
Proceedings of Machine Learning Research vol 107:512–536, 2020

Robust Training and Initialization of Deep Neural Networks:
An Adaptive Basis Viewpoint

Eric C. Cyr ECCYR@SANDIA.GOV
Center for Computing Research, Sandia National Laboratories

Mamikon A. Gulian MGULIAN@SANDIA.GOV
Center for Computing Research, Sandia National Laboratories

Ravi G. Patel RGPATEL@SANDIA.GOV
Center for Computing Research, Sandia National Laboratories

Mauro Perego MPEREGO@SANDIA.GOV
Center for Computing Research, Sandia National Laboratories

Nathaniel A. Trask NATRASK@SANDIA.GOV

Center for Computing Research, Sandia National Laboratories

Abstract
Motivated by the gap between theoretical optimal approximation rates of deep neural networks

(DNNs) and the accuracy realized in practice, we seek to improve the training of DNNs. The
adoption of an adaptive basis viewpoint of DNNs leads to novel initializations and a hybrid least
squares/gradient descent optimizer. We provide analysis of these techniques and illustrate via nu-
merical examples dramatic increases in accuracy and convergence rate for benchmarks character-
izing scientific applications where DNNs are currently used, including regression problems and
physics-informed neural networks for the solution of partial differential equations.

1. Introduction

Universal approximation properties of neural networks are often touted as an explanation of the suc-
cess of deep neural networks (DNNs) in applications. Despite their importance, such theorems offer
no explanation for the advantages of neural networks, let alone deep neural networks, over classi-
cal approximation methods, since universal approximation properties are enjoyed by polynomials
(Cheney and Light, 2009) as well as single layer neural networks (Cybenko, 1989). To address this,
a recent thread has emerged in the literature concerning optimal approximation with deep ReLU
networks, where the error in an optimal choice of weights and biases is bounded from above using
the width and depth of the neural network.

For example, using the “sawtooth” function of Telgarsky (2015), Yarotsky (2017) constructed
an exponentially accurate (in the number of layers) ReLU network emulator for multiplication
(x, y) 7→ xy. This construction is used to obtain upper bounds on optimal approximation based
upon DNN emulation of polynomial approximation. Building on these ideas, Opschoor et al. (2019)
proved that optimal approximation with deep ReLU networks can emulate adaptive hp-finite ele-
ment approximation, with greater depth allowing p-refinement to obtain exponential convergence
rates. An additional contribution by He et al. (2018) reinterpreted single hidden layer ReLU net-
works as r-adaptive piecewise linear finite element spaces.
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Despite this, it remains a challenge to realize these theorized convergence rates for DNNs using
practical initialization and training methods. The need is particularly acute in scientific machine
learning (SciML) applications which demand greater accuracy and robustness from DNNs (Raissi
et al., 2019; Baker et al., 2019). In practice, optimization and initialization challenges preclude the
realization of theoretical convergence rates. Optimizers are susceptible to finding suboptimal local
minima of loss functionals, and as a result DNN regression typically stagnates after achieving only
a few digits of accuracy. For example, using the aforementioned architecture of Yarotsky (2017) for
the deep ReLU emulator of x 7→ x2, but with random initial weights, Fokina and Oseledets (2019)
showed that training with stochastic gradient descent to approximate x 7→ x2 fails to demonstrate
a significant improvement in error with depth, let alone exponential convergence with the number
of layers. Lu et al. (2018, 2019) demonstrate consistent failure of deep ReLU networks to approx-
imate the function |x| on [−1, 1] due to gradient death at initialization. These results illustrate the
need for robust training and initialization algorithms for regression and approximation in scientific
problems. We aim to bridge the gap between theoretical optimal error estimates and the error one
can consistently achieve with training.

Figure 1: Adaptive basis view of a DNN with linear output layer, with notation used in this article.

In the current work we adapt the perspective that DNNs provide a meshfree technique to con-
struct an adaptive basis. This viewpoint suggests a hybrid Least Squares/Gradient Descent (LSGD)
optimizer that alternates between least squares (LS) and gradient descent (GD) steps. This process
amounts to adapting the basis functions with respect to to the data using GD while ensuring with
LS that basis functions optimally fit the data. This training strategy is applicable to networks with
arbitrary activation function in the hidden layers, a final linear activation layer, and a mean-square
loss functional.

From the adaptive basis viewpoint, we also propose a new initialization for deep ReLU networks
that we refer to as the “Box initialization”, designed to provide an expressive initial guess for the
basis. We show that this initialization outperforms the Glorot (Glorot and Bengio, 2010) and He
initializations (He et al., 2015) for one-dimensional approximation using plain networks for a mild
number of layers. Via a novel analysis of DNNs in terms of this adaptive basis perspective, we
extend the Box initialization to residual ReLU networks and show improvements upon the He and
Glorot initializations through 256 layers.

While the Box initialization and the hybrid LSGD training algorithm can be used separately,
by combining them for residual neural networks (ResNets) we demonstrate convergence of the ap-
proximation error for very deep ReLU neural networks with increasing depth. While the variance
in errors remains high and the “convergence rates” are lower than suggested theoretically, the im-
provement in reliability across a range of regression-like applications is substantial. Further, the
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architectures used are standard. In contrast, previous works in the literature have focused on how to
prevent collapse or else considered specialized architectures.

2. Problem statement

We consider in this work the following class of `2 regression problems:

argmin
ξ

K∑
k=1

εk ‖Lk[u]− Lk [NN ξ]‖2`2(Xk)
(1)

where for each k = 1, 2, ...,K, Xk = {x(k)i }Nk
i=1 denotes a finite collection of data points, NN ξ a

neural network with parameters ξ, and Lk a linear operator. In the case where k = 1 and L is the
identity, we obtain the standard regression problem

argmin
ξ
‖u−NN ξ‖2`2(X ). (2)

In general (1) represents a broader class of multi-term loss functions, including those used in
physics-informed neural networks (Raissi et al. (2019)) for solving linear PDEs (see Section 5.3).
Moreover, while we restrict our study to a single scalar “target” function u in most of the paper, in
Section 5.2 we apply our framework to regress multiple functions simultaneously.

We consider the family of neural networks NN ξ : Rd → R consisting of L hidden layers of
width w composed with a final linear layer (see Fig. 1), admitting the representation

NN ξ(x) =

w∑
i=1

ξL
i Φi(x; ξH) (3)

where ξL and ξH are the parameters corresponding to the final linear layer and the hidden layers
respectively, and we interpret ξ as the concatenation of ξL and ξH. Working with this form allows
us to highlight the interpretation of neural networks as an adaptive basis.

A broad range of architectures admit this interpretation. In this work we consider both plain
neural networks (also referred to as multilayer perceptrons) and residual neural networks (ResNets).
Defining the affine transformation, Tl(x, ξ) = W ξ

l · x + bξl , and given an activation function σ,
plain neural networks correspond to the choice

Φplain(x, ξ) = σ ◦ TL ◦ · · · ◦ σ ◦ T1, (4)

while residual networks (see He et al. (2016a,b)) correspond to

Φres(x, ξ) = (I + σ ◦ TL) ◦ · · · ◦ (I + σ ◦ T2) ◦ (σ ◦ T1), (5)

where Φ is the vector of the w functions Φi, σ the vector of the w activation functions σ and I
denotes the identity. In both cases ξH corresponds to the weights and biasesW and b.

In the case of a single hidden layer plain network with ReLU activation, one obtains a piecewise
linear C0 finite element space. This case has been considered by He et al. (2018), who show that
training amounts to adapting a piecewise linear finite element space to data. In the broader context
considered here, an adaptive basis tailored to the choice of activation function is obtained. For
example, selecting a radial basis function (RBF) as activation for a single layer network corresponds
to a RBF space with centers and shape parameters adapted to data. Many other architectures admit
the proposed interpretation, such as e.g. convolutional networks.
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3. Hybrid least squares/GD training approach

Using the Neural Network representation in (3), equation (1) reads

argmin
ξL, ξH

K∑
k=1

εk

∥∥∥∥∥Lk[u]−
∑
i

ξL
i Lk

[
Φi(x, ξ

H)
]∥∥∥∥∥

2

`2(Xk)

. (6)

A typical approach to solving Equation 6 is to apply gradient descent with backpropagation jointly
in (ξL, ξH). Given the adaptive basis viewpoint, an alternative is to hold the hidden weights ξH

constant and minimize w.r.t. to ξL, yielding the LS problem (for simplicity focusing on K = 1):

argmin
ξL

∥∥AξL − b
∥∥2
`2(X )

(7)

Here we have bi = L[u](xi) and Aij = L
[
Φj(xi, ξ

H)
]

for xi ∈ X , i = 1, . . . , N , j = 1, . . . , w.
Problem 7 is well posed if N ≥ w and A is a full-rank matrix; otherwise the problem is under-
determined and admits multiple solutions. This occurs if the basis functions Φj are linearly de-
pendent over `2(X ), as can occur for many weights initializations (see Section 4). In that case, the
Moore-Penrose pseudo-inverseA+ can be used to compute the minimum-norm solution ξL = A+b.
In this work, we use the TensorFlow (Abadi et al., 2015) implementation provided by the function
lstsq to compute the minimun-norm solution ξL.

Exposing the LS problem in this way prompts a natural modification of gradient descent. The
optimization algorithm proceeds by alternating between: a LS solve to update ξL by a global mini-
mum for given ξH , and a GD step to update ξH (Algorithm 1). This LSGD algorithm is illustrated
and compared to GD in Fig. 2, and further discussed in Appendix A.

Algorithm 1 Hybrid least squares/gradient descent
1: function LSGD(ξH0 )
2: ξH = ξH0 . Input initialized hidden parameters
3: ξL = LS(ξH) . Solve LS problem for ξL

4: for i = 1 . . . do
5: ξH = GD(ξ) . Solve GD problem
6: ξL = LS(ξH)
7: end for
8: end function

Problem 6 is referred to in the inverse-problems literature as a separable nonlinear least square
problem. It is often solved with the variable projection method (Golub and Pereyra, 1973, 2003)
in which ξL is computed by solving (7) as a function of ξH and is substituted into (6), leading to
a minimization problem over the the hidden parameters ξH only, which can then be solved with
a suitable optimization method. The variable projection method has been used for shallow (one
hidden layer) neural networks in Pereyra et al. (2006). A LS approach was also used in a greedy
algorithm to generate adaptive basis elements by Fokina and Oseledets (2019).

In the approach presented here, instead of eliminating ξL through a LS solve, we alternate
between the minimization of the two sets of parameters, ξL and ξH, which is simpler to implement.
In fact, with libraries such as Tensorflow (Abadi et al., 2015) and PyTorch (Paszke et al., 2017),
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Figure 2: LSGD algorithm. The black dot denotes the
initial guess and the black star a local mini-
mum. The red line represents the subman-
ifold (ξH , ξL) for which ξL is a solution
to the least squares problem for fixed ξH ,
written ξL = LS(ξH), on which ∇ξJ =
(∇ξHJ ,0). Since the black star must also
be a global minimum in ξL, it lies on this
submanifold. The blue curve represents GD,
and the rectilinear green curve LSGD. Each
LS solve (dashed green line) moves the pa-
rameters to the submanifold ξL = LS(ξH).

Figure 3: Mean of log10(Loss) over 16 training runs± one standard deviation of the same quantity.
Training rate 0.0005 for GD and 0.005 for LSGD for plain network (left) and ResNet
(right).

one may automate extraction of the least squares problem (Equation 7) directly from the graphical
representation of a neural network. Hence, algorithm 1 may be easily implemented as a “black-box”
layer on top of any architecture described by Equation 3.

We illustrate the advantages of LSGD training for approximating sin(2πx) on [0, 1] sampled at
256 evenly spaced points using DNNs with ReLU and tanh activation in plain and ResNet architec-
tures in Fig. 3. We use uniform He initialization and the Adam optimizer (Kingma and Ba, 2014)
for the gradient descent steps; learning rates are tuned by hand to give stable training. We found
that the LSGD optimizer performs best with a higher learning rate than that of GD – roughly 10
times higher for ReLU networks, and 100 times higher for tanh networks. The results show that
the loss in the LSGD method is typically several orders of magnitude lower than the loss in the GD
algorithm after the same number of iterations. This is especially apparent for the tanh networks.
However, we also included in Fig. 3 a rare case in which the LSGD loss is momentarily overtaken
by the pure GD loss to show that LSGD training and GD training do not admit a simple “global”
comparison; for a further discussion of this as well as computational cost, see Appendix A.
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4. The Box Initialization for deep ReLU networks

The first step in Algorithm 1 is to initialize the hidden layer parameters. An initialization resulting in
a well-conditioned, basis that is linearly independent in `2(X ) will provide a richer approximation
space for the least squares problem and give the gradient descent optimizer several “active” basis
functions to tune. In contrast, an initialization leading to poorly-conditioned, linearly dependent
basis functions – such as a basis functions with support disjoint from the data – will yield a less
expressive basis in which a local variation of the hidden parameters may not improve the loss.

4.1. Plain Neural Networks

Analyses of the representation power of ReLU networks have shed light on the role played by the
biases for representing continuous piecewise linear (CPWL) functions (Arora et al., 2016; Hanin,
2017; Hanin and Sellke, 2017; He et al., 2018). For example, for CPWL functions of one variable,
He et al. (2018) identified their single layer ReLU network representations

∑
λiReLU(x − βi)

with nodal finite element representations, with the nodes given by βi. In higher dimensions, the
cut planes (See Figure 4) defined by the bias vectors of single layer ReLU networks correspond
to the facets of a CPWL finite element mesh. This implies that to obtain a “feature-rich” initial
basis, assuming the data input is normalized to [0, 1]d, one should scatter the cut planes of the ReLU
functions over [0, 1]d randomly.

Loosely speaking, if the above initialization results in hidden layer with “feature-rich” output,
it is reasonable to speculate that composing two such layers has a good chance to also result in
a “feature-rich” output, provided the first layer maps into the domain of the second layer and is
as close as possible to being onto. The idea behind the “Box initialization” for plain networks
is to normalize the output of each layer to [0, 1]d. The goal is to apply the above initialization
inductively for each hidden layer and prevent “blow-up” of the initial basis for deeper networks. In
the remainder of this section, we consider neural network architectures in which the width of the
hidden layers is a constant w throughout the network. This simplifies the analysis, although the
algorithm can be considered for networks with variable hidden layer width wl; see Appendix B.

Referring to Fig. 4, the procedure is for each output row (1 . . . i . . . w) of the layer:
1. Select p ∈ [0, 1]w at random.
2. Select a normal n at p with random direction.
3. Choose a scaling k such that

max
x∈[0,1]w

σ(k(x− p) · n) = 1. (8)

Figure 4: Notation used in the “Box initialization” of each node.
A random point p with random orientation n̂ is used to
define a ReLU function of form σ(k(x−p) · n̂). Using
Lemma 1, one may choose the slope of the ReLU α to
impose an upper bound on the output of each layer. We
refer to the hyperplane normal to n̂, where the ReLU
“switches on”, as the cut plane.
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4. Row wi ofW ξ and bξ are selected as bi = kp · n and wi = knT .
To initialize the first hidden layer, replace w by the input dimension d in steps 1 and 3 above. A full
description of this initialization and an efficient way to calculate the k may be found in Algorithm 2
in Appendix B. With the layer initialized as above, consider feeding a box [0, 1]w as input into a
given layer. For a plain neural network, the output xl+1 of layer l is given by

xl+1 = σ(Wlxl + bl). (9)

Then, we have for every component i ∈ {1, 2, . . . , w},

min
xl∈[0,1]w

(xl+1)i = 0; max
xl∈[0,1]w

(xl+1)i = 1. (10)

Equation 10 implies that layer l maps [0, 1]w into [0, 1]w. Moreover, ensuring the extrema are
achieved on [0, 1]w guarantees its image intersects each side of the hypercube at least at a point.
This does not imply however, that each layer map from [0, 1]w into [0, 1]w is onto. Nor, as we will
see, that the the composition of two layer maps will have guaranteed intersections with the boundary.
Assuming the input into the first hidden layer is contained in [0, 1]w, then Box initializion ensures
that the hidden layers initially map

[0, 1]d
into−−→ [0, 1]w

into−−→ [0, 1]w
into−−→ [0, 1]w

into−−→ . . .
into−−→ [0, 1]w . (11)

In Figure 5 we compare the the Box initialization for a plain ReLU network with width w = 32
against the He (see He et al. (2015)) initialization for approximating sin(2πx) on [0, 1], again with
256 evenly spaced data points. We average over 16 independent training runs. The Box-initialized
basis is significantly richer for up to 8 layers, yielding a loss 2-4 orders of magnitude lower than
that of the initialized He basis after the first least squares step. This is borne out by the plots of the
initialized basis in Fig. 16. The loss after 104 LSGD steps is also lower by 2 orders of magnitude.
Despite this promising improvement over He initialization, the Box-initialized ReLU network with
16 layers fails to train, and plotting the basis function reveals they are constant over the input to
the network; see Appendix D. The image PL of the unit box [0, 1]w sequentially through L hidden
layers can be used as a diagnostic for the basis, as explained in detail in Appendix C. Fig. 6
demonstrates that this image collapses to a point, signifying constant basis functions, for the He and
Glorot initializations at a lower number of layers than Box initialization. Next, we illustrate how
ResNets avoid this issue at higher depth, and propose an analogous Box initialization for ResNets.

4.2. Residual Neural Networks (ResNets)

Consider a residual neural network with input dimension d and hidden layer width w. For a ResNet,
unless d = w, the first hidden layer is initialized as plain layer as described in Section 4.1 above.
Then, for the remaining hidden layers, to initialize the neuron i, 1 ≤ i ≤ w,

1. For m specified later, select p ∈ [0,m]w at random.
2. Select a unit normal n at p with random direction.
3. For δ specified later, choose a scaling k such that

max
[0,m]w

σ(k(x− p) · n) = δm. (12)

We again apply Lemma 1 to find the maximal corner.
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Figure 5: Mean of log10(Loss) over 16 training runs of plain width-32 ReLU network with L =
1, 2, 4, 8 and 16 hidden layers for the He (left) and Box (right) initializations. The learning
rate is 0.005 throughout.
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He (top) and Box (bottom) initializations. Values are presented on the square [−0.2, H]2,
where H is denoted to the bottom-right of each image. Collapse to a point corresponds
to constant basis functions.

4. Row wi ofW ξ and bξ is selected as bi = kp · n and wi = knT .
As for the plain DNN initialization, a more detailed description of the weight and bias initialization
procedure can be found in Algorithm 3 in Appendix B. With the layer initialized as above, consider
feeding a box [0,m]w as input into a given layer. For a residual neural network, the output xl+1

of layer l > 1 is given by xl+1 = xl + σ(Wlxl + bl) while for the first layer we have x2 =
σ(W1x1 + b1). Then, we have for every component i ∈ {1, 2, . . . , w}, l > 1

min
xl∈[0,m]w

(xl+1)i ≥ min
xl∈[0,m]w

(xl)i + min
xl∈[0,m]w

σ(k(xl − p) · n) ≥ min
xl∈[0,m]w

(xl)i ≥ 0 (13)

max
xl∈[0,m]w

(xl+1)i ≤ max
xl∈[0,m]w

(xl)i + max
xl∈[0,m]w

σ(k(xl − p) · n) ≤ m+mδ. (14)

Thus, layer l maps [0,m]w into [0,m(1 + δ)]w permitting some growth specified by δ. Assuming
the input into the first hidden layer is contained in [0, 1]w, initializing the hidden layers with δ = 1

L
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leads to a network that maps

[0, 1]d
into−−→ [0, 1]w

into−−→
[
0, 1 +

1

L

]w
into−−→

[
0,

(
1 +

1

L

)2
]w

into−−→ . . .
into−−→

[
0,

(
1 +

1

L

)L−1]w
.

(15)
This implies the final output of the hidden layer is contained in the box [0, e]w; in other words, the
values of each basis function are contained in [0, e]. Thus, we apply steps (1) – (4) with parameters

δ = 1 and m = 1 for l = 1; δ =
1

L
and m =

(
1 +

1

L

)l−1
for l > 1, (16)

and refer to this as the Box initialization for ResNets.
An interesting observation regarding the Box initialization for ResNets is its connection to the

recently developed ODE-based DNN architectures of Haber and Ruthotto (2017) and Chen et al.
(2018). In those works, an O

(
1
L

)
temporal step size scales the activation function, where L is

the number of time steps. This ensures that the growth of the network features is a function of
the length of the time interval (assuming bounded weights and biases). This is analogous to the
properties of the ResNet Box initialization shown above. An important difference, however, is that
the ODE-based architectures retain this scaling throughout the training process.

We compare the use of the Box initialization for a residual neural network with hidden layer
width 32 against the He initialization in Fig. 7 for approximating sin(2πx) using 256 evenly spaced
samples in [0, 1]. We average over 16 independent runs. The Box initialized basis is again richer
than the He basis and yields an initial LS loss consistently 4 orders of magnitude lower. The loss
during training exhibits similar improvements over the He basis. At 128 layers, it is now the He
basis which fails to train.

The advantages of the Box initialization over the He initialization can be illustrated for a width-
2 network by again studying the image PL of the unit square [0, 1]2, as explained in Appendix C,
under both initializations in Fig. 8. Note that the image of the square never collapses to a point
due to the ResNet architecture, regardless of initialization. Hence, the initialized basis will not
consist of constant functions. This is a new interpretation of the stability provided by residual neural

Figure 7: Mean of log10(Loss) over 16 training runs of residual width-32 ReLU network with L =
8, 16, 32, 64 and 128 hidden layers and training rate 2−(k+3) for the He (left) and Box
(right) initializations.
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networks; for other perspectives, see Hanin and Rolnick (2018), Haber and Ruthotto (2017), and He
et al. (2016a). Nevertheless, both the Glorot and the He initialization exhibit different pathologies
in the ResNet case as depth increases: blow-up of the basis function magnitudes and convergence
of the image PL to lines through the origin. In Appendix C we show that the latter property implies
linearly dependent basis functions φ1 = Cφ2, again resulting in a decreased expressive power of
the initialized basis. All of these properties are illustrated in the basis function plots in Fig. 16 in
Appendix D. The ResNet Box initialization, however, exhibits both the boundedness of PL proven
above and a remarkable preservation of the area of PL as depth increases. We have not yet found an
explanation for the latter property, but these results explain the benefits of the Box initializion for
deep networks observed in Fig. 7.

We observe similar properties of the ResNet Box initialization in higher dimensions as well. In
Fig. 8 we examine the eigenvalues of the covariance of the image of a set of input points sampled
from U [0, 1]w through networks of increasing depth. We find that for the Glorot and He initializa-
tions, the ratio between the smallest and largest eigenvalues quickly become zero with increasing
depth. This suggests that one basis function becomes linearly dependent upon the others with only
a few layers. Worse, the ratio between the second largest and the largest eigenvalues eventually
becomes zero, suggesting that the basis functions all become linearly dependent. In contrast, nei-
ther ratio tends toward zero for the Box initialization, indicating that the basis functions remain
independent, even for very deep networks.
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Figure 8: (Left Subfigure:) Images of the unit square [0, 1]2 under L initialized hidden layers
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8 ( ), 32 ( ), and 128 ( ).
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5. Applications

5.1. One-dimensional regression

In this section, we compare the behavior of the Glorot, He, and Box initializations for regression
using “very deep” ReLU networks. We first consider regression on the discontinuous function,

u1(x) =

{
x 0 ≤ x < 0.5

1− 3
4x

2 0.5 ≤ x ≤ 1
. (17)

With a network width of w = 2, the three initializations, both Plain and ResNet architectures,
and varying depths, we use the LSGD method to fit u1. Our results are shown in Figure 9 using an
ensemble of initial random seeds for each initialization, architecture, and depth. Due to the narrow
width of these network, only deep networks are capable of providing good approximations to u1.
However, we find that the Glorot and He initializations fail to find good fits to u1 regardless of the
architecture used. While the Box initialization in the plain architecture also results in a poor fit, in
the ResNet architecture it demonstrates a significant statistical improvement in training outcome.

Our observations in Figure 6 and 8 suggest that the combination of initialization and architecture
can lead to a starting condition in which the span of the basis functions is limited. The results in
Figure 9, related to problem 17, indicate that it is difficult to escape from this poor initial starting
condition to a good fit. However, the Box initialization for the ResNet does not suffer from this lack
of initial expressivity in the basis functions, and we are able to observe improvements increasing
the depth of the network.

We next apply the Box initialization for ResNet to regress both u1 and a smooth function,
u2(x) = sin 2πx sampled at 256 evenly spaced points in [0, 1] for varying widths and depths. We
observe first order convergence for the smooth function with respect to both width and depth, but
only realize convergence with respect to width for the discontinuous functions (Figure 10).
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Figure 9: RMS Error for 1D piecewise polynomial polynomial regression (Equation 17) using the
three initializations with Plain ( ) and ResNet ( ) architectures, respectively. Each
symbol corresponds to the loss achieved using a different random seed for initialization.
The green line ( ) indicates first order convergence with respect to depth. Setting:
ReLU activation function, network width = 2, learning rate = 0.005.
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Figure 10: Convergence studies of regression with respect to width and depth on Equation 17 (left)
and u = sin 2πx (right). Setting: ReLU activation function, ResNet architecture.

5.2. Multi-function Regression

The regression problem described above learns a basis that adapted to a single function. In this
section we modify the loss function so that the basis is defined to approximate a set of N functions:

argmin
ξL

N∑
n=1

∥∥∥∥∥un −∑
i

ξL
n,iΦi(x, ξ

H)

∥∥∥∥∥
2

`2(X )

. (18)

Here the target functions are denoted un, and each has a corresponding set of linear coefficients ξL
n,·.

The basis functions are defined by a single set of nonlinear weights ξH, that define the output of a
neural network as in single function regression described by Equation 2.

Our interest in multi-function regression lies in the fact that the adaptive basis representation of
a DNN (3) exposes the problem (2) as seeking a best w-term approximation to u in the `2(X ) norm.
This is a form of nonlinear approximation that includes, e.g., wavelet and free-knot spline approx-
imation (Cohen et al., 2009; DeVore, 1998). Here, the terms in the approximation Φi, i = 1, ..., w
belong to the class of depth L−1 DNNs with input dimension d, output dimension 1, and nonlinear
in the final layer; see Fig. 1. The multi-function regression problem (18) therefore appears closely
related to nonlinear w-widths in approximation theory (DeVore et al., 1989), and has potential for a
reduced order modeling strategy (Hesthaven et al., 2016) in which subspaces are found as the span
of {Φi}wi=1 to minimize a loss function of the form (18) given a large collection of data {un}. While
the benchmarks considered below are considerably simpler than such an application, this represents
a promising direction for future work.

A multi-regression problem is solved targeting the Legendre polynomials in L2([0, 1]), normal-
ized to ensure equal weighting in the loss. The Legendre polynomials were chosen because of the
range of structure in the set of polynomials. Note that the algorithm described above has not been
modified to take advantage of their orthonormality. The left image in Fig. 11 shows the convergence
of networks with 16 residual layers of width 6 trained to match 6 Legendre polynomials is studied (a
one-to-one relationship between width and target functions). Box initialization is used throughout.
Here, the mean loss over 10 repeated simulations is plotted as a function of iteration. The LSGD and
GD training algorithms are compared. From the figure, LSGD reaches a smaller magnitude loss in
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Figure 11: Left: Convergence of the loss of several multi-function regression problems with 6 Leg-
endre polynomials. Networks with 16 residual layers and width 6 using ReLU and tanh
activation functions are used. LSGD achieves smaller losses and converges more rapidly
than GD. Right: Convergence as a function of depth of the RMS error. As the width
growths, so do the number of Legendre polynomials used in the objective function.

fewer iterations than the equivalent network trained with GD. Furthermore, the usage of tanh leads
to a smaller loss than with ReLU, thus better representing the set of Legendre polynomials. This is
attributed to the broader support and greater smoothness of tanh.

For the right image in Fig. 11 we use a ReLU ResNet with width w to fit a space of Legendre
polynomials of dimension w. For each realization we compute the error as the minimum over all
iterations of the maximum RMS errors over the target polynomials and we then plot the mean RMS
error over all the realizations. The learning rate for these simulations is set at 0.0005. The image
demonstrates that greater accuracy is achieved as depth increases.

5.3. Physics-informed neural networks

We consider now a physics-informed neural network (PINN) solution to the linear transport equation
∂tu(x, t)+a(x, t) ∂xu(x, t) = 0 on the unit space-time domain (x, t) ∈ [0, 1]2, with initial condition
u(x, t = 0) = u0(x) and homogeneous Dirichlet boundary data u(x = 0, t) = 0. The loss function
considered here is

J = εJ1 + J2 + J3, J1 =
1

N1

∑
i∈X1

|∂tNN i + ∂xa(x, t)NN i|2,

J2 =
1

N2

∑
i∈X2

|NN i(x, 0)− u0|2, J3 =
1

N3

∑
i∈X3

|NN i(0, t)|2
(19)

where X1,X2 and X3 are Cartesian point clouds with spacing ∆x on the interior, left and bottom
boundaries, respectively. We note that the loss function is typically further augmented with a term
to match given data (see e.g. Raissi et al. (2019)), and PINNs thus amount to regularizing traditional
regression with the least-squares solution of a collocation scheme using the neural network as basis.
For all results we will use ResNets and consider as initial condition a tent function u0 ∈ C0, with
data from a 101× 101 Cartesian grid in spacetime [0, 1]2.

It is an open question how to choose the parameter ε scaling the first term of the J so that the
three competing loss functions have the same magnitude under refinement - in the literature this
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Figure 12: Left: PINNs solution for transport equation with constant velocity. Loss evolution over
training for GD and LSGD. Right: Solution after 5000 iterations for GD and 500 itera-
tions for LSGD. Setting: Box initialization, ReLU activation function, network width =
32, depth = 1, learning rate = 0.005.

penalty parameter is tuned to a given architecture to demonstrate good agreement, but preventing
a formal convergence study. Traditionally in a FEM penalty method, one would scale by a mesh
diameter h so that each term in Equation 19 has consistent units, and comparable magnitude. In the
current context, the adaptive basis has no inherent lengthscale, as the gradient of the basis may grow
arbitrarily large as the hidden weights evolve and cut planes may approach each other.

We first consider in Figure 12 the case of constant velocity, a(x, t) = 1, with corresponding
analytic solution u(x, t) = u0(x− t), and use a shallow one-layer ReLU network. For this case, the
exact solution is in the range of the network for width ≥ 3, and at this point J1 = J2 = J3 = 0,
rendering the choice of ε unimportant (we set ε = 1). In this case we observe similar trends to the
previous sections; the proposed LSGD training strategy converges to 10−15 in double precision with
orders of magnitude fewer iterations than GD. From the evolution of the cut planes during training
(see Appendix E), it is clear that the basis is adapting to the characteristics of the PDE.

We next consider nonconstant velocity, a(x, t) = x, with corresponding analytic solution
u(x, t) = u0(x exp(−t)) (Figure 13). In this case we must fix ε independent of the neural net-
work size to realize convergence, and we hypothesize ε = W−α. Solutions for α ∈

{
0, 12 , 1,

3
2 , 2
}

reveal O(W
1
2 ) convergence for α = 1

2 . Following the FEM interpretation of shallow networks (He
et al. (2018)), we interpret h ∼ N− 1

d , and selecting ε = W−
1
2 corresponds to non-dimensionalizing

the loss, allowing a realization of first-order convergence with respect to h. To consider the effect
of depth we repeat the previous experiment for increasingly deep ReLU and tanh networks. Finally,
to gauge the effectiveness of our training strategy, we compare using GD only vs LSGD.

While a thorough study of PINNs is beyond the scope of this paper, we conclude that the combi-
nation of LSGD, Box initialization, and choice of ε provides substantial performance gains relative
to traditional GD, and we conclude that depth plays an important role in the convergence of PINNs.
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Figure 13: RMS error for ResNet PINNs with Box initialization for the nonconstant velocity case.
Top: Left: Convergence of ReLU-PINNs solutions with respect to penalty scaling
ε ∼ W−α, various α. Middle: Convergence with ReLU (learning rate 0.001) us-
ing α = −1

2 . Right: Convergence with tanh (learning rate 0.01) using α = −1
2 .

Bottom: Comparison of GD (left) and LSGD (right) training for tanh activation, learn-
ing rate 0.01, width 32 and 5000 steps. X’s indicate errors for different realizations of
the Box initialization. The line indicates second order convergence w.r.t. depth.

6. Conclusions

Motivated by recent theoretical advances in the approximation theory of DNNs, this work takes an
adaptive basis viewpoint of neural network training and initialization. This perspective naturally
leads to a hybrid least squares/gradient descent training algorithm. We demonstrate that this ap-
proach leads to accelerated training for regression, multi-function regression and physics-informed
neural networks, in the context of both ReLU and tanh activation functions. In a novel development,
we proposed a new “Box initialization” procedure inspired by the basis viewpoint that dramatically
enhances the training of deep ReLU networks. As part of this we analyzed a potential failure mode
for certain initializations that leads to a highly linearly dependent initial basis and demonstrated this
failure for the Glorot and He initializations that are commonly used to initialize ReLU networks.
For ResNets, we showed how the Box initialization leads to a significantly improved basis, ulti-
mately leading to more efficient training than the He initialization. Finally, using the combination
of both Box initialization and LSGD training, we demonstrate in several scenarios the ability for
neural networks to achieve relatively robust convergence as a function of both width and depth, for
both single- and multi-function regression problems and PDE applications using physics-informed
neural networks.

That machine learning algorithms can be understood as providing an underlying adaptive basis
from data is a viewpoint that permeates many areas of deep learning (Murphy, 2012; He et al., 2018;
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Fokina and Oseledets, 2019; Wang et al., 2019), one that is amenable to numerical analysis and
admits comparison to well-established methods in scientific computing. The techniques developed
here, in addition to improving the training of neural networks, demonstrate how an adaptive basis
perspective can be used to attack critical issues hindering the robustness of machine learning. Taking
a numerical analysis viewpoint has shed new light on the issues confronting neural network training
and has provided intuition regarding the use of physics-informed neural networks to solve PDEs.
We believe that additional advances are possible when considering the numerical implications of
strategies in deep learning. Our work aims to strengthen the numerical properties of existing DNN
approaches and also provide a mathematical foundation in response to the need suggested in Baker
et al. (2019) to obtain rigorous results for use in scientific machine learning.
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Appendix A. Properties and Performance of LSGD training

We provide here some supplemental results providing additional insight into the properties and
advantages of LSGD and the computational cost relative to GD. We consider first a toy 2D problem
in Figure 14, where we compare GD to LSGD for minimizing the loss 5x2−6xy+5y2. This function
is quadratic in both x and y, but to make an analogy to (6) we take the x-direction to correspond
to the linear activation variable ξL and the y-direction to the hidden variable ξH . We can visualize
explicitly that LSGD realizes the global minimum in x at each step, and thus approaches the global
minimum in (x, y) along a trajectory (xk, yk) where the the coordinate xk always satisfies the least
squares problem xk = LS(yk) and is “optimal” for the coordinate yk.
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Figure 14: Left: Paths (xk, yk) taken by LSGD and GD to minimize the function 5x2− 6xy+ 5y2,
for learning rate of 0.1 and initial guess of (x, y) = (−4, 1). Least squares optimization
corresponds to finding the global minimum in coordinate x for fixed y at each step. Note
that for LSGD, after the initial least squares solve, each plotted (xk, yk) is the result of
gradient descent followed by least squares, rather than either of these steps individually.
Right: LSGD achieves lower loss for the same number of iterations as GD.

The sketch in Figure 2 helps explain how the LSGD approach may offer gains due to the fact that
the dynamics of training are constrained to follow a submanifold ξL = LS(ξH) which necessarily
contains all local minima. This figure also makes clear that the paths of GD training and LSGD
training are not comparable globally. While training on this submanifold may be more stable and
lead to faster training, nothing precludes the existence of barriers along this submanifold between
an initial condition and a “good” local minima, which theoretically may be bypassed faster by GD
training, as alluded to in Section 3 during the discussion Figure 3. Figure 2 also illustrates that
LSGD can be viewed as type of coordinate descent method (Nocedal and Wright, 2006) in which
steps in ξL are taken until a global minimum is reached before the variables are alternated, although
we find a global minimum in one shot with a least squares solver. We also conjecture that there may
be interesting connections with the dynamical system interpretation of training ResNets (Haber and
Ruthotto, 2017; Chen et al., 2018) and work on fast/slow manifold dynamics (Gear et al., 2005).

The computational cost of including the least squares step for ξL after each gradient descent step
in ξH depends heavily on the implementation details of both steps – for example, the specific least
squares solver, whether GPU acceleration is used for gradient descent, memory access pattern used
to overwrite linear layer variables, etc. Generally, the least squares solve only increases with the
width of the network (O(W 3) for dense solvers), whereas the gradient descent step increases with
both the width and the depth, as indicated by Table 1 for the setup of Figure 3. In this example and
throughout this article, batching is never used during the GD step; the gradient is always computed
using the full dataset.

Appendix B. Box Initialization Algorithms & Details

We provide in Algorithms 2 and 3 concise definitions of the Box initialization algorithm for both
plain and ResNet DNNs, respectively.
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Depth (hidden layers)

Width

4 16 64 256
4 1.67 1.60 1.43 1.36
16 2.08 1.50 1.44 1.41
64 1.68 1.37 1.37 1.33
256 2.00 1.65 1.52 1.49

Table 1: Relative increase in wall time for 1000 iterations of LSGD vs pure GD (using the Adam
optimizer) for a plain ReLU network, obtained using CPU implementation of Tensorflow
on an Intel i7-8700 processor. The setup is the same as that of Figure 3. For deeper
networks, the increase is smaller since the computational cost of gradient descent, unlike
that of least squares, grows with the depth and dominates the wall time.

Algorithm 2 initializes layer l, and takes as input the dimension of the input to this layer, i.e., the
width wl−1 of the previous layer, and the output dimension wl. The main points of this algorithm
are outlined in Section 4.1. Note that the random normal vector with uniform random direction n̂
is conveniently sampled (lines 3 – 4) by sampling from a isotropic multivariate normal of mean 0
and then normalizing. Once p and n̂ have sampled, a cut plane for a ReLU function is defined.
To compute the scaling constant k in Section 4.1 such that the maximum of the ReLU function on
[0, 1]wl−1 is 1, it is necessary to locate the furthest corner pmax ∈ [0, 1]wl−1 in the direction of n
from the cut plane of the ReLU function. To do this efficiently, we provide a closed form expression
in line 5 for the corner of the box where the maximum occurs; this formula is proven in Lemma 1.
The scaling factor k is then the inverse of the distance of the cut plane to this corner.

Algorithm 2 Plain Network Box Initialization
1: function PLAININIT(wl, wl−1)
2: p ∼ U [0, 1]wl×wl−1 . Sample wl points in [0, 1]l−1

3: n̂ ∼ N [0, 1]wl×wl−1 . Sample from a normal distribution
4: nij = n̂ij/||n̂i||22 . wl random unit vectors of dimension wl−1
5: pmax = max(0, sign(nij))
6: ki = 1/

∑
j ((pmax − pij)nij)

7: Alij = kinij
8: bli = ki

∑
j nijpij

9: returnAl, bl

10: end function

Lemma 1 Let H be a (d− 1) dimensional hyperplane in Rd and let n be a normal to H. Then, the
maximum distance along direction n from H and any point in the unit hypercube [0, 1]d is achieved
on

(max(sgn(n1), 0),max(sgn(n2), 0), . . . ,max(sgn(nd), 0)) = max(sgn(n),0). (20)

Proof Let us refer to the distance in question as the directed distance. The maximum directed
distance is achieved on a corner of [0, 1]d, not necessarily unique. Let C∗ be such a corner; the
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fact that C∗ maximizes the directed distance from H is invariant under parallel transport of the
hyperplane H in direction n. Parallel transport H in direction n until the plane lands on C∗; then
every point in [0, 1]d is either on H or on the opposite of H from n. Let C∗i ∈ {0, 1} denote the
coordinates of C∗. Make C∗ the origin. Consider the d unit vectors vi from C∗ to the other d
corners of [0, 1]d along one of the axes. If the coordinate C∗i had been 1, then vi = −ei; else if C∗i
had been 0, then vi = ei. Since the other corners are separated from n by H, we have that

0 ≥ 〈n,vi〉 =

{
ni if C∗i = 0

−ni if C∗i = 1.
(21)

Hence if 0 > ni, then C∗i = 0, while if 0 < ni, then C∗i = 1. If ni = 0, then both the corner C∗

and that corner with the bit C∗i flipped achieve the same directed distance from H, so we may take
C∗i = 0.

Algorithm 3 follows from the outline in Section 4.2 in a similar way. We initialize the first
hidden layer as a plain hidden layer using Algorithm 2 above (this is necessary for d 6= w). Then
pmax is found by applying the same algorithm in Lemma 1 and scaling by the constant m to yield a
corner in the box [0,m]wl−1 . The scaling constant k now includes the factor 1

L−1 .

Algorithm 3 ResNet Box Initialization
1: function RESNETINIT(wl, wl−1, L)
2: if l == 1 then
3: return PlainInit(wl, wl−1)
4: else
5: m = (1 + 1/(L− 1))l

6: p ∼ U [0,m]wl×wl−1

7: n̂ ∼ N [0, 1]wl×wl−1

8: nij = n̂ij/||n̂i||22
9: pmax,ij = mmax(0, sign(nij))

10: ki = 1/
∑

j ((pmax,ij − pij)nij(L− 1))

11: Alij = kinij
12: bli = ki

∑
j nijpij

13: returnAl, bl

14: end if
15: end function

Appendix C. The Image PL of the Unit Box Through L Layers

Here, we explain how the image of the unit box through the hidden layers of a neural network can be
a useful diagnostic from the adaptive basis viewpoint. Consider the image PL of the unit box [0, 1]w

under L hidden layers of the network, excluding the d-dimensional input layer for now; recall that
each hidden layer has fixed width w. Recall in Fig. 6, we showed the evolution of PL through each
layer for different initialization approaches for a plain neural network, and claimed that collapse
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of PL to a point implied a basis of constant functions. Recall from equation (11) that for the Box
initialization, each hidden layer mapped [0, 1]w into [0, 1]w. Because each hidden layer does not
map [0, 1]w onto [0, 1]w, as the number of layers increases, we expect PL to shrink, lose dimension,
and eventually collapse to a point.

In turn, for input dimension d ≤ w, the image of the input box [0, 1]d is a submanifold of PL,
given by the parametrization (Φ1(x),Φ2(x), ...Φw(x)) for x ∈ [0, 1]d. For example, for the DNNs
shown in Fig. 6, with a one-dimensional input this submanifold would be a curve within PL. The
basis function Φi is the projection of this submanifold onto the ith coordinate axis; this is illustrated
for a width w = 2 network with input dimension d = 1 in Fig. 15. Once the image PL is a point,
this submanifold within PL is also a point, so all initial Φi will be constant. Fig. 6 demonstrates
this for a width-two ReLU network; the He, Glorot, and Box initialization suffer from this flaw in
the plain network case for sufficiently high L.

While in the case of Figure 6, the growth in the magnitude of the basis is controlled by the
Box initialization as expected from equation (11), and the image PL does not collapse as quickly
as for the He and Glorot intializations, a statistical study of this approach will indicate that the
collapse to a point for all three initializations is inevitable. One possible treatment of this collapse
has been proposed in Lu et al. (2019). Issues of training DNNs have also been discussed by Hanin
and Rolnick (2018), who proposed a scaling of depth to width as a possible solution.

As discussed in section 4.2 and illustrated in Fig. 8, this ResNet architecture is not prone
to constant basis functions at initialization. However, Fig. 8 illustrates that PL, under the Glo-
rot and He initializations, tends to a linear subspace through the origin. Since the submanifold
(Φ1(x),Φ2(x), ...Φw(x)) lies in PL, this implies linear dependence between the basis functions.
In contrast, the Box initialization does not suffer from this, yielding networks that transform [0, 1]w

to PL in a non-singular way through width 128 and depth 128, a necessary (but not sufficient)
condition for an expressive initial basis.

...

Figure 15: Artist’s depiction of the d-dimensional manifold (red) parametrized by
(Φ1(x), ...,Φw(x)), which is the image of the input domain [0, 1]d under the in-
put and hidden layers, as a submanifold of the image PL (blue) of the unit box [0, 1]w

under the hidden layers. Here d = 1 and w = 2 to make visualization possible.

533



ROBUST TRAINING AND INITIALIZATION OF DEEP NEURAL NETWORKS:AN ADAPTIVE BASIS VIEWPOINT

Appendix D. Basis Function Plots

Figures 16 and 17 show the basis functions at initialization for Plain and ResNet architectures,
respectively, in one-dimension.
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Figure 16: Plain network basis functions, Φi, after initialization for Glorot (left column), He (mid-
dle column), and Box (right) initializations with increasing depth and width 8. The input
is one-dimensional. As discussed in Section 4.1, these figures illustrate that the Box ini-
tialized basis is richer in features than the He and Glorot initialized bases, but suffers
from “collapse” to constant functions as depth increases (notice that this tendency is also
visible for the He and Glorot basis functions).
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Figure 17: ResNet basis functions, Φi, after initialization for Glorot (left column), He (middle col-
umn), and Box (right) initializations with increasing depth and width 8. The input is
one-dimensional. As discussed in Section 4.2, these figures illustrate that for ResNets,
the box initialization consistently (with depth) produces basis functions with more fea-
tures in the input domain than the He and Glorot initializations. The box initialized basis
no longer suffers from the collapse to a constant basis as for plain architectures, nor does
it exhibit the blow-up evident in the He basis, as depth increases.
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Appendix E. PINNs snapshots

The images below depict the PINN solution to the constant coefficient transport equation at training
step i with the cut planes of the ReLU basis superimposed as dashed red lines. These training
snapshots demonstrate that the LSGD trained PINN (right column) finds the correct characteristics
of the PDE with ReLU cutplanes far faster than the GD trained PINN (left column). Note that the
i’s are different in the two columns, and both networks have identical initializations.
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