 1)

2
ln(1− q)− α

2
ln[1 + (p− 1)q] + α ln

[∫
R4

DξIp(ξ)p
]
, (97)
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in which we defined ξ ≡ (ξq, ξa, ξb, ξ
′
b) and

Ip(ξ) ≡
∫

dλ e
g(λ)
α −

d0,p(q)λ
2

2 + Â−â
2α φ′(λ)2+ B̂−b̂

α φ′(λ)λ+
√
dp(q)ξqλ+

√
â
α ξaφ

′(λ)+

√
b̂
2α [φ′(λ)(ξb+iξ

′
b)+λ(ξb−iξ′b)].

While the involved expressions are very cumbersome, we have successfully decoupled the replicas.

B.3.2. THE p→ 0 LIMIT AND FINAL RESULT

We begin by a remark on eq. (97). Note that limp→0(1/p) ln
[∫
Dξ Ip(ξ)p

]
=
∫
Dξ ln [I0(ξ)].

Thus, after multiplication by (1/p), the p→ 0+ limit of eq. (97) will yield:

− α

2
ln 2π − α

2
ln(1− q)− αq

2(1− q)
+ α

∫
Dξ ln I(ξ), (98)

in which I(ξ) is defined in Result 1. We can wrap up the calculation. We make two remarks. Firstly
the condition eq. (92) reduces, in the p→ 0 limit, to b = qB, so that we will be able to simplify the
terms involving the Lagrange multiplier C. Secondly, the variable B is equal to tφ(µ), defined in
Theorem 1. We combine now eqs. (40a),(41),(93) and (98) with the two remarks above. Changing
notations from µ to ν and B to C, we obtain finally the conclusion of Result 1.

Appendix C. Generalization to more involved models

C.1. Annealed and quenched calculations for L2

We give here a sketch of the generalization of our annealed and quenched calculations to L2, thus
yielding Theorem 2 and Result 2. A more detailed derivation of these results will be included in a
future extended version of this work. We restrict here to the annealed calculation (the generalization
of the quenched calculation is completely similar). The majority of the arguments being identical to
the L1 case, we will only highlight the main differences and give the important intermediary results.

In the Kac-Rice formula, one has now to integrate over the overlap q ≡ x ·x? as well. Moreover,
we condition over the joint values of aµ ≡ ξµ ·x and bµ ≡ (1−q2)−1/2 [(ξµ · x?)− qaµ], rather than
just ξµ ·x (as we did for L1). Note that (aµ, bµ) follows a joint standard Gaussian distribution.Using
these definitions, we can obtain the counterpart of Lemma 2 for L2:

ECritn,L2(B,Q) = Cn
∫
Q

dq e
n(1+lnα+ln(1−q2))

2 Ea,b

[
δ(Pn(a,b))1L2(a,b)∈Be

−nEn(a,b)Ez |detHn(a,b)|
]
,

in which Cn is exponentially trivial, and we defined:

Pn(a,b) ≡ 1

m

m∑
µ=1

bµφ
′(aµ)

[
φ
(
qaµ +

√
1− q2bµ

)
− φ(aµ)

]
, (99a)

En(a,b) ≡ 1

2
ln

{
m∑
µ=1

φ′(aµ)2
[
φ
(
qaµ +

√
1− q2bµ

)
− φ(aµ)

]2}
, (99b)

Hn(a,b) ≡ 1

m

m∑
µ=1

[
φ′(aµ)2 − θ′′(aµ)

[
φ
(√

1− q2bµ + qaµ

)
− φ(aµ)

]]
zµzᵀµ (99c)

−

[
1

m

m∑
µ=1

aµφ
′(aµ)

[
φ(aµ)− φ

(
qaµ +

√
1− q2bµ

)]]
In−2.
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Here z ∈ R(n−2)×m is an i.i.d. standard Gaussian matrix. T The condition Pq(a,b) = 0 arises from
the conditioning on the nullity of the gradient in the linear subspace spanned by x?, and En(a,b)
from the density of the gradient in the subspace orthogonal to {x, x?}. A crucial feature of this
equation is that the joint distribution of (L2(x), gradL2(x),HessL2(x)) only depends on x via the
overlap q = x · x? with the “true” solution. Once conditioned over the values of q, it thus becomes
clear why the calculations made for L1 will generalize here.

As in Section 2.3, one can then show the concentration of the empirical logarithmic potential on
the functional κα,φ(q, νma,b), in which νma,b ∈ M(R2) is now the empirical measure of {aµ, bµ}mµ=1.
We obtain the counterpart of Lemma 4: there exists η > 0 such that for all t > 0:

lim
n→∞

1

n1+η
lnP

[∣∣∣∣ 1n lnEz |detHn(a,b)| − κα,φ(q, νma,b)

∣∣∣∣ ≥ t] = −∞. (100)

Thanks to this result, we perform then a saddle point on the overlap q and the empirical measure
ν ∈M(R2), using Sanov’s theorem and Varadhan’s lemma. This yields the result of Theorem 2.

As a final note, there exists similar results to the one presented in Section 3 that allow to com-
pute the density (and the logarithmic potential) of µα,φ[q, ν], via the computation of its Stieltjes
transform.

C.2. Generalizations to other models

Our calculations, both annealed and quenched, can be generalized straightforwardly to many other
loss functions and models. As is clear for instance in the annealed computation of Section 2, the key
features that must be present are a Gaussian distribution for the data, and a loss function L(x) that
only depends on the data samples ξµ via their projection over a few vectors (as x for L1(x) and x, x?
for L2(x)). We give thereafter three examples of models, that can be found in Engel and Van den
Broeck (2001); Mei et al. (2018), and for which the calculations can be performed.

Model 1 (Binary linear classification) Consider n,m ≥ 1 such that m/n → α > 1. Let σ :
R→ [0, 1] a smooth threshold function. We are given m samples (yµ, xµ)mµ=1 with yµ ∈ {0, 1} and
xµ ∈ Rn. The elements of (yµ)mµ=1 are generated according to P (Yµ = 1|Xµ = x) = σ(θ0 · x), and
the xµ are i.i.d. standard Gaussian random variables in Rn. We want to learn the vector θ0 ∈ Sn−1

by minimizing the loss function:

L(θ) ≡ 1

2m

m∑
µ=1

[yµ − σ (θ · xµ)]2 , θ ∈ Sn−1. (101)

Model 2 (Mixture of two Gaussians) Consider n,m ≥ 1 such that m/n→ α > 1. We are given

m samples yµ ∈ Rn, generated as yµ
i.i.d.∼

∑2
a=1 paN (θ0

a, In). The proportions p1, p2 are known,
and we wish to recover θ0

1 and θ0
2 by minimizing the maximum-likelihood estimator:

L(θ1,θ2) ≡ − 1

m

m∑
µ=1

ln

1

2

∑
a=1,2

1√
2π

n exp

{
−1

2

∥∥yµ − θa
∥∥2
} . (102)

Model 3 (Simple unsupervised learning model) Consider n,m ≥ 1 such that m/n → α > 1.
Let φ : R → R a smooth activation function, V : R → R+ a “potential”, and x0 ∈ Sn−1 a fixed
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vector. We assume that we are given i.i.d. data samples {ξµ}mµ=1 ∈ Rn distributed such that their

projection on x0 has a probability density P (ξµ · x = h) ∝ e−
1
2
h2−V (h), and the other coordinates

of ξµ are i.i.d. standard Gaussian variables. We wish to recover the vector x0 by minimizing:

L(x) ≡ 1

m

m∑
µ=1

φ (ξµ · x) , x ∈ Sn−1. (103)

For each of these three models one can replicate the annealed and quenched calculations of Sec-
tions 2 and 4, under suitable technical hypotheses.

A note on non-spherical priors Finally, it is clear from the calculation of Appendix B (par-
ticularly Section B.1) that we can also generalize these techniques (at least heuristically) to non-
spherical prior distributions on the vectors x. The most natural hypothesis that allows the computa-
tion to be generalized is that the prior distribution takes the decoupled form P (dx) =

∏
i P (dxi).
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