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JAMES GILLESPIE

Abstract. We put a monoidal model category structure on the category of
chain complexes of quasi-coherent sheaves over a quasi-compact and semi-
separated scheme X. The approach generalizes and simplifies the method
used by the author in [Gil04] and [Gil06] to build monoidal model structures
on the category of chain complexes of modules over a ring and chain complexes
of sheaves over a ringed space. Indeed, much of the paper is dedicated to show-
ing that in any Grothendieck category G, any nice enough class of objects F
induces a model structure on the category Ch(G) of chain complexes. The
main technical requirement on F is the existence of a regular cardinal κ such
that every object F ∈ F satisfies the following property: Each κ-generated
subobject of F is contained in another κ-generated subobject S for which
S, F/S ∈ F . Such a class F is called a Kaplansky class. Kaplansky classes
first appeared in [ELR02] in the context of modules over a ring R. We study
in detail the connection between Kaplansky classes and model categories. We
also find simple conditions to put on F which will guarantee that our model
structure is monoidal. We will see that in several categories the class of flat
objects form such Kaplansky classes, and hence induce monoidal model struc-
tures on the associated chain complex categories. We will also see that in any
Grothendieck category G, the class of all objects is a Kaplansky class which
induces the usual (non-monoidal) injective model structure on Ch(G).

1. Introduction

The definition of left derived functor appearing in Cartan and Eilenberg’s book
depended on the existence of projective resolutions. Often however, especially in
algebraic geometry, one is dealing with a category in which projective resolutions do
not exist. For example, it is well-known that we do not have projective resolutions
in the various types of sheaf categories.

Today we define derived functors by introducing the derived category D(A) of
an abelian category A. This “category” is obtained by first forming the associated
category Ch(A) of unbounded chain complexes, and then formally inverting the ho-
mology isomorphisms. However, in general D(A) is not at all easy to understand.
Even the morphism sets seem mysterious, without further analysis in each case.
(The word “category” above is in quotes because it is only known in particular
cases that the class of maps between two objects in D(A) actually form a set.)
However, Quillen’s notion of a model category, appearing in [Qui67], gave us a lan-
guage and theory designed to deal with categories exactly like derived categories.
That is, categories which are obtained by localizing with respect to a class of mor-
phisms. Indeed, with a model structure on Ch(A), the morphism set D(A)(X, Y )
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for complexes X, Y ∈ D(A) will be isomorphic to the morphism set

Ch(A)(QX,RY )/ ∼
where QX and RY are some sort of resolutions of X and Y respectively (called
“cofibrant” and “fibrant” replacements, respectively) and ∼ is the relation of chain
homotopic maps. This alone gives us a better understanding of the derived category,
not to mention the versatility that different model structures correspond to different
cofibrant and fibrant replacements.

So given an abelian category A, presumably without enough projective objects,
we would like a model structure on Ch(A) that is good for defining left derived func-
tors. In particular, when A has a tensor product, it gives rise to a tensor product
on Ch(A) for which we would like left derived functors. In the language of model
categories this means we would like to construct a monoidal model structure. We
point out that there are other benefits to having a monoidal model structure which
follow from the literature. For example, from [May3] it is would be automatic that
D(A) is triangulated in a way that is strongly compatible with the derived tensor
product. We would also automatically have the additivity property of generalized
trace maps as defined in [May3]. If one is interested in studying the homotopy
theory of monoids in Ch(A), or modules over a monoid, then one could use results
from [SS00].

We now summarize the layout of this paper. Our main tool used in proving the
existence of various homological model structures is Theorem 4.12. The theorem
basically says that a suitable class of objects F (described in some more detail
below) in a Grothendieck category G gives rise to a model structure on Ch(G). We
will ultimately use Theorem 2.2 of [Hov02] to prove Theorem 4.12. Hovey’s theorem
relates model structures to the notion of a cotorsion pair. Therefore much of the
paper concerns cotorsion pairs and we give the necessary definitions in Section 2.
The reader can find much more on cotorsion pairs in [EJ01], [Hov02], and [Gil04].
In Section 3 we develop some theory on small cotorsion pairs. The word “small”
was first used to describe a cotorsion pair in [Hov02]. An analogy is that small
is to cotorsion pair as cofibrantly generated is to model category. The material in
Section 3.1 was surely known to Hovey, but has not been written down in much
detail. Proposition 3.8 of Section 3.2 greatly simplifies the problem of building a
model structure from a small cotorsion pair and makes chunks of the work in [Gil04]
and [Gil06] seem obsolete.

It is in Section 4 where we introduce the central notion of a Kaplansky class
in a Grothendieck category G. A Kaplansky class is a class F of objects in a
Grothendieck category in which there exists a regular cardinal κ such that every
object F ∈ F satisfies the following property: Each κ-generated subobject of F is
contained in another κ-generated subobject S for which S, F/S ∈ F . The main idea
of the paper is that a Kaplansky class satisfying the hypotheses of Theorem 4.12
immediately gives us a cotorsion pair which is nice enough to induce a model
structure through Hovey’s correspondence in [Hov02]. Our definition of Kaplansky
class is a categorical version of the definition given by Edgar Enochs in [ELR02].
Enochs has proved the existence of flat covers and cotorsion envelopes in several
algebraic categories, essentially by showing that the flat objects form a Kaplansky
class.

It is not hard to see (but proved in this paper) that when a Kaplansky class F is
also closed under direct limits, then every object of F is a transfinite extension of
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κ-generated objects in F . In fact if we let F̃ be the class of all exact chain complex
with cycles in the class F , then we will see in Section 4 that each complex in F̃
is a transfinite extension of κ-generated complexes in F̃ . The class F̃ will be the
class of trivially cofibrant objects, and they are generated by the set of κ-generated
complexes in F̃ . The cofibrant complexes will be certain complexes constructed
from κ-generated “F-disks” and “F-spheres”.

In Section 5 we show that if the Kaplansky class satisfies certain compatibilities
with the tensor product, then the induced model structure is monoidal in the sense
of [Hov99].

The rest of the paper deals with applications of Theorem 4.12. Our main con-
cern for this paper is to prove the existence of a monoidal model structure on
Ch(Qco(X)) for a nice scheme X. In Section 6 we see that the class of flat ob-
jects in Qco(X) is a Kaplansky class which induces a monoidal model structure
on Ch(Qco(X)) when X is a quasi-compact and semi-separated scheme. We call
this model structure the flat model structure. Results from [AJL97] and [EE05] are
essential to our construction of the flat model structure.

In Section 7 we give some more examples of homological model structures which
come from Kaplansky classes. These include analogous flat model structures which
the author previously constructed in [Gil04] and [Gil06]. The former is the flat
model structure on Ch(R-Mod) where R is a commutative ring with identity. The
latter is on Ch(OX -Mod) whereOX is any ringed space. We will also see in Section 7
that in any Grothendieck category the class of all objects is trivially a Kaplansky
class, which induces the usual injective model structure.

The author would like to thank Mark Hovey for always answering questions
related to this work. A couple of lemmas which are entirely due to Hovey are
pointed out in the text. Thankyou also to Edgar Enochs, and to Sergio Estrada
and Leo Alonso Tarŕıo for helping me understand a few things they already knew
about quasi-coherent sheaves. Finally, thankyou to Haynes Miller and the referees
for their time and useful suggestions on improving the readability of this paper.

2. Preliminaries

Let G be an abelian category. A cotorsion pair is a pair of classes of objects
(A,B) in G such that A⊥ = B and A = ⊥B. Here A⊥ is the class of objects X ∈ G
such that Ext1(A,X) = 0 for all A ∈ A, and similarly ⊥B is the class of objects
X ∈ G such that Ext1(X, B) = 0 for all B ∈ B. If we take G to be the category
of modules over a fixed ring R, then there are two obvious cotorsion pairs. One
is (P,A) where P is the class of projective R-modules and A is the class of all
R-modules. The other is (A, I) where I is the class of injective R-modules. In fact,
these two examples exist in any abelian category G. Therefore they are sometimes
called the categorical cotorsion pairs.

If the category G has a tensor product then there ought to be a “flat” cotorsion
pair (F , C) as well. For example in the category R-Mod, taking F to be the class of
all flat R-modules (tensor exact), we get that (F ,F⊥) forms a cotorsion pair [EJ01].
The objects in the class F⊥ are the so-called cotorsion modules and F⊥ is usually
denoted by C.

A cotorsion pair (A,B) is said to have enough projectives if for any X ∈ G there
is a short exact sequence 0 −→ B −→ A −→ X −→ 0 where B ∈ B and A ∈ A. We
say it has enough injectives if it satisfies the dual statement. These concepts may
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be thought of as generalizations of the terms “enough projectives” and “enough
injectives” which apply to a category G. Indeed, to say that a category has enough
projectives is the same as saying that the categorical cotorsion pair (P,A) has
enough projectives. Similarly, a category has enough injectives precisely when the
categorical cotorsion pair (A, I) has enough injectives.

If the category G has both enough projectives and injectives, then a cotorsion
pair (A,B) has enough projectives if and only if it has enough injectives. This
equivalence, due to Luigi Salce, is proved as Proposition 7.1.7 in [EJ01] for R-
modules, but clearly holds in any abelian category G with enough projectives and
injectives.

The flat cotorsion pair (F , C) is complete, but the proof is nontrivial. For a
proof, one can see [EJ01]. The fact that (F , C) is a complete cotorsion pair settled
a long standing conjecture of Edgar Enochs which asserted that every module has a
flat cover. We refer the reader to [EJ01] for much more on cotorsion pairs, cotorsion
modules, and Enochs’ flat cover theorem.

A cotorsion pair (A,B) is said to be cogenerated by a set if there exists a set
(not just a class) of objects S ⊆ A for which S⊥ = B. It was shown in [ET01] that
any cotorsion pair which is cogenerated by a set is complete, as long as we are in
an R-module category. For categories that do not have enough projectives, we do
not have an analogous theorem. However, if we slightly strengthen the definition
of “cogenerated by a set” we do have an analogous theorem. This idea is due to
Hovey and leads to the notion of a small cotorsion pair, which we explore in detail
in Section 3. The problem of showing that a cotorsion pair is complete is analo-
gous to the model category problem of showing that your morphisms satisfy the
factorization axiom. Armed with this perspective one can see similarities between
the proof in [ET01] to Quillen’s proof of his small object argument. Hovey’s proof
in [Hov02] actually uses the small object argument.

Given an abelian category G, we denote the associated chain complex category

by Ch(G). A chain complex · · · −→ Xn+1
dn+1−−−→ Xn

dn−→ Xn−1 −→ · · · will be denoted
by (X, d) or simply X. We say X is bounded below (above) if Xn = 0 for all n < k
(n > k) for some k ∈ Z. We say it is bounded if it is bounded above and below.
The nth cycle object is defined as ker dn and is denoted ZnX. The nth boundary
object is Im dn+1 and is denoted BnX. The nth homology object is defined to be
ZnX/BnX and is denoted HnX. Given an M ∈ G, we let Sn(M) denote the
chain complex with all entries 0 except M in degree n. We let Dn(M) denote the
chain complex X with Xn = Xn−1 = M and all other entries 0. All maps are 0
except dn = 1M . Given X, the suspension of X, denoted ΣX, is the complex given
by (ΣX)n = Xn−1 and (dΣX)n = −dn. The complex Σ(ΣX) is denoted Σ2X and
inductively we define ΣnX for all n ∈ Z. Finally, given two chain complexes, X and
Y , their tensor product X ⊗Y is defined by (X ⊗Y )n =

⊕
i+j=n Xi⊗Yj in degree

n. The boundary map δn is defined on the (i, j)-component of
⊕

i+j=n Xi ⊗ Yj by
(dX)i ⊗ 1Yj + (−1)i 1Xi ⊗ (dY )j .

Recall that a Grothendieck category is an abelian category G which has a gener-
ator G ∈ G and in which direct limits are exact. Examples include any R-module
category or the various sorts of sheaf categories. Also, if G is a Grothendieck cate-
gory then so is the chain complex category Ch(G). One may peruse Appendices A
and B to see some of the useful properties of Grothendieck categories, which give
them a more “concrete” feel. For more information on Grothendieck categories
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(and locally presentable categories) we refer the reader to Chapter V of [Sten75],
[AR94] and [Bor94].

The author has used the texts [Har77] and (to a lesser degree) [Lit82] as ref-
erences for sheaves, schemes and quasi-coherent sheaves. Also see Appendix B
of [TT90] for more advanced topics such as the definition and basic facts concern-
ing semi-separated schemes. The author uses [Hov99] for referencing facts on model
categories. Since the point of the paper is to show that we can construct various
model categories we assume the reader knows what a model category is. However,
very little knowledge of model categories is necessary to understand the paper. The
work here rests heavily on the work in [Hov02] and [Gil04]. The first paper is a
proper model category paper which lays out the basic interplay between cotorsion
pairs and model categories, while the second focused exclusively on the interplay
between cotorsion pairs of chain complexes and (homological) model structures. In
particular we will use definitions and basic results from Section 3 of [Gil04]. There
is a warning: Definition 3.11 in [Gil04] only makes sense if our category has enough
projectives and injectives. This mistake actually leaves a gap in the construction
of the flat model structure on Ch(OX -Mod) which appeared in the sequel [Gil06].
The mistake is easily fixed. Indeed one should replace the “hereditary” hypothesis
with the assumption appearing as condition (4) in Theorem 4.12 of this paper. In
this way we have avoided using the word “hereditary” at all in a category without
enough projectives. In any case, we show in Section 7 that the flat model structure
of [Gil06] is just another corollary of our Theorem 4.12.

The following definition is given in Section 3 of [Gil04]. For the readers conve-
nience we give the definition again here.

Definition 2.1. Let (A,B) be a cotorsion pair in an abelian category G. Let X be
a chain complex.

(1) X is called an A-complex if it is exact and ZnX ∈ A for all n.
(2) X is called a B-complex if it is exact and ZnX ∈ B for all n.
(3) X is called a dg-A complex if Xn ∈ A for each n, and every f : X −→ B is

null homotopic whenever B is a B-complex.
(4) X is called a dg-B complex if Xn ∈ B for each n, and every f : A −→ X is

null homotopic whenever A is a A-complex.

We denote the class of all A-complexes by Ã and the class of all dg-A complexes
by dgÃ. Similarly, the class of all B-complexes is denoted by B̃ and the class of
dg-B complexes is denoted by dgB̃.

We end this section by giving proofs to a few lemmas which will be used again and
again throughout the paper. The first two are very basic and concern generators in
Grothendieck categories. We will usually use Lemmas 2.2 and 2.3 without explicit
mention. The last lemma is a lifting property that the author learned from Mark
Hovey through personal communication.

Lemma 2.2. Let G be an object in an abelian category G. G is a generator for G
if and only if given any morphism d : C −→ D, d is an epimorphism whenever d∗ is
an epimorphism. Here d∗ : G(G,C) −→ G(G,D) is defined by d∗(t) = dt.

Proof. Suppose G is a generator and d : C −→ D is a morphism for which d∗ is an
epimorphism. To show d is an epimorphism, we will show that if hd = 0, then h = 0.
By way of contradiction suppose h 6= 0. By definition of a generator, there exists
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a morphism s : G −→ D such that hs 6= 0. Now since d∗ is an epimorphism, there
exists t for which dt = s. So now 0 = 0t = hdt = hs 6= 0 which is a contradiction.
So d must be an epimorphism.

Next, suppose d is an epimorphism whenever d∗ is an epimorphism and let
h : X −→ Y be a nonzero map. To show G is a generator we need to find a morphism
s : G −→ X such that hs 6= 0. Let k : Z −→ X be the kernel of h and by way of
contradiction suppose hs = 0 for all s. By the universal property of kernel, each s
factors through k. I.e., k∗ is an epimorphism. By hypothesis, k is an epimorphism.
But since k is a kernel it is also a monomorphism and therefore k is an isomorphism.
This implies h = 0 ¤

If G is an abelian category and A is a class of objects, we say that G has enough
A-objects if for any object X ∈ G we can find an epimorphism A −→ X where
A ∈ A.

Lemma 2.3. Let G be a Grothendieck category and A be a class of objects which is
closed under coproducts. Then A contains a generator if and only if G has enough
A-objects.

Proof. First assume A contains a generator G and that X is an arbitrary object in
G. It is well-known (for example, see [Bor94]) that the canonical map

⊕

f∈Hom(G,X)

G −→ X

is an epimorphism. Since we assume A is closed under coproducts we are done.
Next assume G has enough A-objects and let G be a generator for G. Then we

can find an epimorphism A −→ G for which A ∈ A. It is easy to check that A too
must be a generator for G. ¤
Lemma 2.4. Let G be any abelian category. Suppose we have short exact sequences
A

i−→ B
p−→ C and K

j−→ L
q−→ M and a commutative diagram as shown below:

A
f−−−−→ L

i

y
yq

B −−−−→
g

M

If Ext1A(C,K) = 0 then there exists a lift h : B −→ L so that hi = f and qh = g.

Proof. Consider the diagram below:
0 −−−−→ A A
y

y(i
f)

yi

L
(0
1)−−−−→ B ⊕ L

(1 0)−−−−→ B

q

y
y(−g h)

y
M M −−−−→ 0

Each column forms a chain complex and so the diagram is a short exact sequence of
chain complexes. The associated long exact sequence in homology leads to a short
exact sequence K

k−→ T
r−→ C.
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If we let Z denote the kernel of the map (−g q) : B ⊕ L −→ M , then Z is the
pullback of the maps q and g as shown in the square below:

Z
g̃−−−−→ L

q̃

y
yq

B
g−−−−→ M

The maps g̃ and q̃ are the projections B ⊕ L −→ L and B ⊕ L −→ B restricted to Z.
Some more notation is necessary. We set ι̃ :=

(
i
f

)
: A −→ Z, and so T = cok ι̃.

We write p̃ : Z −→ T for the quotient map and we set k̃ := (0 j) : K −→ Z. Now one
can check that the diagram below commutes, the rows and columns are exact, and
the bottom right square is a pullback:

K K

k̃

y
yk

A
ι̃−−−−→ Z

p̃−−−−→ T
∥∥∥ q̃

y
yr

A
i−−−−→ B

p−−−−→ C

Now we can finally construct the lift. Since Ext1G(C, K) = 0, the sequence

K
k−→ T

r−→ C splits and so we have a map n : C −→ T such that rn = 1C . By
the pullback property, there is a unique map ñ : B −→ Z with q̃ñ = 1B and p̃ñ =
np : B −→ T . We claim that the map h := g̃ñ : B −→ L is a lift. Indeed, we first
have qh = qg̃ñ = gq̃ñ = g. Next, one checks that p̃(ι̃ − ñi) = 0 and q̃(ι̃ − ñi) = 0
and so the pullback property tell us that ñi = ι̃ : A −→ Z. This gives us hi = g̃ι̃ = f
as required. ¤

3. Small cotorsion pairs

In the paper [Hov02] we learned a relationship between cotorsion pairs and model
structures on an abelian category. In that paper Hovey defined small cotorsion
pairs, which are cotorsion pairs (A,B) along with a set of “generating monomor-
phisms” I. The basic analogy is that small is to cotorsion pairs as cofibrantly
generated is to model categories.

3.1. Properties of small cotorsion pairs. The results in this subsection are all
known and in fact much of it can be found in Section 6 of [Hov02]. The motivation
for this subsection is proving Lemmas 3.4 and 3.6. Although these were certainly
known to Hovey (personal communication) they do not appear in [Hov02] and the
author could not find them in the literature. Lemma 3.4 will be used in the next
section while Lemma 3.6 will be used to prove that the flat model structure on
chain complexes of quasi-coherent sheaves is monoidal.

Definition 3.1. Let (A,B) be a cotorsion pair in a Grothendieck category G.
Suppose A contains a generator G for the category. The following conditions are
equivalent and we say that the cotorsion pair is small if it satisfies one of these
equivalent conditions:
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1) There is a set S which cogenerates (A,B) and for each S ∈ S there is a
monomorphism iS , with cok iS = S, satisfying the following: For all X ∈ G, if
G(iS , X) is surjective for all S ∈ S, then X ∈ B.

2) There is a set J of monomorphisms for which cok J = {cok i : i ∈ J} cogener-
ates (A,B) and which satisfies the following: For all X ∈ G, if G(i,X) is surjective
for all i ∈ J , then X ∈ B.

3) There is a single monomorphism i for which {cok i} cogenerates (A,B) and
such that for all X, G(i,X) surjective implies X ∈ B.

We denote by I the set of monomorphisms together with the monomorphism
0 −→ G, and we call this collection the generating monomorphisms for (A,B).

The first definition is the original due to Hovey and can be found in [Hov02]. The
first definition clearly implies the second definition. The second definition implies
the third by looking at the direct sum

⊕
i∈I i. Finally the third condition clearly

implies the first.
The following lemma can be found implicitly by studying Section 6 of [Hov02].

See [Hov99] for the definition of I-inj, I-cof, and I-cell.

Lemma 3.2. Let (A,B) be a cotorsion pair in a Grothendieck category G. Also
suppose that A contains a generator G for the category and that the cotorsion
pair is small with generating monomorphisms I. Then I-inj is the class of all
epimorphisms p with ker p ∈ B.

Proof. Say p : X −→ Y is in I-inj. Since 0 −→ G is in I, there is a lift in any diagram
of the form

0 −−−−→ X
y

yp

G −−−−→ Y
By Lemma 2.2, p must be an epimorphism.

Now ker p −→ 0 can be viewed as the pullback of p over the map 0 −→ Y . Since
I-inj is closed under pullbacks we see that ker p −→ 0 is also in I-inj. But this
is equivalent to saying G(i, ker p) is surjective for all i ∈ I. So ker p ∈ B by the
definition of a set of generating monomorphisms.

On the other hand, let p be an epimorphism with ker p ∈ B. We look for a lift
in a diagram of the form

M −−−−→ X

i

y
yp

N −−−−→ Y

where i ∈ I. Since Ext(cok i, ker p) = 0, such a lift exists Lemma 2.4. This proves
the Lemma. ¤

Lemma 3.3. Let (A,B) be a cotorsion pair in a Grothendieck category G. Also
suppose that A contains a generator G for the category and that the cotorsion
pair is small with generating monomorphisms I. Then I-cof is the class of all
monomorphisms f with cok f ∈ A.

Proof. If f is a monomorphism with cok f ∈ A, then f is in I-cof by combining
Lemma 3.2 and Lemma 2.4.
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Conversely, let f : M −→ N be in I-cof. Embed M ↪→ I in an injective. Then
(I −→ 0) ∈ I-inj, so there is a lift in the diagram

M −−−−→ I

f

y
y

N −−−−→ 0
and so f must be injective.

Now we wish to show that N/M ∈ A. So let B ∈ B be arbitrary and embed

B in an injective to get a short exact sequence 0 −→ B
i−→ I

j−→ I/B −→ 0. Since
Ext1(N/M, I) = 0, we will be done if we can show that any map h : N/M −→ I/B
lifts to a map h̄ : N/M −→ I so that h = jh̄. Notice we have a commutative diagram

M
0−−−−→ I I

f

y
yj

N −−−−→
c

N/M −−−−→
h

I/B

where c : N −→ N/M is the canonical map to the cokernel. Since j ∈ I-inj and
f ∈ I-cof, there exists a lift ψ : N −→ I such that ψf = 0 and jψ = hc. By the
universal property of cokernel, there exists a map h̄ : N/M −→ I such that ψ = h̄c.
But now hc = jψ = jh̄c, and since c is epi, it is right cancellable. Thus h = jh̄. ¤

The next lemma basically says that a set I of monomorphisms (for which cok I =
S cogenerates (A,B)) is a set of generating monomorphisms if and only if I-inj and
I-cof can be classified as in the last two lemmas.

Lemma 3.4. Let (A,B) be a cotorsion pair in a Grothendieck category G, cogen-
erated by a set S. Also suppose that A contains a generator G for the category.
Suppose for each S ∈ S we are given a monomorphism iS with cok iS = S. Denote
the set of all these iS, together with the monomorphism 0 −→ G by I. Then the
following are equivalent:

1) (A,B) is a small cotorsion pair with I a set of generating monomorphisms.
2) I-inj is the class of all epimorphisms with kernel in B.
3) I-cof is the class of all monomorphisms with cokernel in A.

Proof. (1) implies (2) is Lemma 3.2 and (1) implies (3) is Lemma 3.3. We first
show (2) implies (1). So let X ∈ G and suppose G(iS , X) is surjective for all S ∈ S.
This is equivalent to saying X −→ 0 is in I-inj. By hypothesis X ∈ B as desired.

Next we show (3) implies (1). So let X ∈ G and suppose G(iS , X) is surjective
for all S ∈ S. Again, this is equivalent to saying X −→ 0 is in I-inj. We need to
conclude X ∈ B, so we let A ∈ A be arbitrary and argue that

0 −→ X
f−→ Z

g−→ A −→ 0

must split. But by hypothesis, f ∈ I-cof = I-inj-proj, so there is a lift in the
diagram

X X

f

y
y

Z −−−−→ 0
This lift is a splitting. ¤
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The last lemma of this section classifies the objects of A when (A,B) is a small
cotorsion pair in which A contains a generator. The classification is in terms of
transfinite extensions. Next, we give the definition of a transfinite extension.

Definition 3.5. A transfinite composition in an abelian category G is a map of the
form X0

f−→ colim Xα, where X : λ −→ G is a colimit-preserving functor and λ is an
ordinal. We refer to f as the transfinite composition of the maps Xα −→ Xα+1. If
in addition, the maps Xα −→ Xα+1 are all monomorphisms with cokernel in some
class D, then we refer to f : X0 −→ colim Xα as a transfinite extension of X0 by D.
If X0 ∈ D as well, we just refer to colim Xα as a transfinite extension of D.

It may be helpful to think of a transfinite extension of some class D in the
following way. For simplicity let G be the category of R-modules. Let λ be a
limit ordinal and let (Mα)α<λ be a family of submodules of a module M . We call
the family a continuous chain of submodules if Mα ⊆ Mα+1 for all α < λ and if
Mβ =

⋃
α<β Mβ whenever β < λ is a limit ordinal. Clearly, M is the union of a

continuous chain of submodules (Mα)α<λ iff M0 ⊆ M is a transfinite composition
of the maps Mα ⊆ Mα+1. If M0 ∈ D and Mα+1/Mα ∈ D, where D is some class of
modules, then M is a transfinite extension of D.

Lemma 3.6. Let (A,B) be a cotorsion pair in a Grothendieck category G. Also
suppose that A contains a generator G for the category and that the cotorsion pair is
small with cogenerating set S and generating monomorphisms I. Then every object
A ∈ A is a retract of a transfinite extension of objects in S ∪ {G}. In particular,
A is the smallest class containing S ∪ {G} and closed under transfinite extensions
and retracts (summands).

Proof. Let A ∈ A. Then 0 −→ A is in I-cof by Lemma 3.3. By Corollary 2.1.15
of [Hov99] we see 0 −→ A is a retract of a map 0 −→ Y in I-cell, by a map which
fixes 0. That is, A is a retract of Y . But if 0 −→ Y is in I-cell, then Y is a
transfinite extension of the cokernels of maps in I. (This follows right from the
definition of I-cell and the fact that cokernels are unchanged when pushing out
over a monomorphism.) So A is a retract of a transfinite extension of S ∪ {G}.

Say W is the smallest class containing S ∪ {G} and is closed under transfinite
extensions and retracts. Now A contains S ∪ {G} and we know from Lemma 6.2
of [Hov02] that the left side of a cotorsion pair is always closed under transfinite
extensions and retracts. So A ⊇ W. Conversely, from the last paragraph it is clear
that A ⊆ W. ¤

3.2. An associated cotorsion pair of chain complexes is small. We continue
to let (A,B) represent a small cotorsion pair in a Grothendieck category G which
has a generator G ∈ A. By Corollary 3.8 of [Gil04], we have induced cotorsion pairs
(dgÃ, B̃) and (Ã, dgB̃) of chain complexes, where the classes dgÃ, B̃, Ã and dgB̃ are
those defined in Section 2 above. We now show (dgÃ, B̃) is small whenever (A,B) is
small. The author doesn’t know of a corresponding theorem for the cotorsion pair
(Ã, dgB̃) without making further assumptions on the class A. This is the subject
of Section 4.

Lemma 3.7. Let X be a chain complex in an abelian category G with generator G.
If any chain map f : Sn(G) −→ X extends to Dn+1(G), then X is exact.
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Proof. Let n be an arbitrary integer. By Lemma 2.2, showing exactness in degree
n requires showing that any morphism f : G −→ ZnX lifts over d : Xn+1 −→ ZnX.
But it is easy to see that this is the same as showing that the induced chain map
f̂ : Sn(G) −→ X extends to a morphism Dn+1(G) −→ X. ¤

Proposition 3.8. Let (A,B) be a cotorsion pair in a Grothendieck category G
which has a generator G ∈ A. If (A,B) is cogenerated by a set {Ai}i∈I , then the
induced cotorsion pair (dgÃ, B̃) is cogenerated by the set

S = {Sn(G) |n ∈ Z } ∪ {Sn(Ai) |n ∈ Z , i ∈ I }.
Furthermore, suppose (A,B) is small with generating monomorphisms the map

0 −→ G together with monomorphisms ki as below (one for each i ∈ I):

0 −→ Yi
ki−→ Zi −→ Ai −→ 0.

Then (dgÃ, B̃) is small with generating monomorphisms the set

I = { 0 −→ Dn(G) } ∪ {Sn−1(G) −→ Dn(G) } ∪ {Sn(Yi)
Sn(ki)−−−−→ Sn(Zi) }.

Proof. Clearly S ⊆ dgÃ, so we have S⊥ ⊇ (dgÃ)⊥ = B̃. Conversely if X ∈ S⊥, then
0 = Ext1Ch(G)(S

n(Ai), X) for all i ∈ I. But Ext1Ch(G)(S
n(Ai), X) ∼= Ext1G(Ai, ZnX)

(Lemma 3.1 in [Gil04]). So Ext1G(Ai, ZnX) = 0 which implies ZnX ∈ B since the
set {Ai} cogenerates the cotorsion theory.

Next we want to show that X is exact. Consider the short exact sequence

0 −→ Sn−1(G) −→ Dn(G) −→ Sn(G) −→ 0.

It induces an exact sequence of abelian groups

HomCh(G)(Dn(G), X) −→ HomCh(G)(Sn−1(G), X) −→ ExtCh(G)(Sn(G), X).

But again Lemma 3.1 of [Gil04] gives us ExtCh(G)(Sn(G), X) ∼= ExtG(G,ZnX) and
this last group equals 0 by the last paragraph. Therefore Lemma 3.7 tells us X is
exact. Since X is exact and has cycles in B, we see that X ∈ B̃. So S⊥ = B̃. This
shows that S cogenerates the cotorsion pair (dgÃ, B̃).

Next we prove the statement about smallness. First note that since G generates
G, the complexes Dn(G) generate Ch(G). Also Dn(G) ∈ dgÃ, and so dgÃ contains
the generators {Dn(G)}. Now let X be any chain complex. We wish to show that
“extending through monomorphisms in I” implies X ∈ B̃. But again, if morphisms
Sn−1(G) −→ X can extend over Dn(G), then X must be exact by Lemma 3.7. Next
let ZnX be a cycle. Any map Yi −→ ZnX determines a morphism Sn(Yi) −→ X,
which we assume extends over Sn(ki) to a map Sn(Zi) −→ X. Thus any map
Yi −→ ZnX extends over ki to a map Zi −→ ZnX. By hypothesis this implies
ZnX ∈ B. ¤

As mentioned at the beginning of this subsection, we know from Corollary 3.8
of [Gil04] that if A contains a generator for G and (A,B) is a cotorsion pair, then
we have two induced cotorsion pairs on Ch(A). We denote them by (dgÃ, B̃)
and (Ã, dgB̃) as in [Gil04]. We will see in the proof of Theorem 4.12 that a crucial
step in building a model category structure on Ch(A) is showing that these induced
cotorsion pairs are compatible. This means dgÃ∩E = Ã and dgB̃∩E = B̃. Condition
(4) of Corollary 3.9 below will be used at that time to guarantee that the induced
cotorsion pairs are compatible.
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Corollary 3.9. Let (A,B) be a small cotorsion pair in a Grothendieck category G.
Assume A contains a generator for G. Then the following are equivalent:

(1) The induced cotorsion pairs (dgÃ, B̃) and (Ã, dgB̃) are compatible.
(2) A is resolving and B is coresolving. That is, A is closed under taking kernels

of epimorphisms and B is closed under taking cokernels of monomorphisms.
(3) Extn

A(A,B) = 0 for any n > 0 and any A ∈ A and B ∈ B.
(4) Ã = dgÃ ∩ E

Proof. First we show (1) implies (2). Say we are given a short exact sequence
0 −→ X −→ A0 −→ A −→ 0 where A0 and A are in the class A. Since A contains a
generator we can complete the short exact sequence to obtain an “A-resolution”
· · · −→ A2 −→ A1 −→ A0 −→ A −→ 0. Since this resolution is a bounded below complex
with objects in A, it is in dgÃ by Lemma 3.4 of [Gil04]. But it is also in E . Since
dgÃ∩E = Ã, we see that the resolution is in Ã. Therefore X ∈ A by the definition
of the class Ã. This shows A is resolving. The dual shows that B is coresolving.

Next we show (2) implies (3). We will prove by induction that Extn(A,B) = 0
for all n > 0 , A ∈ A and B ∈ B. Obviously Ext1(A,B) = 0 for any A ∈ A and B.
Now suppose k > 0 and that Extk(A,B) = 0 for any A ∈ A and B ∈ B. We now let
A ∈ A and B ∈ B be arbitrary but fixed and wish to argue Extk+1(A,B) = 0. We
start by embedding B inside an injective, 0 −→ B −→ I −→ B′ −→ 0. Note that I ∈ B
and so by hypothesis B′ ∈ B. We now apply the functor Hom(A,−) to get the long
exact sequence · · · −→ Extk(A,B′) −→ Extk+1(A,B) −→ Extk+1(A, I) −→ · · · . By the
induction hypothesis Extk(A,B′) = 0 and since I is injective Extk+1(A, I) = 0. It
follows that Extk+1(A,B) = 0. Therefore (2) implies (3).

It is easy to see that (3) implies (2), so we have that (2) and (3) are equivalent.
Now we show (2) implies (4). First use Lemma 3.10 of [Gil04] to see that Ã ⊂

dgÃ∩E . Next, using only the coresolving hypothesis in (2), we can perform the (dual
of the) argument in the proof of Theorem 3.12 of [Gil04] to conclude Ã ⊃ dgÃ ∩ E .
So Ã = dgÃ ∩ E .

It is left to show that (4) implies (1) and this amounts to showing B̃ = dgB̃ ∩ E .
But by Proposition 3.8 we see that (dgÃ, B̃) is a small cotorsion pair. By Corol-
lary 6.6 of [Hov02] we get that (dgÃ, B̃) has enough injectives. Finally Lemma 3.14
of [Gil04] tells us B̃ = dgB̃ ∩ E . ¤

4. Locally cogenerated classes and Kaplansky classes

Throughout this section we again assume that G is a Grothendieck category.
In each of the categories R-Mod, OX -Mod and Qco(X), the class of flat objects
satisfies an important property. In a loose sense, every flat object is “built” from
“smaller” flat objects. “Built” in this case means “is a transfinite extension of” and
by “smaller” we essentially mean “of smaller cardinality”. We axiomatize this to get
the concept of a locally cogenerated class. We will prove that a locally cogenerated
class F containing a generator and closed under transfinite extensions and retracts
gives rise to a small cotorsion pair (F , C). However, in light of Section 3.2, to get
the flat model structure (on either R-Mod, OX -Mod or Qco(X)) we really need
the induced cotorsion pair (F̃ , dgC̃) to be small. We will do this by showing F̃ is a
locally cogenerated class. Doing so will lead us to the notion of a Kaplansky class,
which is a slight strengthening of a locally cogenerated class. The author got the
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term “Kaplansky class” from Edgar Enochs whose work (with several coauthors)
on proving the existence of flat covers in categories such as R-Mod, OX -Mod and
Qco(X) is closely related to the idea of a Kaplansky class. See [BBE01] , [ELR02] ,
[EE05] , [EEGO] , and [EO01]. In each category mentioned above, Enochs and
coauthors have essentially shown that the class of flat objects form a Kaplansky
class. So as a result of Theorem 4.12 we then have an induced (flat) model structure
on the associated chain complex category. We explain in section 6 using results
of [EE05] why the class of flat objects in Qco(X) is a Kaplansky class.

The reader should now skim through Appendix A since many definitions and
theorems we use in this section can be found there.

4.1. Locally cogenerated classes.

Definition 4.1. Let κ be a regular cardinal. Given a class F of objects in G, we
say F is locally κ-cogenerated if for every 0 6= F ∈ F , there exists 0 6= S ⊆ F
with S ∈ Genκ F and F/S ∈ F . We say F is locally cogenerated if it is locally
κ-cogenerated for some regular cardinal κ.

Fact 4.2. Let κ′ and κ be regular cardinals with κ′ ≥ κ. It follows from Fact A.2
that if F is locally κ-cogenerated, then F is locally κ′-cogenerated.

Lemma 4.3. Suppose the class F is locally κ-cogenerated and is closed under direct
limits. Then given a monomorphism f : A ↪→ B with B/A ∈ F , we may write B
as a transfinite extension of A by objects in Genκ F . In particular, every object of
F is a transfinite extension of Genκ F
Proof. Set X0 = A. Now use the definition of locally κ-cogenerated to find 0 6=
X1/X0 ⊆ B/X0 with X1/X0 ∈ Genκ F and B/X1 ∈ F . Continue, by transfinite
induction, setting Xγ =

⋃
α<γ Xα for limit ordinals γ. Since F is closed under direct

limits we get that B/Xγ ∈ F , and we may continue the induction. Eventually, this
process must terminate (since B has only a set of subobjects by Fact A.11), and
we get B =

⋃
α<λ Xα for some ordinal λ. This says B is a transfinite extension of

A by objects in Genκ F since X0 = A and Xα+1/Xα ∈ Genκ F . ¤

The author learned the following Lemma from Mark Hovey. It is a generalization
of Lemma V.3.3 from [Sten75].

Lemma 4.4. Suppose G is locally κ-generated. Given an epimorphism g : X −→ Y
where Y is κ-generated, there exists a κ-generated subobject X ′ ⊆ X for which
g|X′ : X ′ −→ Y is an epimorphism.

Proof. Since G is locally κ-generated, we may write X =
∑

i∈I Xi as a κ-filtered
union of κ-generated subobjects of X. Since g is an epimorphism, Y =

∑
i∈I g(Xi),

and this too is a κ-filtered union. Now we must have Y = g(Xi) for some i ∈ I by
Fact A.5. So g|Xi

: Xi −→ Y is an epimorphism. ¤

Definition 4.5. Suppose F is locally cogenerated class in G. By Facts A.8 and 4.2
we can choose a regular cardinal κ with each of the following properties: (1) G
is locally κ-presentable (hence locally κ-generated too) and (2) F is locally κ-
cogenerated. Having chosen such a κ, we define I to be the set of all (representatives
of isomorphism classes of) monomorphisms A ↪→ B for which B ∈ Genκ G and
B/A ∈ F . Furthermore, if F contains a generator G, then we also assume we have
chosen κ large enough so that (3) G is κ-presentable.
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Note that by Fact A.4, if (A ↪→ B) ∈ I then we have B/A ∈ Genκ F . Also,
(0 ↪→ B) ∈ I iff B ∈ Genκ F .

Lemma 4.6. Let F be a locally cogenerated class in G which is closed under direct
limits. If A ↪→ B is a monomorphism with B/A ∈ F then f : A −→ B ∈ I-cell. The
converse holds if we also assume that F is closed under extensions.

Proof. We first need to show that any f : A ↪→ B with B/A ∈ F is in I-cell.
Using Lemma 4.3, we may write B =

⋃
α<λ Xα in such a way that X0 = A and

Xα+1/Xα ∈ Genκ F . So f is the composition of the λ-sequence

X0 = A ↪→ X1 ↪→ X2 · · · −→ Xα ↪→ Xα+1 −→ · · ·
where each Xα ↪→ Xα+1 satisfies Xα+1/Xα ∈ Genκ F . But since Xα+1/Xα is κ-
generated we can, by Lemma 4.4, find X ′

α+1 ⊆ Xα+1 such that X ′
α+1 is κ-generated

and X ′
α+1 −→ Xα+1/Xα is surjective. Then note Xα+1 = X ′

α+1 +Xα. Now we have
the following commutative diagram, where the rows are short exact sequences and
the left square is a pushout (and pullback):

0 −−−−→ Xα −−−−→ Xα + X ′
α+1 −−−−→ Xα+1/Xα −−−−→ 0x

x
∥∥∥

0 −−−−→ Xα ∩X ′
α+1 −−−−→ X ′

α+1 −−−−→ Xα+1/Xα −−−−→ 0

Now Xα ∩X ′
α+1 ↪→ X ′

α+1 is in I by definition. This shows f is in I-cell, since f is
a transfinite composition of pushouts of maps in I.

To prove the converse, we actually only need to assume that F is closed under
transfinite extensions. (We don’t even need the locally cogenerated hypothesis for
this direction.) Indeed suppose f : A −→ B is in I-cell, so that it is the composition
of some λ-sequence A = X0 −→ · · ·Xα −→ Xα+1 · · · where each Xα −→ Xα+1 is a
pushout of some Aα ↪→ Aα+1 in I. Since a pushout of a mono is a mono, each
Xα ↪→ Xα+1 must be a monomorphism. It follows that f , being the map from A
to the colimit of the λ-sequence, B, is also a monomorphism.

Now take the quotient of the entire diagram, by A = X0. It gives a new cone
whose base is the λ-sequence 0 ↪→ X1/X0 ↪→ · · ·Xα/X0 ↪→ Xα+1/X0 · · · . All
maps in the new diagram are also monomorphisms and the universal property of a
quotient object will show that the new cone is actually a colimit cone, with colimit
B/A. Furthermore the new diagram shows that B/A is a transfinite extension of
things in F , since each (Xα+1/X0)/(Xα/X0) ∼= Xα+1/Xα is in the class F as the
following pushout diagram shows:

0 −−−−→ Xα −−−−→ Xα+1 −−−−→ Aα+1/Aα −−−−→ 0x
x

∥∥∥
0 −−−−→ Aα −−−−→ Aα+1 −−−−→ Aα+1/Aα −−−−→ 0

¤

Remark. Let F be a locally cogenerated class in G which is closed under direct
limits. If F ∈ F then 0 −→ F ∈ I-cell. The converse holds if F is closed under
transfinite extensions. In particular, when F is closed under direct limits and
extensions.
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Lemma 4.7. Let F be a locally cogenerated class which is closed under direct limits
and contains a generator G. Then I-inj equals the class of all maps p : X −→ Y
such that p is surjective and ker p ∈ (Genκ F)⊥

Proof. Suppose p : X −→ Y is in I-inj. First we show that p must be surjective.
Using Lemma 2.2 this is easy: 0 −→ G ∈ I and so there is a lift in any diagram of
the type below.

0 −−−−→ X
y

yp

G −−−−→ Y

Next we show ker p ∈ (Genκ F)⊥. Let F ∈ Genκ F be arbitrary. We want to

show that any extension 0 −→ ker p
f−→ Z

g−→ F −→ 0 must split. But by Lemma 4.6,
f ∈ I-cell ⊆ I-cof, so there exists a lift in the commutative diagram

ker p −−−−→ X

f

y
yp

Z −−−−→
0

Y.

Call the lift h. Since ph = 0, h lands in ker p and so provides a retraction for f .
This shows ker p ∈ (Genκ F)⊥.

Conversely, say p : X −→ Y is a surjection and ker p ∈ (Genκ F)⊥. Given any
map f : A −→ B in I, and a commutative diagram

A −−−−→ X

f

y
yp

B −−−−→ Y

we seek a lift. But since Ext1(B/A, ker p) = 0, Lemma 2.4 provides the lift! ¤

Proposition 4.8. Suppose F is a locally cogenerated class which is closed under
direct limits and contains a generator G. Furthermore, suppose F is closed under
extensions and retracts. Then (F ,F⊥) is a small cotorsion pair with I as the set
of generating monomorphisms.

Proof. First we show (F ,F⊥) is a cotorsion pair cogenerated by the set Genκ F .
So we show F = ⊥((Genκ F)⊥). First let F ∈ F . By Lemma 4.3, F is a transfinite
extension of objects in Genκ F . It follows from the proof of Lemma 6.2 in [Hov02]
that Ext(F, X) = 0 for any X ∈ (Genκ F)⊥. So F ∈ ⊥((Genκ F)⊥). Conversely,
say X ∈ ⊥((Genκ F)⊥). Factor 0 −→ X using the small object argument (Theo-
rem 2.1.14 of [Hov99]) as 0 i−→ F

p−→ X where i ∈ I-cell and p ∈ I-inj. It follows
from Remark 4.1 that F ∈ F . It follows from Lemma 4.7 that ker p ∈ (Genκ F)⊥.
Since Ext(X, ker p) = 0 we see p is a split epimorphism. Therefore X is a retract
of F . By the retract hypothesis X ∈ F .

Now it follows from Lemma 4.7 and Lemma 3.4 that (F ,F⊥) is a small cotorsion
pair with generating monomorphisms the set I. ¤



16 JAMES GILLESPIE

4.2. Kaplansky classes. We now strengthen the idea of a locally cogenerated class
to get the idea of a Kaplansky class. Our goal then is to show that a Kaplansky
class in G gives rise to a model structure on Ch(G). The term “Kaplansky class”
first appeared in [ELR02]. There it is defined for modules over a ring R as a class
F for which there is a regular cardinal κ with the following property: Given F ∈ F
and x ∈ F , there exists an S ∈ F with x ∈ S ⊆ F and |S| ≤ κ and F/S ∈ F .
Below we formulate a version for abelian categories and then prove Theorem 4.12,
the existence of an induced model category structure.

Definition 4.9. Let F be a class of objects in an abelian category and let κ be a
regular cardinal. We say F is a κ-Kaplansky class if the following property holds:
Given X ⊆ F 6= 0 where F ∈ F and X is κ-generated, there exists a κ-presentable
object S 6= 0 such that X ⊆ S ⊆ F and S, F/S ∈ F . We say F is a Kaplansky
class if it is a κ-Kaplansky class for some regular cardinal κ.

The requirement that we can find a κ-presentable object containing a κ-generated
object in the definition of a κ-Kaplansky class may seem strange. However, in
practice one usually needs to choose κ to be very large in order to show that F is a
κ-Kaplansky class. So why not just take κ to be so large that the κ-generated and
κ-presentable objects coincide? By Appendix B we can always find such a κ as long
as we are in a Grothendieck category. When this is the case, κ-generated becomes a
good substitute for the notion of cardinality. For example, subobjects and quotient
objects of κ-generated objects will again be κ-generated. (This follows from facts in
Appendix A.) The method we just outlined is exactly what we will use in Section 6
to show that the class of flat quasi-coherent sheaves form a Kaplansky class. At
any rate, we will need the definition of a κ-Kaplansky class to be as stated above
in order to prove Proposition 4.11.

It is obvious that if F is a κ-Kaplansky class, then F is locally κ-cogenerated. We
next prove that if F is a Kaplansky class, then the class of F-complexes, denoted
F̃ , ought to be locally cogenerated as well.

Lemma 4.10. Let G be an abelian category and let X be a chain complex in Ch(G).
If κ > ω is a regular cardinal, then X is κ-generated if and only if Xn is κ-generated
for each n. X is ω-generated (finitely generated) if and only if X is bounded, above
and below, and each Xn is ω-generated (finitely generated).

Proof. Say κ is any regular cardinal, and let n be an arbitrary integer. Let Xn =∑
i∈I Xi where Xi ⊆ Xn. By Fact A.5 we wish to show Xn =

∑
i∈J Xi where

J ⊆ I and |J | < κ. Each Xi gives rise to a subcomplex C(Xi) of X by defining

C(Xi) = · · · −→ d−1
n+2(d

−1
n+1(Xi)) −→ d−1

n+1(Xi) −→ Xi −→ Xn−1 −→ Xn−2 −→ · · ·
and furthermore X =

∑
i∈I C(Xi). Since X is κ-generated, Fact A.5 tells us

X =
∑

i∈J C(Xi) where J ⊆ I and |J | < κ. Thus Xn =
∑

i∈J Xi. This shows
that if X is κ-generated, then Xn is κ-generated in G. For the special case of when
κ = ω, we still need to argue that X is bounded. For this, write X =

∑
n=Z Sn

where

Sn = · · · −→ 0 −→ Xn −→ Xn−1 −→ Xn−2 −→ · · · −→ X−n −→ B−n−1 −→ 0 −→ · · ·
Now Fact A.5 tells us X = Sn for some n. So X is bounded.

For the converse assume that each Xn is κ-generated where κ > ω. Let X =∑
i∈I Si where each Si is a subcomplex of X. Then Xn =

∑
i∈I(Si)n and so there
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exists a set Jn ⊆ I such that |Jn| < κ and Xn =
∑

i∈Jn
(Si)n. Let J =

⋃
n∈Z Jn.

Then X =
∑

i∈J Si and |J | < κ as desired. For the case of when κ = ω it is clear
that we need the complex X to be bounded so that the collection J is finite. ¤

Proposition 4.11. Let F be a κ-Kaplansky class. If G is locally κ-generated, then
the class F̃ in Ch(G) is locally κ-cogenerated, as long as κ > ω. (If κ = ω, then F̃
is still κ′-cogenerated for any regular κ′ > ω.)

Proof. F̃ is the class of all exact chain complexes F with ZnF ∈ F for all n.
Suppose 0 6= F ∈ F is given. We wish to construct a nonzero exact complex S ⊆ F
in such a way that each ZnS,ZnF/ZnS ∈ F and each Sn is κ-generated. It follows
that F̃ is locally κ-cogenerated if κ > ω. If κ = ω then S may not be locally
ω-presentable because it need not be bounded. However in this case we still have
S κ′-generated for any regular κ′ > κ. So F̃ is locally κ′-cogenerated.

Since F 6= 0 there must be some integer n for which ZnF 6= 0. We start by
finding 0 6= S′n ⊆ ZnF with S′n κ-presentable and S′n ∈ F , ZnF/S′n ∈ F . We set
Si = 0 for all i < n and set Sn = S′n. We now want to inductively build Si for
i > n.

Since G is locally κ-generated, we can use Lemma 4.4 to find a κ-generated
subobject Xn+1 ⊆ Fn+1 for which d|Xn+1 : Xn+1 −→ S′n is an epimorphism. Since
S′n is κ-presentable and Xn+1 is κ-generated and G is locally κ-generated, it follows
from Lemma A.12 that ker d|Xn+1 is κ-generated as well. Now using the definition
of Kaplansky class, we can find a κ-presentable S′n+1 such that ker d|Xn+1 ⊆ S′n+1 ⊆
Zn+1F and S′n+1, Zn+1F/S′n+1 ∈ F . Now

d|Xn+1+S′n+1
: Xn+1 + S′n+1 −→ S′n

is an epimorphism whose kernel is S′n+1. So we set Sn+1 = Xn+1 + S′n+1. In this
way we continue inductively to construct an exact subcomplex 0 6= S ⊆ F with
ZnS, ZnF/ZnS ∈ F and ZnS κ-presentable (and therefore Sn is κ-generated by
Facts A.3 and A.4). ¤

Theorem 4.12. Let G be a locally κ-presentable Grothendieck category. Suppose
F is a class of objects which satisfies the following:

(1) F is a κ-Kaplansky class.
(2) F contains a κ-presentable generator G for G.
(3) F is closed under direct limits, extensions and retracts.
(4) dgF̃ ∩ E = F̃ .
Then we have an induced model category structure on Ch(G) where the weak

equivalences are the homology isomorphisms. The cofibrations (resp. trivial cofi-
brations) are the monomorphisms whose cokernels are in dgF̃ (resp. F̃). The
fibrations (resp. trivial fibrations) are the epimorphisms whose kernels are in dgC̃
(resp. C̃), where C = F⊥. Furthermore this model structure is cofibrantly generated.
The generating cofibrations form the set

I = { 0 −→ Dn(G) } ∪ {Sn−1(G) −→ Dn(G) } ∪ {Sn(A) −→ Sn(B) }
where A −→ B ranges over all possible monomorphisms with B a κ-generated object
for which B/A ∈ F . The generating trivial cofibrations are

J = { 0 −→ Dn(G) } ∪ {X −→ Y }
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where X −→ Y ranges over all monomorphisms where Y is a κ-generated complex
and Y/X ∈ F̃
Proof. All of the work has been done. Since F is a locally cogenerated class,
closed under direct limits, extensions and retracts, and containing a generator for
G, Proposition 4.8 tells us (F , C) is a small cotorsion pair. Now by Corollary 3.8
of [Gil04] we have the induced cotorsion pairs (F̃ , dgC̃) and (dgF̃ , C̃) of chain com-
plexes. These cotorsion pairs are compatible by Corollary 3.9 above.

Having the cotorsion pairs of complexes (dgF̃∩E , dgC̃) and (dgF̃ , dgC̃∩E) at hand
we are in position to use Hovey’s Theorem 2.2 from [Hov02]. By Proposition 3.8
we know that (dgF̃ , dgC̃ ∩ E) is small, so this cotorsion pair is complete by Corol-
lary 6.6 of [Hov02]. Next F̃ = dgF̃ ∩ E is locally cogenerated by Proposition 4.11.
Furthermore, this class is closed under direct limits. To see this just apply the fact
that direct limits are exact in G, and F itself is closed under direct limits. It now
follows from Propositions 4.8 that (dgF̃ ∩ E , C̃) is small too and hence complete.
Theorem 2.2 and Lemma 6.7 of [Hov02] tell us we have an induced model structure
on Ch(G) which is cofibrantly generated. One can see that the weak equivalences,
fibrations and cofibrations are as stated in the theorem by looking at Section 5
of [Hov02]. One can also see that the sets I and J are generating cofibrations and
generating trivial cofibrations, respectively, by looking at Section 6 of [Hov02]. ¤

5. Monoidal model structures

Suppose our ground category G has a tensor product making it a closed sym-
metric monoidal Grothendieck category. We would like to have a condition on our
Kaplansky class F which will guarantee that the model structure induced from
Theorem 4.12 will be monoidal. We refer the reader to Chapter 4 of [Hov99] for a
detailed discussion of monoidal model structures. There is also a nice discussion of
the essential ideas in Section 7 of [Hov02]. In fact our proof below will rely on basic
results from Section 7 of [Hov02]. Also, the crucial argument of the proof below,
part (ii), is due to Hovey.

Theorem 5.1. Suppose G is a Grothendieck category with a closed symmetric
monoidal structure −⊗G − and let F be a class of objects such that G and F sat-
isfy the hypotheses of Theorem 4.12. Then the induced model structure on Ch(G) is
monoidal with respect to the usual tensor product of chain complexes if the following
conditions hold:

(1) Each object in F is flat. I.e., F ⊗G − is exact for each F ∈ F .
(2) If F and G both belong to F , then F ⊗G G also belongs to F .
(3) U ∈ F , where U is the unit for the monoidal structure on G.

Proof. Suppose the three stated conditions hold. We wish to check the four con-
ditions of Theorem 7.2 from [Hov02]. In this case the four conditions translate to
the following:

(i) Every cofibration is a pure injection in each degree.
(ii) If X and Y are in dgF̃ , then X ⊗ Y is in dgF̃ .
(iii) If X is in F̃ and Y is in dgF̃ , then X ⊗ Y is in F̃ .
(iv) The unit for the monoidal structure on Ch(G) is in dgF̃ .
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Before we check each condition we make a few observations. First, as we can see
from Proposition 3.8, the hypotheses guarantee that (dgF̃ , C̃) is a small cotorsion
pair with cogenerating set consisting of spheres on objects from F . That is, the
cogenerating set consists of complexes of the form Sn(F ) where F ∈ F . For the
rest of the proof we will call any such object Sn(F ) an “F-sphere”. Second, dgF̃
contains a set of generators for Ch(G) since if G ∈ F generates G, then the set
of complexes Dn(G) generates Ch(G). (Each Dn(F ) is in dgF̃ by Lemma 3.4
of [Gil04].) It now follows from Lemma 3.6 that each complex in dgF̃ is a direct
summand of a transfinite extension of F-spheres. Lastly, we note that if X ∈ dgF̃ ,
then X ⊗− is exact. Indeed one can easily check that a complex X is tensor exact
if and only if Xn is flat for each n. We now check the four conditions above.

(i) This follows from a basic property of flat objects. Cofibrations are monomor-
phisms with cokernels in dgF̃ . In particular, the cokernel is flat in each degree.
Therefore each cofibration is a pure injection in each degree. (See for example, the
proof of Lemma XVI.3.1 in [Lan97].)

(ii) Step 1: We first show that if X is a transfinite extension of F-spheres and
if Sn(F ) is an F-sphere, then X ⊗Ch(G) Sn(F ) is in dgF̃ . To see this first notice
that the tensor product of two F-spheres is again an F-sphere and in particular is
in dgF̃ . Now say X is a transfinite extension of a sequence such as

X0 ↪→ X1 ↪→ · · · ↪→ Xα ↪→ Xα+1 ↪→ · · ·

where X0 and each Xα+1/Xα are F-spheres. Since the functor −⊗Ch(G) Sn(F ) is
exact and also preserves direct limits, applying it to the above sequence will display
X ⊗Ch(G) Sn(F ) as a transfinite extension of objects in dgF̃ . Therefore it too is in
dgF̃ by Lemma 6.2 of [Hov02].

Step 2: Now we see that if X ∈ dgF̃ and if Sn(F ) is an F-sphere, then X⊗Ch(G)

Sn(F ) is in dgF̃ . The reason is that such an X is a direct summand of a transfinite
extension of F-spheres. Since the functor − ⊗Ch(G) Sn(F ) commutes with direct
sums, the result follows from the fact that dgF̃ is closed under direct summands.
(The left side of any cotorsion pair is closed under direct summands.)

Step 3: Now we argue the same way to see that X ⊗Ch(G) Y is in dgF̃ whenever
X and Y are in dgF̃ . For example if Y is in dgF̃ then it is a retract of a transfinite
extension of F-spheres. As above, since X⊗Ch(G)− commutes with direct sums and
dgF̃ is closed under taking direct summands we just need to show that X⊗Ch(G) Y

is in dgF̃ when X is in dgF̃ and Y is a transfinite extension of F-spheres. But in
this case Y can be viewed as the transfinite extension of a sequence such as

Y0 ↪→ Y1 ↪→ · · · ↪→ Yα ↪→ Yα+1 ↪→ · · ·

where Y0 and each Yα+1/Yα are F-spheres. Then we apply the functor X⊗Ch(G)−
and use the fact from Step 2 to argue that X ⊗Ch(G) Y is a transfinite extension of
complexes in dgF̃ . So X ⊗Ch(G) Y is in dgF̃ too.

(iii) The approach is similar to our proof of (ii). Note that if E is the class of
exact complexes in Ch(G), then E is closed under transfinite extensions and direct
summands. One reason this is true is that E is the left side of the cotorsion pair
(E , dgĨ) where dgĨ is the class of dg-injective complexes.
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Step 1: First we will prove that if E is an exact complex in Ch(G) and Y ∈ dgF̃ ,
then E ⊗ Y is exact. We leave it to the reader to see that, as in our proof of (ii),
we can assume that Y is a transfinite extension of F-spheres. So suppose Y is the
direct limit of a sequence such as

Y0 ↪→ Y1 ↪→ · · · ↪→ Yα ↪→ Yα+1 ↪→ · · ·
where Y0 and each Yα+1/Yα are F-spheres. Since each short exact sequence

0 −→ Yα −→ Yα+1 −→ Yα+1/Yα −→ 0

is pure in each degree, the sequence below is also exact:

0 −→ E ⊗ Yα −→ E ⊗ Yα+1 −→ E ⊗ Yα+1/Yα −→ 0

Now by applying the functor E ⊗− to the entire sequence

Y0 ↪→ Y1 ↪→ · · · ↪→ Yα ↪→ Yα+1 ↪→ · · ·
we can argue that E ⊗ Y is a transfinite extension of exact complexes and so is
itself exact.

Step 2: Now say X ∈ F̃ and Y ∈ dgF̃ . Then X ∈ dgF̃ by our assumption that
F̃ = dgF̃ ∩ E . So by part (ii) we have that X ⊗ Y is in dgF̃ . But by Step 1 of this
proof we also have that X ⊗ Y is in E . Therefore X ⊗ Y is in F̃ .

(iv) Since U ∈ F , we have from Lemma 3.4 of [Gil04] that S(U) = S0(U) is in
the class dgF̃ . Since S(U) is the the unit for the tensor product on Ch(G) we are
done. ¤

6. Chain complexes of quasi-coherent sheaves

For the rest of the paper we turn to applications of Theorem 4.12 and The-
orem 5.1. In this section we prove the existence of the flat model structure on
Ch(Qco(X)) when X is a quasi-compact and semi-separated scheme.

So let (X,OX) be a scheme on a topological space X. We denote the category of
all sheaves of OX -modules by OX -Mod. We denote by Qco(X), the full subcategory
of OX -Mod consisting of all quasi-coherent OX -modules. The class F of all flat
quasi-coherent sheaves will be the Kaplansky class inducing the model structure.
As far as the author can tell we need some assumptions on the scheme X in order
to satisfy the hypotheses of Theorem 4.12. From a study of the current literature
it seems as though assuming X is quasi-compact and semi-separated is the best we
can do. In this case we see from [AJL97] or [Mur] that every quasi-coherent OX -
module is the quotient of a flat quasi-coherent OX -module. We start this section by
recalling some facts about the category Qco(X) as well as defining semi-separated.
The author has used [Har77], [Lit82] and Appendix B of [TT90] as basic references
on this material. We will also use recent results from [EE05].

The inclusion functor Qco(X) −→ OX -Mod is exact and Qco(X) is an abelian
subcategory of OX -Mod. Therefore finite limits and colimits in Qco(X) are taken
as in OX -Mod. As stated in the beginning of Appendix B of [TT90], Qco(X) is
cocomplete with all small colimits taken as in OX -Mod. Therefore direct limits
are exact in Qco(X). In fact Qco(X) also has a set of generators making it a
Grothendieck category. This last fact was stated as Lemma 2.1.7 in [Con00] and
apparently is due to Gabber. A proof is not given in [Con00] but an independent
proof can be found in [EE05].
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Since we know Qco(X) has a generator and the inclusion functor Qco(X) −→
OX -Mod preserves small colimits the inclusion has a right adjoint Q : OX -Mod
−→ Qco(X) by the special adjoint functor theorem. Thus Qco(X) is a coreflective
subcategory of OX -Mod. In particular, Q satisfies a universal property dual in
nature to the sheafification of a presheaf. One can now easily check that all small
limits exist in Qco(X) and are taken by applying Q to the usual limit taken in OX -
Mod. Lastly, we recall that Qco(X) is closed under extensions and tensor products
taken in OX -Mod. The tensor product makes Qco(X) into a closed symmetric
monoidal category. The closed structure is given by applying the functor Q after
the usual “sheafhom” functor.

A quasi-coherent OX -module F is flat if the tensor functor F ⊗OX − is exact.
Clearly the class of flat modules in Qco(X) is merely the class of flat modules in
OX -Mod intersected with the class of all quasi-coherent OX -modules. We denote
the class of all flat quasi-coherent OX -modules by F . We point out that since
flatness is defined in terms of the tensor product which is a left adjoint, F is closed
under direct limits and retracts (summands). Furthermore, if

0 −→ F ′ −→ F −→ F ′′ −→ 0

is a short exact sequence of quasi-coherent sheaves with F ′′ ∈ F , then F ′ ∈ F if
and only if F ∈ F . These assertions are all true by using categorical arguments
with the tensor product, similar to those found in [Lan97] for modules over a
ring. Alternatively, they can be shown using the characterization of flatness as a
“stalkwise” property along with the fact that the corresponding property holds for
modules over a ring. In any case, we point out that F is closed under retracts and
transfinite extensions and also that F is resolving, meaning it is closed under taking
kernels of epimorphisms between objects in F .

We say a scheme X is semi-separated if there exists an affine basis V = {Vα}
for sp(X) which is closed under finite intersections. The basis V is called a semi-
separating affine basis of X. As pointed out in B.7 of [TT90] a semi-separated
scheme is quasi-separated. Furthermore, a separated scheme is semi-separated with
the set of all affine subsets serving as a semi-separating affine basis.

It is well-known that both OX -Mod and Qco(X) do not, in general, have enough
projectives. While the category OX -Mod has a set of flat generators, the author
does not know whether or not for a general scheme X, Qco(X) has a set of flat
generators, or equivalently whether each quasi-coherent sheaf can be written as the
quotient of a flat quasi-coherent sheaf. However, Proposition 1.1 of [AJL97] implies
that this is indeed the case if we assume X is a quasi-compact, separated scheme.
In fact as pointed out by Daniel Murfet their proof works for any quasi-compact
semi-separated scheme X. Murfet’s proof can be found as Proposition 16 in [Mur].
Since the quasi-compact semi-separated hypothesis is the best one the author has
found for the existence of enough flats in Qco(X) we will build the flat model
structure on Ch(Qco(X)) under these assumptions on X.

The following subsections will contain lemmas breaking down the proof of The-
orem 6.7 which of course amounts to checking the four hypotheses of Theorem 4.12
for the class F of flat modules in Qco(X). We start with the Kaplansky class condi-
tion. As we will see, it readily follows from recent work of Enochs and Estrada that
F is indeed a Kaplansky class for any scheme X [EE05]. Since the term Kaplansky
class was not used in [EE05] we now check carefully that their work proves F is a
Kaplansky class in the sense of Definition 4.9.
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6.1. Quasi-coherent modules on a representation of a quiver. By a quiver
we mean a directed graph Q = (V,E) where V is the set of vertices and E is the
set of edges. By a representation of Q, we will mean a functor R : Q −→ CRng
where Q is thought of as a category in the obvious way and CRng is the category
of commutative rings with identity. Let R be a representation of Q. By an R-
module M we will mean an R(v)-module, M(v), for each v ∈ V , and an R(v)-linear
map M(e) : M(v) −→ M(w) for each edge e : v −→ w in E. We refer the reader
to Section 2 of [EE05] for the definition of a flat representation and the definition
of a quasi-coherent R-module. It is also pointed out there that the category C of
quasi-coherent R-modules is a Grothendieck category when R is flat.

We define the cardinality of an R-module as

|M | = |
∐

v∈V

M(v)|.

Lemma 6.1. Let R be a flat representation of a quiver Q = (V,E) and M be a
quasi-coherent R-module. Let κ be a regular cardinal for which κ > |R(v)| for all v
and κ > max{|E|, |V |}. Then the following are equivalent.

(1) |M | < κ.
(2) M is κ-generated.
(3) M is κ-presentable.

Proof. (1) ⇒ (2). We use Fact A.5. Suppose |M | < κ and say M =
∑

i∈I Mi is a
κ-filtered union of quasi-coherent submodules. For each x ∈ M , there corresponds
some i ∈ I such that x ∈ Mi. But

∑
i∈I Mi is κ-filtered and |M | < κ, so there

exists i ∈ I such that M = Mi.
(2) ⇒ (1). Let S be the collection of all subsets S ⊆ ∐

v∈V M(v) such that
|S| < κ. For each S ∈ S, let MS represent the quasi-coherent submodule generated
by S. Then |MS | < κ. (One way to see this is to use Proposition 3.3 of [EE05].
All ≤ signs in that Proposition can be changed to < signs.) Note that (S,⊆) is
κ-filtered and in fact M is the κ-filtered union

∑
S∈S MS . By Fact A.5, M = MS

for some S ∈ S.
(3) ⇒ (2) is automatic. We now prove (2) ⇒ (3), using that (1) iff (2). First

we point out that the category of quasi-coherent R-modules is locally κ-generated.
Indeed each M can be expressed as the κ-filtered union M =

∑
S∈S MS where each

MS is κ-generated as in the last paragraph. Therefore, we may use the charac-
terization of κ-presentable objects in Fact A.12. Suppose M is κ-generated and
N −→ M is an epimorphism with N a κ-generated R-module. Then |N | < κ. So
of course | ker (N −→ M)| < κ (kernels are computed componentwise), which means
ker (N −→ M) is κ-generated. This proves M is κ-presentable. ¤

An R-module M is called flat if each M(v) is a flat R(v)-module.

Lemma 6.2. Let R be a flat representation of a quiver Q = (V, E). Let κ be a
regular cardinal for which κ > |R(v)| for all v and κ > max{|E|, |V |}. Then the
class of all flat quasi-coherent R-modules constitute a κ-Kaplansky class.

Proof. This follows immediately from Lemma 6.1 along with the Proposition 3.3
of [EE05]. Again, all ≤ signs can be changed to < signs in the statement and proof
of Proposition 3.3 of [EE05]. ¤
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6.2. A category equivalent to Qco(X). If X is a scheme, then the collection
of all affine open subsets determines a directed graph, AX . The opposite graph
(reverse all arrows) is also a quiver which we will denote QX . We get a (flat) rep-
resentation R by letting R(U) = OX(U) for each U ∈ AX and using the restriction
maps to get R(V ) −→ R(U) whenever U ⊆ V . In the same way, a quasi-coherent
sheaf S on X gives rise to a quasi-coherent R-module M by letting M(U) = S(U)
for U ∈ AX . In fact, as explained in [EE05], the category C of quasi-coherent
R-modules is categorically equivalent to Qco(X). Furthermore, the equivalence
restricts to an equivalence between the flat objects in C and the flat objects of
Qco(X).

Lemma 6.3. Let A0 ⊆ A and B0 ⊆ B where A and B are abelian categories. Let
G : A −→ B be an additive functor which is an equivalence. If G restricts to an
equivalence between A0 and B0, then A0 is a κ-Kaplansky class if and only if B0 is
a κ-Kaplansky class.

Proof. Since G : A −→ B is an equivalence, there exists H : B −→ A such that HG ∼=
1A and GH ∼= 1B. Furthermore, G is both a left and right adjoint of H (and so
each preserves colimits). We start by showing that G preserves κ-generated and κ-
presentable objects. Indeed if X ∈ A is κ-presentable then the functor A(X,H(−))
preserves κ-filtered colimits. But A(X, H(−)) ∼= B(G(X),−), so G(X) must be
κ-presentable. On the other hand, if G(X) is κ-presentable, then B(G(X), G(−))
preserves κ-filtered colimits. Therefore, B(G(X), G(−)) ∼= A(HG(X),−) preserves
κ-filtered colimits and HG(X) ∼= X must be κ-presentable. The same proof (but
with κ-filtered colimits of monomorphisms) shows that an equivalence preserves
κ-generated objects.

Now we suppose G restricts to an equivalence between A0 and B0 and that B0

is a κ-Kaplansky class of B. We will show that A0 is a κ-Kaplansky class of A.
So let X ⊆ F 6= 0 where F ∈ A0 and X is a κ-generated object in A. Then
G(X) ⊆ G(F ) 6= 0 and G(X) is κ-generated and G(F ) ∈ B0. Since B0 is a κ-
Kaplansky class, there exists a nonzero κ-presentable object S ∈ B0 for which
G(X) ⊆ S ⊆ G(F ) and G(F )/S ∈ B0. Therefore H(S) ∈ A0 is a nonzero κ-
presentable object for which X = HG(X) ⊆ H(S) ⊆ HG(F ) = F and F/H(S) =
HG(F )/H(S) = H(GF/S) ∈ A0. ¤

Proposition 6.4. Let (X,OX) be quasi-compact and semi-separated scheme. Let
F be the class of flat quasi-coherent OX-modules and define C = F⊥. Then F is a
Kaplansky class and (F , C) is a small cotorsion pair.

Proof. It follows from the lemmas above that F is a Kaplansky class. In particular
F is locally cogenerated. Furthermore as explained in the introduction to this sec-
tion, F is closed under transfinite extensions and retracts and contains a generator.
Therefore (F , C) is a small cotorsion pair by Proposition 4.8. ¤

6.3. Exact dg-flat complexes are flat. Let (X,OX) be a quasi-compact semi-
separated scheme. For what follows we fix a semi-separating affine basis V and again
let F be the class of all flat modules in Qco(X). We will prove that F̃ = dgF̃ ∩ E
where E is the class of all exact chain complexes.

Recall that if f : Y −→ Z is any morphism of schemes then by Proposition II.5.8
of [Har77] the inverse image functor f∗ preserves quasi-coherence. In particular, if
Vα ∈ V and j : Vα −→ X is the inclusion, then we have the functor j∗ : Qco(X) −→
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Qco(X|Vα). In this case the functor is merely restriction of a quasi-coherent OX -
module to the affine subset Vα and it is clear that j∗ is an exact functor.

On the other hand, recall that the direct image functor f∗ does not always
preserve quasi-coherence. However it is easy to see that j∗ does preserve quasi-
coherence. Indeed j is separated since it is an open immersion (see Theorem 1.17
of [Lit82]). Also since affine subsets are quasi-compact we see by Proposition 1.51
of [Lit82] (with our semi-separating basis V used as the affine open cover required
in the Proposition), that j∗ preserves quasi-coherence.

Lemma 6.5. Let (X,OX) be a semi-separated scheme with semi-separating affine
basis V = {Vα}. Let Vα ∈ V and j : Vα −→ X be the inclusion. Then j∗ : Qco(X) −→
Qco(X|Vα

) is left adjoint to j∗ : Qco(X|Vα
) −→ Qco(X). Furthermore j∗ is exact

and preserves cotorsion objects.

Proof. It is a standard fact that inverse image functors are left adjoint to direct
image functors. For example, see Section II.5 of [Har77]. In particular, j∗ is left ad-
joint to j∗. Since j∗ is a right adjoint it is left exact. We will show that j∗ preserves
surjections. So suppose we have a surjection F −→ G of quasi-coherent sheaves in
Qco(X|Vα). Then given any affine subset Vγ ⊆ Vα, we know F(Vγ) −→ G(Vγ) is a
surjection. It follows that for any affine Vβ ∈ V, [j∗(F)](Vβ) −→ [j∗(G)](Vβ) is sur-
jective. Indeed the definition of [j∗(F)](Vβ) −→ [j∗(G)](Vβ) is just F(Vγ) −→ G(Vγ)
where Vγ = Vα ∩ Vβ ∈ V. It follows that j∗ is exact since V is a basis for the
topology on X.

We now show that for any quasi-coherent sheaf F ∈ Qco(X) and any quasi-
coherent sheaf C ∈ Qco(X|Vα) we have an isomorphism

Extn(j∗F , C) ∼= Extn(F , j∗C).
First note that j∗ being the right adjoint of an exact functor preserves injective
objects by Proposition 2.3.10 of [Wei94]. Since j∗ itself is also exact it preserves
injective resolutions. The result now follows by taking an injective resolution of C,
applying j∗ to the resolution, and then applying the adjoint relationship between
j∗ and j∗.

Now suppose C ∈ Qco(X|Vα) is cotorsion and F is a flat quasi-coherent OX -
module. We wish to show that j∗C cotorsion. But j∗F is clearly flat since j∗ is just
restriction, and so Ext1(F , j∗C) ∼= Ext1(j∗F , C) = 0. Therefore j∗C is cotorsion. ¤
Proposition 6.6. Let (X,OX) be a semi-separated scheme with semi-separating
affine basis V = {Vα} and let F be the class of flat quasi-coherent OX-modules.
Then F̃ = dgF̃ ∩ E where E is the class of exact complexes.

Proof. We saw in Proposition 6.4 that (F , C) is a cotorsion pair. Now Lemma 3.10
of [Gil04] says that F̃ ⊆ dgF̃ ∩ E . So we wish to prove F̃ ⊇ dgF̃ ∩ E . We let Y
be an exact dg-flat complex of quasi-coherent OX -modules. We want to show that
it is a flat complex. I.e. that is has flat cycles in each degree. One way to do
this is to show that the complex j∗(Y ) is a flat complex of O|Vα-modules for each
inclusion j : Vα −→ X where Vα ∈ V. So let j : Vα −→ X be such an inclusion. Then
by the usual equivalence between the category of Aα-modules and the category of
quasi-coherent sheaves on Ãα where Aα is a ring in which Ãα

∼= O|Vα , the chain
complex j∗(Y ) = Y |Vα corresponds to a chain complex of Aα-modules. Since the
equivalence preserves flat objects by Proposition III.9.2 of [Har77] it also preserves
cotorsion objects. Therefore, the complex of Aα-modules corresponding to j∗(Y ) is
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flat (respectively dg-flat) if and only if j∗(Y ) is flat (respectively dg-flat). Finally,
since it is already known from [Gil04] that exact, dg-flat complexes of Aα-modules
are flat complexes we will be able to conclude that j∗(Y ) is flat by just proving it
is exact and dg-flat.

It is clear that j∗(Y ) is exact so we will show that j∗(Y ) is a dg-flat complex.
So let j∗(Y ) −→ C be a morphism where C is a cotorsion complex of quasi-coherent
OVα

-modules. (This means that C is exact and each cycle is cotorsion.) Using
the definition of dg-flat we wish show this map is null homotopic. But using the
adjoint property of j∗ and j∗ gives us a morphism Y −→ j∗(C) of complexes. Since
j∗(−) is exact and preserves cotorsion modules by Lemma 6.5 we see that j∗(C)
is a cotorsion complex and by definition of dg-flat Y −→ j∗(C) is null homotopic.
From this we can deduce that j∗(Y ) −→ C is also null homotopic. ¤

6.4. The main theorem. We are now ready to prove the main theorem. By
applying Definition 3.3 of [Gil04] to the cotorsion pair (F , C) we get four classes
of chain complexes in Ch(Qco(X)). We call the complexes in dgF̃ the dg-flat
complexes, and the complexes in F̃ the flat complexes. We call the complexes in
dgC̃ the dg-cotorsion complexes, and the complexes in C̃ the cotorsion complexes.

Theorem 6.7. Let X be a quasi-compact semi-separated scheme and let F ⊆
Qco(X) be the class of flat quasi-coherent sheaves. Then we have a cofibrantly gen-
erated model category structure on Ch(Qco(X)) which is described as follows: The
weak equivalences are the homology isomorphisms. The cofibrations (resp. trivial
cofibrations) are the monomorphisms whose cokernels are dg-flat complexes (resp.
flat complexes). The fibrations (resp. trivial fibrations) are the epimorphisms whose
kernels are dg-cotorsion complexes (resp. cotorsion complexes). Furthermore, this
model structure is monoidal with respect to the usual tensor product of chain com-
plexes.

Proof. From B.3 of [TT90] we see that if X is quasi-compact and quasi-separated,
then Qco(X) is locally finitely presentable [TT90]. That is, Qco(X) is locally κ-
presentable (and hence κ-generated) for any regular cardinal κ. Since Qco(X) is a
Grothendieck category it has a generator. By writing this generator as the quotient
of a flat quasi-coherent OX -module we obtain a flat generator. By Lemmas 6.2
and 6.3 we can find arbitrarily large regular cardinals κ for which F is a κ-Kaplansky
class. In light of Fact A.2 we can find a single regular cardinal κ such that (i)
Qco(X) is locally κ-presentable, (ii) F is a κ-Kaplansky class, and (iii) F contains
a κ-presentable generator. This verifies properties (1) and (2) of Theorem 4.12.
Property (3) holds as explained in the introduction to this section. Property (4) is
Proposition 6.6. This finishes the proof of the existence of the flat model structure
on Ch(Qco(X)).

We now check that the model structure is monoidal. Condition (1) of Theo-
rem 5.1 is trivial. Condition (2) is true since the tensor product of two flat quasi-
coherent sheaves is again a flat quasi-coherent sheaf. The unit for the tensor product
is the structure sheaf OX . It is both quasi-coherent and flat and so condition (3)
holds. ¤

Many questions come to mind that the author has not been able to figure out
or has not had time to consider. First, is there an easier proof that Qco(X) has
enough flat objects when X is quasi-compact and semi-separated? Can we construct
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some actual flat generators for Qco(X) that are strongly dualizable in D(Qco(X))?
Is D(Qco(X)) a stable homotopy category in the sense of [HPS97]? What are
the implications of May’s additivity theorem in [May3]? Can one easily treat the
derived inverse and direct image functors from the model category viewpoint?

7. Other applications

In this section we point out other applications of Theorem 4.12. In particu-
lar we will show that all model structures the author has previously constructed
in [Gil04] and [Gil06] as well as the canonical “injective” model structure can each
be construed as corollaries to Theorem 4.12. Note that condition (1) (the Ka-
plansky class condition) in Theorem 4.12 is defined in terms of κ-generated and
κ-presentable objects. In practice it may be cumbersome to work with the defini-
tions of κ-generated or κ-presentable. In each corollary below we find it convenient
to pick κ large enough so that the κ-generated objects and κ-presentable objects
coincide. In the case when G is a concrete category we go further and relate the
notions of κ-generated and κ-presentable to the cardinality of the underlying set.
As mentioned after the definition of Kaplansky class in Section 4.2, κ-generated and
κ-presentable become good categorical replacements for the notion of cardinality.

Corollary 7.1. Let G be any Grothendieck category and let A be the class of all ob-
jects in G. Then A is a Kaplansky class and it induces the injective model structure
on Ch(G). Furthermore this model structure is cofibrantly generated.

Proof. G is locally κ-presentable for some regular cardinal κ by Proposition 3.10
of [Bek00]. Note A⊥ = I is the class of injectives and (A, I) is the “injective
cotorsion pair”. In order to use Theorem 4.12 we would like to say that A is a
κ-Kaplansky class, but the author suspects that this is just not true. (If it were,
then clearly every locally κ-generated Grothendieck category would be locally κ-
presentable. See the paragraph before Fact A.7 in Appendix A.) In any case there
is a trick: Pick κ′ to be a regular cardinal large enough so that (i) G is locally
κ′-presentable, (ii) the class of κ′-generated objects coincides with the class of κ′-
presentable objects, and (iii) there is a κ′-presentable generator for G. Condition (i)
is possible by FactA.8, condition (ii) is possible by Appendix B, and condition (iii)
is possible by Fact A.2. Now using κ′ and A we can easily check the conditions of
Theorem 4.12. Conditions (1) and (3) hold trivially and condition (2) holds by our
choice of κ′. Finally if I ∈ Ĩ, it is a well-known fact that every chain map into I is
null homotopic. Therefore dgÃ is simply the class of all chain complexes in Ch(G).
It is also clear that Ã = E , so condition (4) from Theorem 4.12 holds too. The
conclusion of Theorem 4.12 translates to the usual injective model structure where
the cofibrations are the monomorphisms and the fibrations are the epimorphisms
with dg-injective kernels. ¤

It was in [ELR02] that the term “Kaplansky class” first appeared. The reasoning
is that the class of projective modules (over a ring R) is a Kaplansky class by
Theorem 1 of [Kap58]. There is of course a “projective” model structure on Ch(R)
which is associated to this Kaplansky class. Unfortunately, we can not recapture
this model structure using Theorem 4.12. The only problem is that the class of
projectives is not closed under direct limits. This suggests that there may be a
better theorem than 4.12 which excludes the direct limit hypothesis. The first
idea would be to replace the “closed under direct limits” hypothesis with a “closed
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under transfinite extensions” hypothesis. However, how would we get a lemma
similar to 4.3?

Another (monoidal) model structure on Ch(R) which can be obtained using
Theorem 4.12 is the flat model structure which first appeared in [Gil04].

Corollary 7.2. Let G = R-Mod where R is a commutative ring with 1 and let
F be the class of flat modules. Then F is a Kaplansky class and it induces a
model structure on Ch(G) called the flat model structure. The cofibrations are the
monomorphisms with dg-flat cokernels and the fibrations are the epimorphisms with
dg-cotorsion kernels. Furthermore this model structure is cofibrantly generated and
monoidal with respect to the usual tensor product of chain complexes.

Proof. First we note that G is locally finitely presentable. For a proof of this fact,
see the footnote to Theorem 4.34 of [Lam99]. So G is locally κ-presentable for every
regular cardinal κ by Fact A.8. We let κ be a regular cardinal with κ > |R| and
argue that F is a κ-Kaplansky class.

So let X ⊆ F 6= 0 where X is κ-generated and F is flat. By Lemma B.1, |X| < κ.
For each x ∈ X we use Lemma 2 of [BBE01] to find a flat submodule Fx ⊆ F with
x ∈ Fx, |Fx| < κ and F/Fx ∈ F . The direct union

⋃
x∈X Fx contains X and is flat.

Furthermore
F/(

⋃

x∈X

Fx) ∼= lim
x∈X

F/Fx

is flat. Finally, since |⋃x∈X Fx| < κ, Lemmas B.1 and B.2 allow us to conclude
that F is a κ-Kaplansky class.

This proves property (1) of Theorem 4.12 and property (2) is clearly true since
R is a flat R-module. Proposition XVI.3.1 of [Lan97] tells us that F is closed
under retracts (direct summands). It is also a standard fact about flat modules
that F is closed under extensions and direct limits. So it is left to check property
(4) of Theorem 4.12. By Proposition XVI.3.4 of [Lan97] F is closed under taking
kernels of epimorphisms. Referring to Definition 3.11 of [Gil04] this says that the
cotorsion pair (F , C) (where C is the class of all cotorsion modules) is hereditary.
Corollary 3.13 of [Gil04] now tells us that F̃ = dgF̃ ∩ E .

Thus we have a cofibrantly generated model structure on Ch(R) where the cofi-
brations are the monomorphisms with cokernels in dgF̃ (dg-flat complexes) and the
fibrations are the epimorphisms with kernels in dgC̃ (dg-cotorsion complexes).

It is easy to see that the model structure is monoidal using Theorem 5.1. The
tensor product of two flat modules is clearly flat and the unit R is flat. ¤

As described in [Gil06] the (monoidal) flat model structure of Corollary 7.2
generalizes to the category Ch(OX -Mod) of complexes of OX -modules where OX

is a ringed space. It too is obtained from a Kaplansky class as we will see next in
Corollary 7.8. The first lemma below concerns cotorsion modules and skyscraper
sheaves. We now recall the concept of a skyscraper sheaf.

Let OX be a ringed space, p ∈ X be a point, and M be an Op-module. The
skyscraper sheaf Sp(M) is the sheaf on X defined by U 7→ M if p ∈ U and U 7→ 0
if p /∈ U . It is in fact an OX -module by viewing M as an O(U)-module via the ring
homomorphism O(U) −→ Op. One can check that [Sp(M)]q = M for each q ∈ { p }
and [Sp(M)]q = 0 for each q /∈ { p }. It is also standard that Sp(−) is an exact
functor from the category Op-Mod to the category OX -Mod and is right adjoint to
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the (also exact) “stalk functor” which sends a OX -module F to the Op-module Fp.
Therefore Sp(−) preserves injective objects by Proposition 2.3.10 of [Wei94].

Lemma 7.3. Let OX be a ringed space and p ∈ X be a point. The skyscraper
functor Sp(−) preserves cotorsion objects.

Proof. First notice that for any OX -module F and any Op-module C we have an
isomorphism Extn(Fp, C) ∼= Extn(F, Sp(C)). (This can be proved using the adjoint
relationship discussed above along with the fact that Sp(−) is exact and preserves
injective objects, and therefore preserves injective resolutions.)

Now suppose C is a cotorsion Op-module and F is a flat OX -module. We wish
to show that Sp(C) is a cotorsion OX -module. But Fp is a flat Op-module, so
Ext1(F, Sp(C)) ∼= Ext1(Fp, C) = 0. Therefore Sp(C) is cotorsion. ¤

In order to verify the first hypothesis of Theorem 4.12, we would like to find
a large enough cardinal κ so that the κ-generated OX -modules coincide with the
κ-presentable OX -modules and so that these notions may be used in place of cardi-
nality. Lemma 7.7 will allow us to do this. Our next lemma below however states
that the category of OX -modules has a set of flat generators. This is a standard
fact but we document it now since it will be used in the proof of Lemma 7.7 and is
needed for Corollary 7.8.

Let OX be a ringed space. For each open U ⊆ X, extend O|U by 0 outside of U
to get a presheaf, denoted OU . Now sheafify to get an OX -module, which we will
denote j!(OU ).

Lemma 7.4. Let OX be a ringed space. Then Hom(j!(OU ), G) ∼= G(U) for any
OX-module G and each open set U ⊆ X. Furthermore, { j!(OU ) : U ⊆ X } is a set
of flat generators for OX-Mod.

Proof. One can prove without much difficulty that Hom(OU , G) ∼= G(U). So by the
universal property of sheafification we get Hom(j!(OU ), G) ∼= G(U). It follows at
once that the set forms a generating set since the modules j!(OU ) “pick out points”.
Also, each j!(OU ) is flat since [j!(OU )]p ∼= (OU )p, which equals Op if p ∈ U and 0
if p ∈ X\U . ¤
Definition 7.5. We define the cardinality of a presheaf (or sheaf), F , to be |F | =
|∐U⊆X F (U)| where U ⊆ X ranges over all the open sets in X.

In Lemmas 7.6 and 7.7 we let OX be our ringed space and let U represent the
set of all open sets U ⊆ X. We note now that if β is an infinite cardinal in which
β > |OX |, then automatically β > |U|, since O(U) is nonempty for each U ⊆ X.

Lemma 7.6. Let β be an infinite cardinal such that β > max{ |X|, |OX | }. Now
let κ = 2β. If S is a presheaf of OX-modules and |S| < κ, then |S+| < κ where S+

is the sheafification.

Proof. Clearly |Sp| < κ for each point p ∈ X. So by the sheafification construction
(see the proof of Proposition-Definition II.1.2 of [Har77]) one can easily see that for
each open U ⊆ X we have |S+(U)| < κβ . However, κβ = (2β)β = 2(β2) = 2β = κ,
so |S+(U)| < κ. Therefore |S+| = |∐U⊆X S+(U)| < κ. ¤

Next suppose we have a presheaf of OX -modules, S, and suppose we have a
subset

W ⊆
∐

U⊆X

S(U)
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where again U ⊆ X ranges over all the open sets in X. We set WU = W ∩ S(U).
The set W generates a presheaf S′ and it is given by

S′(U) =
∑

V⊇U

∑

w∈WV

rV,U ([O(V )]w).

That is, S′(U) consists of all finite sums of the form

rV1,U (ρ1w1) + rV2,U (ρ2w2) + · · ·+ rVn,U (ρnwn)

where
Vi ⊇ U, wi ∈ WVi

, ρi ∈ O(Vi)
and rVi,U : Vi −→ U are the restriction maps. It is straightforward to see that S′

is a presheaf and upon reflection it is clearly the smallest subpresheaf containing
W . Furthermore, if κ > |OX | is an infinite cardinal, and κ > |W |, then we will
have κ > |S′|. If S was a sheaf of OX -modules to start with, then (S′)+ is the
OX -submodule generated by W which we will denote SW . In this case note that
if κ = 2β where β > max{ |X|, |OX | }, then by Lemma 7.6, κ > |SW | whenever
κ > |W |.
Lemma 7.7. Let β be an infinite cardinal such that β > max{ |X|, |OX | }. Now let
κ = 2β. Also assume that κ is large enough that each j!(OU ) is κ-generated. Then
the following are equivalent for an OX-module S.

(1) |S| < κ.
(2) S is κ-generated.
(3) S is κ-presentable.

Proof. (1) ⇒ (2). We use Fact A.5. Suppose |S| < κ and say S =
∑

i∈I Si is a
κ-directed union of OX -submodules. Note that we will be done if we can show that
for each open U ⊆ X and each x ∈ S(U), there exists an i ∈ I such that x ∈ Si(U).
Indeed if this were true, then by the large choice of κ and the fact that the union
is κ-filtered, we would take the union of all such Si(U) to display S = Si for some
particular i ∈ I. (Note also that the assertion we wish to prove is not obvious since
we must sheafify when taking the direct union.)

Now let x ∈ S(U). From our choice of κ we know that each j!(OU ) is κ-
generated and so the canonical map colimi∈I Hom(j!(OU ), Si) −→ Hom(j!(OU ), S)
is an isomorphism. Now using Lemma 7.4 this translates to an isomorphism
colimi∈I Si(U) ∼= S(U). Through this isomorphism we see that x ∈ Si(U) for
some i ∈ I.

(2) ⇒ (1). Let W be the collection of all subsets W ⊆ ∐
U⊆X S(U) (where U

ranges over all open subsets of X) which satisfy |W | < κ. For each W ∈ W, let
SW represent the OX -submodule generated by W . Then |SW | < κ by Lemma 7.6.
Note that (W,⊆) is κ-filtered and in fact S is the κ-filtered union

∑
W∈W SW . By

Fact A.5, S = SW for some W ∈ W. So |S| < κ.
(3) ⇒ (2) is automatic. We now prove (2) ⇒ (3), using that (1) iff (2). First

we point out that the category of OX -modules is locally κ-generated. Indeed each
S can be expressed as the κ-filtered union S =

∑
W∈W SW where each SW is κ-

generated as in the last paragraph. Therefore, we may use the characterization
of κ-presentable objects in Fact A.12. Suppose S is κ-generated and T −→ S is
an epimorphism with T a κ-generated OX -module. Then |T | < κ. So of course
| ker (T −→ S)| < κ, which means ker (T −→ S) is κ-generated. This proves S is
κ-presentable. ¤
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Finally we prove that the flat model structure on Ch(OX -Mod) comes from the
Kaplansky class of flat OX -modules. The proof of Corollary 7.8 will again rely on
a result of Enochs, et.al. which can be found in [EO01].

If S ⊆ F is a subpresheaf (or subsheaf) we call S presheaf pure if S(U) is a pure
O(U)-submodule of F (U) for each open U . We say S ⊆ F is stalkwise pure if Sp is
a pure Op-submodule of Fp for each p ∈ X.

Corollary 7.8. Let G = OX-Mod where OX is a sheaf of rings on a topological
space X and let F be the class of flat OX-modules. Then F is a Kaplansky class
and it induces a model structure on Ch(G) we call the flat model structure. The
cofibrations are the monomorphisms with dg-flat cokernels and the fibrations are
the epimorphisms with dg-cotorsion kernels. Furthermore this model structure is
cofibrantly generated and monoidal with respect to the usual tensor product of chain
complexes.

Proof. Let β be an infinite cardinal such that β > max{ |X|, |OX | }. Now let κ = 2β .
Using Fact A.2 we can also assume that κ is large enough that each j!(OU ) is κ-
generated. We let F be the class of flat sheaves and claim that F is a κ-Kaplansky
class.

So let S′ ⊆ F 6= 0 where S′ is κ-generated and F is flat. By Lemma 7.7, |S′| < κ.
With minor adjustments to the proof of Proposition 2.4 of [EO01] we can find an
OX -submodule S ⊆ F which is presheaf pure and such that S′ ⊆ S and |S| < κ. It
follows that S ⊆ S+ and S+ ⊆ F is stalkwise pure. (This is not hard, but one could
also see a proof in Lemma 4.7 of [Gil06].) It follows immediately that S+ and F/S+

are flat. Furthermore, by Lemma 7.6 we have |S+| < κ and so by Lemma 7.7 we
have that S+ is κ-presentable. This completes the proof that F is a κ-Kaplansky
class.

Note that OX -Mod is locally κ-generated by the argument given in the last
paragraph of the proof of Lemma 7.7. By our large choice of the cardinal κ it follows
that OX -Mod is also locally κ-presentable. So we are done verifying properties (1)
and (2) of Theorem 4.12.

It is a standard fact that F is closed under retracts, extensions and direct limits.
So we focus on proving property (4). We let Y be an exact dg-flat complex of
sheaves. We want to show that it is a flat complex. I.e. that is has flat cycles in
each degree. Note that we will be done if we can show that the“stalk complex”
Yp is a flat complex of Op-modules for each p ∈ X. We know from the proof of
Corollary 7.2 that an exact dg-flat complex of Op-modules is a flat complex. So
we will simply show that Yp is a dg-flat complex. So let Yp −→ C be a morphism
where C is a cotorsion complex of Op-modules. (This means that C is exact and
each cycle is cotorsion.) We want to show this map is null homotopic. But using
the skyscraper functor and its adjoint property gives us a morphism Y −→ Sp(C)
of complexes. Since Sp(−) is exact and preserves cotorsion modules by lemma 7.3
we see that Sp(C) is a cotorsion complex and by definition of dg-flat Y −→ Sp(C) is
null homotopic. From this we can deduce that Yp −→ C is also null homotopic.

Thus we have a cofibrantly generated model structure on Ch(G) where the cofi-
brations are the monomorphisms with cokernels in dgF̃ (dg-flat complexes) and the
fibrations are the epimorphisms with kernels in dgC̃ (dg-cotorsion complexes).

We check now that the model structure is monoidal using Theorem 5.1. Again
this is easy. The tensor product of two flat sheaves is also flat. The unit is the
structure sheaf OX which is flat too. ¤
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Appendix A. locally presentable categories

Tibor Beke showed (Proposition 3.10 of [Bek00]) that Grothendieck categories
are locally presentable. Here we gather some properties of locally presentable cate-
gories from the literature which will be needed for this paper. Virtually everything
here can be found scattered throughout [AR94] and [Sten75].

Throughout this section, we will assume all cardinals are regular. These are
infinite cardinals which are not the sum of a smaller number of smaller cardinals.
For example, ℵω =

∑
n<ω ℵn is NOT a regular cardinal. All infinite successor

cardinals are regular though.

Definition A.1. Let C be a category and let κ be a regular cardinal.
A κ-filtered category is a category K, for which every subcategory with less than

κ morphisms has a cocone. A κ-filtered diagram is simply a functor F : K −→ C in
which K is a small κ-filtered category. By a κ-filtered colimit, we mean the colimit
of a κ-filtered diagram.

An object X in C is called κ-presentable if HomC(X,−) preserves κ-filtered col-
imits. It is called presentable if it is κ-presentable for some regular cardinal κ.

An object X in C is called κ-generated if HomC(X,−) preserves κ-filtered colimits
of monomorphisms. I.e., preserves the colimits of diagrams F : K −→ C for which
F (d) : F (c) −→ F (c′) is a monomorphism for each d : c −→ c′ in K. The object is
called generated if it is κ-generated for some regular cardinal κ.

When C is the category of R-modules, the definitions above for κ-presentable
and κ-generated agree with usual conventions. In fact, see below Fact A.12 and the
example after Fact A.5.

As a special case we have the notion of a κ-directed poset which is really just
a poset (P,≤) which is κ-filtered when thought of as a category. Then we have
κ-directed colimits which are colimits of a functor F : (P,≤) −→ K, where (P,≤) is
a κ-directed poset. In a Grothendieck category G, we often use the term κ-directed
union. This is just a κ-directed colimit of a κ-directed set of subobjects, {Si}i∈I ,
of a given object A. It is denoted

∑
i∈I Si and it is a subobject of A since direct

limits are exact in a Grothendieck category.

Fact A.2. Let κ′ ≥ κ be regular cardinals. It is easy to see that any κ′-filtered
category is also a κ-filtered category. Thus any κ′-filtered diagram is a κ-filtered
diagram. Therefore, any κ-presentable (resp. generated) object is easily seen to be
κ′-presentable (resp. generated).

Fact A.3. Clearly, any κ-presentable object is κ-generated.

As explained in [AR94], κ-presentable and κ-generated objects can be defined in
terms of κ-directed colimits instead of κ-filtered colimits. We also have the following
facts which hold by generalizing the proofs in Chapter V.3 of [Sten75]. The proofs
there are given for κ = ω (finitely generated objects), but everything carries over
for an arbitrary κ.

Fact A.4. In a Grothendieck category, the image of a κ-generated object is again
κ-generated. Also an extension of κ-generated objects is κ-generated.

Fact A.5. Let G be a Grothendieck category and κ a regular cardinal. Then the
following are equivalent for an object X ∈ G:

1) X is κ-generated.
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2) Whenever X =
∑

i∈I Xi is a κ-directed union of subobjects, we have X = Xi

for some i ∈ I.
3) Whenever X =

∑
i∈I Xi is any union of subobjects, we have X =

∑
i∈J Xi

for some J ⊆ I with |J | < κ.

Proof. The first two are equivalent by generalizing the proofs in Chapter V.3
of [Sten75]. The equivalence of the second two is not hard to prove but you need the
fact that a colimit of less than κ-many κ-generated objects is again κ-generated. ¤

Example. Let R be a ring and M an R-module. M is κ-generated iff there exists
a set S ⊆ M with |S| < κ such that M =

∑
x∈S Rx.

Proof. (⇒). Let S be the collection of all subsets S ⊆ M such that |S| < κ. Let
MS be the submodule

∑
x∈S Rx. Note that (S,⊆) is κ-filtered and in fact M is

the κ-filtered union
∑

S∈S MS . Using Fact A.5, M = MS for some S ∈ S.
(⇐). Again we will use Fact A.5. Let M =

∑
i∈I Mi be a κ-filtered union. By

assumption, there is an S ⊆ M such that M = MS (|S| < κ). For each x ∈ S, there
corresponds some i ∈ I such that x ∈ Mi. But

∑
i∈I Mi is κ-filtered and |S| < κ,

so there exists i0 ∈ I such that S ⊆ Mi0 . So M = Mi0 . ¤

Definition A.6. Any cocomplete category C is called locally κ-presentable if each
object is a κ-filtered colimit of κ-presentable objects and the class of κ-presentable
objects is essentially small, meaning there are only a sets worth of κ-presentable
objects up to isomorphism. A category C is simply called locally presentable if it is
locally κ-presentable for some regular cardinal κ.

Analogously, we define a locally κ-generated category as a cocomplete category
in which each object is a κ-filtered union of κ-generated subobjects and the class
of κ-generated objects is essentially small. A category C is simply called locally
generated if it is locally κ-generated for some regular cardinal κ.

For example, if R is a ring, then every R-module is an ω-filtered union (usu-
ally just called filtered union) of its ω-generated submodules (finitely generated
submodules). So the category of R-modules is locally ω-generated (locally finitely
generated).

In general, as pointed out in [Sten75] (pp. 122), an arbitrary Grothendieck cat-
egory may not even have any nonzero finitely generated objects. Such a category
is clearly not locally finitely generated. However, the “Local Generation Theo-
rem”( [AR94], pp.54) says that a cocomplete category C is locally presentable if
and only if it is locally generated. But be careful; this is NOT the same as saying
C is locally κ-presentable if and only if it is locally κ-generated. For an example,
see [AR94], Example 1.71, pp.56. Nevertheless, one direction does hold. For a proof
of the following fact, see the first paragraph of the proof to the “Local Generation
Theorem”( [AR94], pp.54).

Fact A.7. If C is locally κ-presentable, then C is locally κ-generated.

Fact A.8. Let κ′ ≥ κ be regular cardinals. Then C locally κ-presentable (resp.
generated) implies C locally κ′-presentable (resp. generated).

Fact A.9. If C is locally presentable, then for any regular cardinal λ, the class of λ-
presentable objects is essentially small. Similarly, the class of λ-generated objects
is essentially small([AR94], Corollary 1.69). Any fixed set of representatives of
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the λ-presentable objects is denoted Presλ C, and a set of representatives of the
λ-generated objects is denoted by Genλ C.
Fact A.10. Every object of a locally presentable category is presentable (and hence
generated).

Fact A.11. Let X be an object in a locally presentable category. Then the class of
subobjects of X is in fact a set and the class of quotient objects of X is also a set.
In [AR94] this is expressed by saying locally presentable categories are wellpowered
and cowellpowered, respectively.

The following gives a useful characterization of κ-presentable objects. Again,
the proof is obtained by generalizing the proofs in Chapter V.3 of [Sten75].

Fact A.12. Let G be a locally κ-generated Grothendieck category. An object X is
κ-presentable if and only if X is κ-generated and every epimorphism C −→ X with
C κ-generated has a κ-generated kernel.

Appendix B. κ-generated objects for very large κ

Here we prove that in a Grothendieck category, there exists a regular cardinal κ
for which the class of κ-generated objects coincides with the class of κ-presentable
objects. As a result, this class of objects (which has a small skeleton) satisfies the
2 out of 3 property for short exact sequences.

Lemma B.1. Let R be a ring and M an R-module. Let κ be a regular cardinal
such that κ > |R|. Then M is κ-generated iff |M | < κ.

Proof. We use the characterization of κ-generated provided by Example A.
First, if |M | < κ, then M is clearly κ-generated since we can take the generating

set to be M itself. Conversely, suppose M is κ-generated so that there exists a
set S ⊆ M for which M =

∑
x∈S Rx and |S| < κ. Then |M | = |∑x∈S Rx| ≤

|⊕x∈S Rx| < κ.
¤

Lemma B.2. Let R be a ring and M an R-module. Let κ be a regular cardinal
such that κ > |R|. Then M is κ-generated iff M is κ-presentable.

Proof. Of course κ-presentable objects are always κ-generated, so it remains to
show that under the given hypothesis, κ-generated objects are κ-presentable. But
this is easy using Lemma B.1 and the fact that M is κ-presentable iff M is κ-
generated and every epimorphism N −→ M with N κ-generated, has a κ-generated
kernel. Indeed suppose M is κ-generated and N −→ M is an epimorphism with N
κ-generated. Then |N | < κ. So of course | ker (N −→ M)| < κ. ¤

Next we can prove that the notion of κ-generated coincides with κ-presentable
in any Grothendieck category if we take κ to be large enough. In the proof we use
the fact that an equivalence of categories preserves κ-generated and κ-presentable
objects. Indeed if F : A −→ B is an equivalence, then there exists G : B −→ A
such that GF ∼= 1A and FG ∼= 1B. Furthermore, F is then both a left and right
adjoint of G (and so each preserves colimits). So if X ∈ A is κ-presentable then the
functor A(X, G(−)) preserves κ-filtered colimits. But A(X, G(−)) ∼= B(F (X),−),
so F (X) must be κ-presentable. On the other hand, if F (X) is κ-presentable,
then B(F (X), F (−)) preserves κ-filtered colimits. Therefore, B(F (X), F (−)) ∼=
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A(GF (X),−) preserves κ-filtered colimits and GF (X) ∼= X must be κ-presentable.
The same argument (but with κ-filtered colimits of monomorphisms) shows that
an equivalence preserves κ-generated objects.

Proposition B.3. Let G be a Grothendieck category. Then there exists a regular
cardinal κ for which the κ-generated objects coincide with the κ-presentable objects.

Proof. By the Gabriel-Popescu Theorem ([Sten75]), G is equivalent to a subcategory
of R-Mod for some ring R. (The Gabriel-Popescu Theorem says more than this, but
we don’t need the whole statement.) Since an equivalence of categories preserves κ-
generated and κ-presentable objects, the result follows from Lemma B.2 by choosing
κ to be a regular cardinal κ > |R|. ¤
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