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Abstract

A model segment method called Octree Subdivision has been presented for long years,
which allows any three-dimensional point cloud object to be subdivided into infinitesimals
so that it can be approximated by a particular surface function. In this paper, we proposed
anew method named self-merging octree to reconstruct the surface of 3D Point Cloud which
can be obtained by laser scanners or generated by some 3D modeling software. Different
from any other surface reconstruction algorithms such as local property-based or specific
type-based, a function pool-based was introduced in our research because it can express
many different types of surfaces. We subdivide point cloud model by self-merging octree
and categorize it by the neuro-network. In this idea, it is easy for us to find a proper surface
function to present the subsurface of the model. What‘s more, while we extend the function
pool, we can indicate far more style models. We have tried to reconstruct many point cloud
models‘ surfaces in this way, and it works well and also shows its potential ability to build
a bridge in the fields of model editing, model splicing, and model deformation.
Keywords: point cloud; octree; deep learning; surface reconstruction

1. Introduction

Surface reconstruction, also called reverse engineering or model re-edit, is a significant as-
signment in industrial design and manufacture. Nowadays, there are many more CAD,
CAM and CAE softwares providing real-time design and modification, visualization, dig-
itization, etc. to help people efficiently and effectively produce some very interesting and
colorful objects. But this still relies on the designer‘s intuition and empirical experience to
rebuild a model quickly and rightly. That means you need to spend a lot of efforts learning
how to use modeling softwares, and getting sufficient design experience in constant exper-
imentation when you want to become a good designer and design amazing productions.
With the booming demand for film animation, aircraft steamship, cultural relic protection,
unmanned driving, virtual reality, artificial intelligence, and other industries, the three-
dimensional reconstruction task has risen to a new height. This requires not only accurate
and realistic design models but also time limits and reconfigurability. In order to solve
these problems, many researchers have done countless work to release people from complex
and boring reconstruction work. Thanks to the rapid development of computer technology,
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scientists from over the world have developed a variety of model representation. At present,
there are several regulation approaches for drawing curves such as NURBS curve, Hermite
curve, Bezier curve, B-spline curve, etc. In addition, many mechanisms of 3D surface draw-
ing have been invented, such as Coons surface, Bezier surface, B-spline surface, derived
T-spline, G-spline, rational Gaussian surface, as well as generalized rational parameter sur-
face. Those curve and surface rendering algorithms have long been widely used, making a
significant contribution to industrial design and manufacturing.

Different from the digital and virtual world which is defined by discrete numeric value
and showed by limit pixels on the screen, the real physical world is subdivided continuously
and infinitely. So it is impossible for us to describe the real world around us as detailed
as what we can see by computers. The more subtle ways we use to regenerate the virtual
world, the more complex data we will get. Meanwhile, it is not intuitive and uneasy for us to
deal with that. There is a new data structure named 3D Point Cloud which can reproduce
the real world simply, robustly, and intuitively. Due to the irregularity of point cloud data,
it is not easy for us to use it directly for 3D reconstruction. The question of how to rebuild
the real world based on point cloud has become a hot topic in current research.

Machine learning is a branch of artificial intelligence, including the acknowledgment of
deep learning and neural networks. As early as 1956, the concept of artificial intelligence
(AI) was first proposed by McCarthy at the Dartmouth Conference. He tried to use the
machine to simulate human intelligence which we are born with. With the advances in
internet, artificial intelligence and Big Data, machine learning is widely used to deal with the
issue of image processing, object recognition, data mining, search engines, medical imaging
and object generation. At present, the commonly used machine learning frameworks mainly
include DNN called deep neural network, RNN called cyclic neural network, GAN called
the generation of confrontation networks, CNN called convolutional neural networks, etc.
Recently, some scholars have applied these techniques to manifold surface reconstruction
and established an emerging perspective to understand machine learning from a geometric
perspective. Some researches show that machine learning relies on the manifold distribution
theorem, which indicates that there is a large application space in surface reconstruction
with the technology of machine learning.

To gain a higher efficiency of surface reconstruction and obtain a more extensive ap-
plication, we promote a new measure combining all of the above techniques and exploring
further. Our research is based on basic point cloud data, and we use octree algorithm
that has combined with a machine learning method. In this work, we chose one named
PointNet Qi et al. (2016) which can directly perform point cloud partitioning and out-
put each class label for the whole input. Unlike the segment method of traditional octree
and Adaptive-Octree Wang et al. (2018a), we create a novel self-merging octree algorithm
which will help us look for the most suitable partition location. With the application of
this method, it is not only easy for us to avoid unnecessary surface stitching that may be
represented by an equation or an intact surface at the end of the program of the surface
conflated but also it can also make the reconstructed surface smoother and more natural.
The establishment of the equation pool includes so many samples of the simple surface
represented formulation such as planar and Bezier surface and so on. So while we input
more types of the surface, we can represent more surface and decrease much time to making
margination.
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2. Related Work

Surface construction is a hot research field in recent years since the methodology of surface
stimulation has been raised last century. In 1988, David and Richard proposed a hier-
archical subdivision technique based on B-spline, which can change control vertices and
local characteristics of the presentation of the surface. In 1995, Grimm et al. proposed
the manifold modeling Grimm and Hughes (1995) of arbitrary topological surfaces based
on extended B-spline functions, inheriting the characteristics of traditional B-spline local
control and continuity. In 2000, Navau et al. proposed a surface modeling Navau and
Garcia (2000) of arbitrary topological meshes based on tensor product B-spline functions.
Based on the two manifolds with arbitrary topological structure, a continuous surface model
with C* was constructed. In 2002, Cindy came up with a parametric simple surface mod-
eling Grimm (2002) which was modeled by simple parameterization of the given surface.
In 2003, John et al. constructed a parametric hyperbolic polygon of the N hole Tori and
generated the surface by a standard spline function Grimm and Hughes (2003). In 2004,
Zorin et al. proposed an arbitrary smooth surface reconstruction Ying and Zorin (2004)
based on a simple manifold, satisfying linear dependence at the control vertices, and the
constructed surface has C*° continuously. In 2005, Gu et al. proposed a manifold spline
technique to construct a spline surface Gu et al. (2005) with high parameters and no need to
be repaired by concentrating a triangular B-spline surface from a planar domain to multiple
domains, thus completing any geometric shape and topology modeling well. In 2006, He
proposed a manifold T-spline technique He et al. (2006) to construct a high-quality and
controllable layered structure through global conformal parameterization. In 2007, Wang
et al. proposed a polyhedral spline technique Wang et al. (2007), which considers polygons
to have rectangles everywhere in their domains. Except for a few corners, the boundaries of
polyhedra can be naturally decomposed into a set of regular structures. In 2008, He et al.
used the mathematical theory of Ricci flow to construct a manifold spline function with a
single singular point and gave strict proof to it Gu et al. (2008), which eased the modeling
difficulty of manifold splines and promoted a wide range of manifolds in entity modeling. In
2009, Vecchia et al. constructed a manifold surface with sharp features using the principles
of manifold structure and hybrid approximation Vecchia and Jiittler (2009). In 2011, Elif
et al. combined the methods of Ying and Zorin to construct a manifold surface with bound-
aries Tosun and Zorin (2011). In 2012, Li et al. discussed the linear independence of the
T-spline mixing function and determined the function matrix of the T-spline to NURBS
transformation Li et al. (2012). Subsequently, some people have used the form such as
sparse expression method Wang et al. (2016), triangle B-spline function Gu et al. (2008),
Powell-Sabin spline (vertex interpolation and normal), T-spline function, polyhedron The
T-spline Liu et al. (2015), local feature retention spline, multi-level triangular PSP spline Li
and Tian (2015) and other techniques to complete the surface reconstruction work, and also
achieved good results.

These methods and measures have their own advantages and disadvantages, but when
dealing with singular points or edges, sharp points, and other irregular features, the pro-
cessing algorithm is slightly complicated and insufficient. In response to these problems,
recently, Zhang et al. used polygon mesh technology to construct manifold surfaces Zhang
and Liu (2017). Through the combination with indeterminate basis functions, the con-
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structed surface can perfectly represent the local information of the object, such as sharp
features, smoothness, etc. In this way, Surfaces expressed by basis functions can be used
to approximate real objects. Quan et al. collect RGB photos directly through the camera,
splicing the photos to directly form a stereo effect, as a result the resulting three- dimen-
sional scene not only satisfies the requirements of virtual modeling but also acquires the
model with real Texture Quan et al. (2015); Wang et al. (2018b). The data sources for these
photos are usually acquired using drones. Due to the good freedom and high-speed mobile
performance of drones, they are favored by researchers nowadays. At the same time, Luo
et al. introduced a 3D laser scanner to scan existing objects directly and collect 3D point
cloud information of objects Luo et al. (2016), especially for large-scale scenes, which makes
modeling more convenient. These point cloud information collected from the scanner can
be processed directly as input data or to generate grids for further operation. Because the
point cloud information is too large, and unpredictable errors such as noise and holes will
occur during the acquisition process, it is difficult for the computer to quickly and conve-
niently construct models by using the existing algorithm without performing the necessary
preprocessing. There is a number of feasible processing algorithms as to the removal of
point cloud noise Wang and Cho (2015) and hole repair Wang et al. (2018b). By using
these existing algorithms to preprocess point cloud data, relatively clean point cloud data
can be obtained, which can simplify subsequent processing in the next step.

Therefore, the work of surface reconstruction gradually tends to be based directly on
point cloud data. Our work is also based on the above, and we combine machine learning
methods to make the modeling process more unsupervised. Furthermore, we offer another
possibility for modeling methods based on the point cloud data, which will make modeling
easier, when we provide enough surface samples that can be represented by functions. At the
same time, when all the surfaces of our surface pool adopt the design rules in computer-aided
design software, we will allow the machine to automatically construct the existing models
in the existing world based on point cloud data, which will greatly simplify the design. The
design process of the personnel also provides a convenient method for redesigning the real
world model.

3. Construction

In this section, we will introduce the algorithm for surface construction via self-merging
octree. For a given point cloud data, we first surround it with a bounding sphere and then
create an external cube. In this way, we can use octree algorithm to segment this point cloud
into a number of a small piece of point clouds which occupies the same amount of spaces
from its cube bounding box. With a series of information packaged of the above pieces
of the point cloud, we can use this packaged information of the subspace as raw input to
machine learning. Through the discrimination of neural network in machine learning, the
type to which each piece of point cloud belongs can be determined. Based on these results,
we can indicate specific surface representations to them. Eventually, using surface stitching
technology, surface construction of the entire model is completed. And the pseudo code can
be described as follows.
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Algorithm 1 The workflow framework of our system.

Input: The point cloud, S;

Output: The fitting surface of point cloud S, H;
Step 1: Constructing a bounding box for point cloud S; Initializing the iteration depth
f# = n, and the number of iterations k = 0;
Step 2: k = k + 1; Performing an octree partitioning algorithm on the input point
cloud set S to obtain a point cloud subset, .5;;
Step 3: if 5; is not an empty point set, Packing it as the input to the classifier to get
the type of each point cloud, I'y;
Step 4: if S; has not been marked with any type, go to step2; else if .S; has been marked
with the type I'y, go to stepb;
Step 5: Finding the spatial domain node S; of S;. if S; and S; are the same types,
I';, merging them as S;;; if the type of S;; is also I't, recording the merge information in
variable A, otherwise, cancel this merger; if k& > n, or when all S; have been typed with
tags, go to stepb, otherwise go to step2;
Step 6: According to the type of S; to construct a corresponding fitting surface, and
use the fusion algorithm to splicing and merging adjacent surfaces. Finally, the fitted
surface H of the model S is obtained;
return H;

3.1. Self-merging Octree

The method of octree Meagher (1982) was proposed by Meagher in 1982, which can progres-
sively divide the three-dimensional space into eight octants by using the iterative algorithm.
Fig. 1 has shown one segmentation molder of the traditional octree method. Our octree
method also works on this foundation. But it is different from the traditional octree algo-
rithm which has to set the recursion depth 6 for the stopping of the program, our method
can stop itself automatically without setting this parameter. However, it is a wise choice
for us to initialize the depth 6 to ensure the stability of our program.

-

Figure 1: Traditional octree segmentation model.

When a point cloud data S is given, we first create a bounding sphere to surround
the point cloud and then create an external bounding box that can be rotated around the
sphere. In order to make point cloud data segmentation easier to process by our program,
we randomly select some bounding boxes for comparison and choose the best one. Normally,
adjusting the 3D point cloud data to the axis-aligned mode will reduce time for this step.
Since we identified a cube bounding box, we began a one to eight subdivision of the point
cloud as the traditional way do. Thus, we can get eight subspaces s;(i = 0,1,...,7) from
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every piece of the point cloud to be segmented, each subspace has a similar spatial size.
Then, we suspend the segmentation processing and start to judge whether s; is empty. If it
is empty, the slice space will be ignored. while it is not empty, it will be packaged as input
data that can be processed by our point cloud classifier which can classify these inputs
into existing types based on our surface pool. To simplify the complexity of the program,
the feasibility of the experimentation and the less cost of the time of the experimental
verification, we assume that our classifier can only perform two sorting operations — plane
or other. However, Our classifier is so powerful that it can classify a wide variety of patch
types while we have trained it with various types of surfaces first. The classification diagram
is shown as Fig. 2.

Plane surface ?

Classficationi
Spherical surface ?

' \‘ ————— AN
iInput S based on EOutpuf}
! //

_____
——————

Deep learning

B-spline surface ?

- 1 -
. 1 .
- -
Point Cloud Set i Surface Reconstruction

Figure 2: Classfication model.

Once the classifier (Section 3.2) has determined the category of each input piece of the
point cloud and outputs the labels of every input, the self-merging operation will begin
automatically. According to the data structure of the octree, each piece point cloud can
easily find its neighbors. If the point cloud and its neighbor are of the same type and do
not belong to other types, then the two pieces point cloud will be merged as the new piece
point cloud p;(j = 0,1,...,17) which will be taken as the input to the classifier after all
merge operation is finished. While all of the steps of the self-merging process is over, the
classification operation will be activated again to label the new input. If the merged data
does not belong to any type of the pre-merger, the merge will be canceled, otherwise, it will
be regarded as valuable. In order not to destroy the data structure of the octree algorithm,
we will save these point cloud data in the form of files and create a new data structure
which is similar to the octree structure to store the merge information of each node of the
octree. After an iteration, we will get four types of point cloud data from the input s;,
they are an empty point set s,,, an unmerged point set s,, with available labels, a merged
point set p, with the available label and a set of points s; with other labels. For these types
of point clouds, we will handle differently in the next iteration. the point set s,, which is
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empty will be ignored and the point set s; which has not been identified type will need to
be subdivided by the program in the next iteration and do the same operation as the first
iteration. Meanwhile, the point set s,, and p; which are marked with the label will only
need to participate in the merge operation of the next iteration. We will repeat those steps
until all the piece of the subpoint cloud has been classified.

To ensure normal operation of the program, we initialized the iteration depth value 6
based on experience for the different model. We all know that three points can form a
plane, and any line and single point can be considered as planes. Therefore, when our 6
value is empty that can be regarded as infinite, the program can also run normally and
stop by itself automatically instead of splitting to each point. Sometimes, when our point
cloud data contains some noise. We can eliminate the few faces of these point sets which
only contain very few points, which can optimize the effect of reconstruction. More, we
can calculate the average normal vector of each patch of the surface to determine if it is
noise-induced and consider whether to ignore this part of the content. Of course, this will
make the sharp features of the model smooth or even disappear.

Following this theory, we only need to extend the capabilities of the classifier to enhance
the program'‘s ability to express surfaces. For example, we can add Gaussian surfaces,
Spline surfaces and some surfaces with sharp features Wang et al. (2016) to our surface
pool, which allows our program to fit surfaces with distinctive features. In order to display
the visualization of the operation of our method better, We tried our algorithm on a two-
dimensional curve, which is shown in Fig. 3. For a given curve model S, we assume that it
can be fitted with some spline that can be expressed by simple equations. Our goal is to find
these straight segments and merge them into the simplest straight segments. In Fig. 3, we
use the gray area to represent the straight line segments that have merged, and those large
white space areas are the space areas we have discarded. As the subdivision is deeper, we
can get the desired result we expect. It can be seen from the experimental results that our
algorithm works out, and this is not the same as the adaptive O-CNN algorithm Wang et al.
(2018a) which is based on convolutional neural networks for the voxelization of the model.
Therefore, by implementing a piecewise linear fit, all curves can be well characterized.

< DD e D
i

Figure 3: Application of self-merging algorithm on curves.

3.2. Classifier

Using the octree segmentation algorithm of the above, we can get some spatial subdivision of
point clouds. The significant work to do is to determine the type of each point cloud based on
the surface pool, which will promote our program on performance well. In order to process
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the data better to obtain a good classification effect, we introduce the PointNet++ Qi et al.
(2017) processing theory into our machine learning network, which can directly handle point
clouds that are always disordered, irregular and anomalous sets. As Qi said, for a given
point cloud data {x1,x9, ..., 2, } where z; € R. we can define a mapping function f : x — R
as shown in Eq.1 to process point cloud data Qi et al. (2016). The v and h in the Eq.1 are
MLP (multi-layer perceptron) networks.

f(x1, 29, ..., 23) = y( max {h(z;)}) (1)

i=1,....,n

According to the mathematics description, we pack each piece of the segmented point
cloud as the data input of the neural network and calculate the type tag of the point cloud
as the output result of the classier. Its operation process is shown in Fig. 4.

___________________ Classification
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Figure 4: Processing of the point cloud.

Different from the usual classification methods, our requirements for classification ac-
curacy can be dynamically adjusted based on the classification capabilities of the classifier.
When our classifier has a strong classification ability, which means there are many types of
patches of the point cloud that can be distinguished. We only need to improve the classifi-
cation accuracy requirements so that each point cloud can be tagged with the corresponding
label. When our classification ability is weak, for example, it can only distinguish between
planar and non-planar types, we should have no more stringent accuracy requirements for
classification, in case the subdivision is too deep and the running time is too long. By
adjusting the classification accuracy dynamically, the program is more robust, which can
make classification results more available basically. At the same time, we do not need to
encode and decode the point cloud data to find the most optimized feature at the end of
merging together, which leaves our classification results not constrained by the ability to
the representation of the feature extraction. Our purpose is only to get the classification
label to inform the segment handler whether to perform the next iteration.

3.3. Surface Presentation

When our classification and self-merging process completed all the operations, we began to
perform surface reconstruction operations based on well-typed pieces of point cloud data.
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Assuming that all surfaces in our surface pool can be represented by using a specific cubic
B-spline surface, it is easy to know that for different types of neighbors domain surfaces,
only spline interpolation algorithms are needed to fuse them together. As pointed out
by Liu, a m x n secondary B-spline surface S(u,v) can be defined as Eq.2 in the space
with the number of (m + 1) x (n + 1) control points Liu et al. (2018) which can be set as
pij(i=0,1,...,m;5=0,1,2,...,n). The N;,, and N;, are the basic function of the B-spline
in the Eq.2, and where (u,v) € [0, 1] x [0, 1].

m n
S(u,0) =D PijNim(u)Njn(v) (2)
i=0 j=0
Since there are some calculation errors in the segmentation process, we leave a certain
overlap for each segmented region which can refer to the paper Zhang and Liu (2017). In
our testing, we expanded the length of the stereo box edge of each divided convolutional
1.1 times. We can think that the splicing operation of the two patches is to fuse the
overlapping regions by using three-dimensional stitching technology. And then using the
Laplacian smoothing algorithm, the smoothing operation is performed on each merged
portion. Suppose that the surface we reconstructed last is denoted by H, and the finite ¢
surfaces in the surface pool are represented by h;(i = 0,1, ...,¢—1) which can be represented
by known parametric equations. And the each-patch surface is represented by g;(j =
0,1,...,n). The surface construction of the entire model S can be expressed by the following
formulation.

H=) hi+> g (3)

It is known from the above formulation. For the better surface reconstruction of the
model, we only need to optimize the surface expressions in the surface pool and choose a
more sophisticated stitching algorithm.

4. Results

Similar to other surface construction methods, we use the method of this paper to perform
surface fitting on point cloud data. First, we tested the feasibility of our approach on a set
of regular data sets, some of which were primarily downloaded from the Stanford University
web page. The experimental results are shown in Fig. 5. The experimental results show
that our visualization results are similar to those of the existing excellent algorithms which
can reconstruct surface fitted with the given point cloud data very well. We overlay the
reconstructed surface and the point cloud to better demonstrate the reconstruction results
of our algorithm. For a better explanation, we give a visual comparison chart with Zhang's
algorithm Zhang (2017). It can be seen from the figures that our algorithm has obvious
advantages in the visualization effect because it can fit the point cloud model well.

And then we added some Gauss noise to the data sets to test the reliability of our
program, the result is shown in Fig. 6.al—a3. The al is the original point cloud, a2 is the
point cloud with Gauss noise addition, and a3 is the test result of our method. At the
same time, we also tested the algorithm of Zhang Zhang (2017) on it, unfortunately, the
program crashed directly. It can be seen from the experimental results that our method is
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Point Cloud

Figure 5: Results and comparison.
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sensitive to noise, but it can barely reconstruct similar results. This also means that our
method also requires some pre-processing to eliminate noise for better results. Finally, We
used the point cloud data scanned by the laser scanner to test our method. The test results
are shown in Fig. 6.b. It can be seen from the experimental results that our method is also
very robust to the point cloud data obtained on the real site.

al a2

Figure 6: al—a3: Test result on point cloud with Gauss noise; b: Test results on a point
cloud collected by a laser scanner.

5. Conclusions and Limitations

A new method named self-merging octree has been proposed in this paper, which has tried
to construct the surface of the three-dimensional model successfully. We also combine with
the machine learning in our classier process progress. At the end of the last of the program,
cubic B-spile interpolation has been used to combine all of the species of the point cloud,
which works well in our data set. In this way, we can easily extend the type of pieces surface
in our surface pool. The more types we own, the more abilities our program can perform
to the surface of the model. But in the real world, the point cloud collected by scanner
usually has noise and hole. The model with some noise would mislead our classier to make
the wrong decision and the hole of the model would be misfit by our combination functions.
Those problems need us to do a preprocess first to remove noise and fit the hole effectively.
On the other hand, due to the complex process steps, our method always takes much time
to operate once especially for the irregular model which contains some sharp features and
singularities. In the future, we will try to bring in some other type surfaces to enlarge our
surface pool to enhance the ability of our program. We will also follow Wang's theory Wang
et al. (2017) to reduce the time complexity by using GPU parallel computing. Meanwhile,
for a better effect of surface stitching in our mathematics, we will introduce the manifold
principle and bring in some geometric theories to machine learning Lei et al. (2018), which
would fit well with our self-merging octree algorithm. Furthermore, The sparse sample
method is also worth trying, and it has been successfully used in the manifold surface
reconstruction algorithm of polygon mesh Zhang and Liu (2017).
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