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Abstract. We present an algorithm for computing a minimal editing of an arbitrary graph G into
a cograph, i.e. a set of edits (additions and deletions of edges) that turns G into a cograph and
that is minimal for inclusion. Our algorithm runs in linear time in the size of the input graph,
that is O(n + m) time where n and m are the number of vertices and the number of edges of
G, respectively. Our algorithm is incremental on the vertices and has two remarkable properties:
(1) at each incremental step, it is able to provide a set of edits incident to the newly considered
vertex which is not only minimal for inclusion but also has minimum cardinality and (2) the total
number of edits output at the end of the algorithm is never more than m. These properties are
very useful in practice for using our inclusion-minimal algorithm as a heuristic for solving the
minimum-cardinality version of the problem, which is NP-hard.

1 Introduction

We consider the problem of editing an arbitrary graph into a cograph, i.e. a graph with no
induced path on 4 vertices. This is a particular case of graph modification problem, in which one
wants to perform elementary modifications to an input graph, typically adding and removing
edges and vertices, in order to obtain a graph belonging to a given target class of graphs, which
satisfies some additional property compared to the input. Ideally, one would like to do so by
performing a minimum number of elementary modifications. This is a fundamental problem in
graph algorithms, which corresponds to the notion of projection in geometry: given an element
a of a ground set X equipped with a distance and a subset S C X, find an element of S that is
closest to a for the provided distance (here, the number of elementary modifications performed
on the graph). This is also the meaning of modification problems in algorithmic graph theory:
they answer the question to know how far is a given graph from satisfying a target property.
Here, we consider the edge modification problem called editing, where two operations are al-
lowed: adding an edge and deleting an edge. In other words, given a graph G = (V, E), we want
to find a set M C {{z,y} | z,y € V'} of pairs of vertices, called edits, such that the edited graph
H = (V, EAM) belongs to the target class. In this case, the quantity to be minimised, called the
cost of the editing, is the number | M| of adjacencies that are modified, i.e. the number of edges
that are added plus the number of edges that are deleted. There exist two other edge modifica-
tion problems, called completion and deletion, which are particular cases of editing where only
addition of edges or only deletion of edges is allowed, respectively. Edge modification problems
play an essential role in algorithmic graph theory, where they are closely related to some impor-
tant graph parameters, such as treewidth [1]. They are also useful for many problems arising
in computer science, e.g. sparse matrix multiplication [53], anonymisation in networks [42] and
clustering [30, 3], and in other disciplines such as archaeology [39], molecular biology [6,11] and
genomics, where they played a key role in the mapping of the human genome [27, 38]. Recently
edge modification problems into the class of cographs and some of its subclasses has become a
powerful approach to solve problems arising in complex networks analysis, such as inference of
phylogenomics [35, 34|, identification of groups in social networks [37,48] and measures of cen-
trality of nodes in networks [54, 9]. For these applications, the need to treat real-world datasets,
whose size is often huge and constantly growing, asks for more efficient algorithms both with



regard to the running time and with regard to the quality (number of edits) of the solution
returned.

Unfortunately, finding the minimum number of edits to be performed in an editing problem
is NP-hard for most of the target classes of interest (see, e.g., the thesis of Mancini [45] for
further discussion and references). To deal with this difficulty of computation, the domain
has developed a number of approaches, including approximation [49, 36], restricted input [40,
10, 8,50, 46, 7,41], parameterization [12, 22,5, 26, 14, 2, 13] and exact exponential algorithms [4].
Another popular approach, called minimal editing, is based on a relaxation of the problem
which does not ask for the minimum number of edits but only ask for a set of edits which is
minimal for inclusion, i.e. which does not contain any proper subset of edits that also results in
a graph in the target class. This approach has been extensively used for completion problems,
for the class of cographs itself [44, 19], as well as for many other graph classes, including chordal
graphs [32], interval graphs [21, 51|, proper interval graphs [52], split graphs [33], comparability
graphs [31] and permutation graphs [20]. The main reason for the success of inclusion-minimal
completion is that it provides a heuristic for minimum-cardinality completion that has usually
a low polynomial complexity. This heuristic approach exploits the fact that different minimal
completions can be obtained by making different choices along the algorithm. Making these
choices at random and repeating the algorithm several times perform a sampling of the set of
minimal completions. One can then keep the best solution obtained and hope that it is close
enough from the optimal one.

Surprisingly, it seems that the inclusion-minimal approach has never been used for editing
problems, where both addition and deletion are allowed. We presume that this is due to the
conjunction of two reasons: dealing with both addition and deletion of edges is usually harder for
algorithm design and at the same time, from a purely theoretic point of view, minimal editing has
no particular interest compared to minimal completion for instance, since an inclusion-minimal
set of added edges is also an inclusion-minimal set of edits. Nevertheless, from a practical point
of view, when the object of interest is the edit distance to the target class, dealing with the
general version of editing is essential as the number of edits obtained is often much lower when
both operations are used. Moreover, we show in this paper that dealing with both operations
may be beneficial not only for the number of edits output, but also for the time complexity of
the algorithm.

Related work. Edge modification problems into the class of cographs and some of its sub-
classes, such as quasi-threshold graphs (also known as trivially perfect graphs) and threshold
graphs, have already received a great amount of attention. In particular, in the parameterized
complexity framework with the editing distance as parameter, [24,23,43,47] obtained FPT
algorithms while [23, 25, 29, 28] designed polynomial kernels.

Unlike the minimal editing problem, minimal cograph completion has already been studied.
[44] designed an incremental algorithm that gives an inclusion-minimal cograph completion in
time O(n + m’), where n is the number of vertices and m’ the number of edges in the output
cograph. Later, [19] improved the running time to O(n + mlog?n) for the inputs where the
number of edges m is small and m’ is large. They also show that within the O(n + m’) time
complexity, it is possible to determine the minimum number of edges to be added at each step
of the incremental algorithm.

[37] and [34] designed heuristics, for cograph deletion and cograph editing respectively, that
are not intended to output a minimal set of modifications. In the worst case, the algorithm of
[37] runs in time at least O(m?) and the algorithm of [34] in time greater than O(n?). Finally,
let us mention that for the class of quasi-threshold graphs, there exist two heuristics dedicated
to the editing problem. The one in [48] runs in cubic time in the worst case while [9] obtains a
complexity which is close to linear, but which remains quadratic in the worst case.



Our results. We design an algorithm that computes a minimal cograph editing of an arbitrary
graph in linear time in the size of the input graph, i.e. O(n+m) time. This is the first algorithm
for a cograph edge modification problem that runs in linear time. Even compared to the O(n +
m’)-time algorithm of [44] for the pure completion problem, the O(n+m) complexity we obtain
here for the editing problem is a significant improvement since, as shown in [19], many instances
with m = O(n) edges require m’ = 2(n?) edges in any of their cograph completions. Note that,
as a particular case, our minimal cograph editing algorithm solves the cograph recognition
problem in linear time, and the technique we use can actually be seen as an extension of the
seminal work of [17].

Like the algorithms in [44,19], our algorithm is incremental on the vertices and as the one
in [19], it is able to provide a minimum number of edits to be performed at each incremental
step and even able to list all the sets of edits having this minimum cardinality, within the same
complexity. Moreover, all the different solutions that can be obtained at the end of the algorithm
never contain more than m edits.

To obtain an O(n 4+ m) time complexity, we use the fact that there always exists an editing
of cost m that deletes all the edges of the graph. Because of this, at each incremental step, we
can ignore all the minimal editings that have cost more than d, the degree of the new vertex.
This allows us to limit our exploration of the cotree to a part of it that has size O(d). Our main
technical contribution is to show how to identify this part in O(d) time.

2 Preliminaries

All graphs considered here are finite, undirected, without multiple edges and loopless. In the
following, G is a graph, V (or V(G)) is its vertex set and E (or E(G)) is its edge set. We use the
notation G = (V, E) and n stands for the cardinality |V | of V(G) and m for | E|. An edge between
vertices  and y will be arbitrarily denoted by zy or yx. The (open) neighbourhood of z is
denoted by N(z) (or Ng(z)) and its closed neighbourhood by N[z] = N(z)U{z}. The subgraph
of G induced by the set of vertices X C V is denoted by G[X| = (X, {zy € E | z,y € X}).

For a rooted tree T' and a node u € T, the depth of w in T is the number of edges in the path
from the root of T' to u (the root has depth 0). We employ the usual terminology for children,
parent, ancestors and descendants of a node u in T" (the two later notions including u itself). We
denote by C(u) the set of children of u and by parent(u) its parent. The subtree of T rooted at
u, denoted T, is the tree induced by the descendants of node u in 7' (which include w itself).
We denote lca(u,v) the least common ancestor of nodes u and v in T

Two sets A and B overlap if ANB # @ and A\ B # @ and B\ A # @. If A and B do not
overlap, then either they are disjoint or one is included in the other.

2.1 Cographs

There are several characterizations of the class of cographs. They are often defined as the graphs
that do not admit the Py (path on 4 vertices) as induced subgraph. Equivalently, they are the
graphs obtained from a single vertex under the closure of the parallel composition and the series
composition. The parallel composition of two graphs G1 = (V1, E1) and Go = (Va, Es) is the
disjoint union of G'; and G, i.e., the graph Gpqr = (V1 UVs, Eq UEQ). The series composition of
two graphs (G1 and G is the disjoint union of G; and G plus all possible edges from a vertex of
G1 to one of Go, i.e., the graph G, (V1 UVa, EyUEyU{zy |z € V1,y € Vg}) These operations
can naturally be extended to a finite number of graphs.

This gives a nice representation of a cograph G by a tree whose leaves are the vertices of the
graph and whose internal nodes (non-leaf nodes) are labelled P, for parallel, or S, for series,



corresponding to the operations used in the construction of G. It is always possible to find such
a labelled tree T representing G such that every internal node has at least two children, no two
parallel nodes are adjacent in 7" and no two series nodes are adjacent. This tree T is unique [16]
and is called the cotree of G, see the example on Figure 1. Note that the subtree T;, rooted at
some node u of cotree T also defines a cograph whose vertex set, denoted V'(u), is the set of
leaves of T;,. We denote Ser and Par the set of series and parallel nodes of T respectively. The
adjacencies between vertices of a cograph can easily be read off its cotree, in the following way.
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Fig. 1. Example of a labelled construction tree (left), the cograph it represents (center), and the associated cotree
(right). Some vertices are decorated in order to ease the reading.

Remark 1 Two vertices x and y of a cograph G having cotree T are adjacent iff the least
common ancestor u of leaves x and y in T is a series node. Otherwise, if u is a parallel node,
x and y are not adjacent.

Let us emphasize that the class of cographs is hereditary, i.e., an induced subgraph of a
cograph is also a cograph (since the class admits a definition by forbiden induced subgraphs).

2.2 Incremental minimal cograph modification

Note that every graph G has a cograph completion and a cograph deletion, and consequently
a cograph editing as well. For completion, one can simply add all the missing edges to G and
observe that the complete graph is a cograph. For deletion, one can delete all the edges and
observe that the empty graph is also a cograph.

Our approach for computing a minimal editing of an arbitrary graph G is incremental, in the
sense that we take the vertices of G one by one, in an arbitrary order (x1,...,z,), and at step
i we compute a minimal cograph editing H; of G; = G[{z1,...,x;}] from a minimal cograph
editing H;_1 of G;_1, by modifying only adjacencies involving x;. This is possible thanks to the
following observation that is general to all hereditary graph classes that are stable under the
addition of universal vertices and isolated vertices, like cographs.

Lemma 1 (see e.g. [51]). Let G be an arbitrary graph and let H be a minimal cograph editing
(resp. completion or deletion) of G. Consider a new graph G' = G + x, obtained by adding to G
a new verter x adjacent to an arbitrary set N(xz) of vertices of G. There is a minimal cograph
editing (resp. completion or deletion) H' of G' such that H — x = H.

Let us mention that the conditions of application of the above Lemma for editing are actually
lighter: in addition to the fact that the class is hereditary, it is sufficient that any graph in the
class is an induced subgraph of another graph in the class (i.e. there is no maximal element for
the induced subgraph relationship).



The new problem. From now on, we consider the following problem, with slightly modified
notations.

Let G be a cograph, and let G + = be the graph obtained by adding to G a new vertex x
adjacent to some set N(z) of vertices of G. Our goal is to compute a minimal cograph editing
H of G + z such that H — 2z = G. We sometimes write G + (x, N(x)) instead of G + z, when
we want to make the neighbourhood of z in G + z explicit, and we denote d = |N(z)].

Definition 1 (Full, hollow, mixed). Let G be cograph and let x be a vertex to be inserted
in G with neighbourhood N(x) C V(G). A subset S C V(G) is full if S C N(z), hollow if
SN N(x) =@ and mixed if S is neither full nor hollow. When S is full or hollow, we say S
is uniform. We use the same vocabulary for nodes w of T, referring to their associated set of
vertices V (u).

From [17, 18], we have the following characterisation of the case where the insertion of z in
cograph G yields a cograph G + .

Theorem 1 (Reformulated from [17,18]). Let G be a cograph with cotree T and let x be
a vertex to be inserted in G with neighbourhood N(x) C V(G). If the root of T is mized, then
G + z is a cograph iff there exists a mized node u of T such that:

1. all children of u are uniform and
2. for all vertices y € V(G) \ V(u), y € N(x) iff lca(y,u) is a series node.

Moreover, when such a node u exists, it is unique and it is called the insertion node.

3 Characterisation of minimal cograph editings of G + =

In this section, we build upon Theorem 1 to get a characterisation of all the minimal cograph
editings of G+ z (Lemmas 7 and 8 below), extending the work of [19] for pure completion. Note
that from Theorem 1, any minimal editing defines a unique insertion node.

Lemma 2. Let G be a cograph with cotree T and let x be a vertex to be inserted in G. The
insertion node u of a minimal cograph modification H (editing, completion or deletion) of G+ x
is a mized node of T wrt. x in G + x.

Proof. Let us denote N'(z) the neighbourhood of z in H and let Mod'(x) denote the subset
of vertices of G whose adjacency with z is modified between G 4+ x and H, i.e. Mod (z) =
N(z)AN'(x). From Theorem 1, after modification, node u is mixed wrt. N’(x). Suppose for
contradiction that u is not mixed before modification, that is with regard to N(z). Then, either
u is full w.r.t. N(x) and some edges between x and V' (u) have been deleted, or u is hollow w.r.t.
N(x) and some edges between x and V(u) have been added. In both cases, the set Mod"(x)
defined as Mod" (x) = Mod'(x)\V (u) is strictly included in Mod'(x), and the resulting modified
neighbourhood N”(z) = N(z)AMod"(z) of = is such that G + (x, N”(x)) is also a cograph.
It follows that the modification that results in N'(z) is not a minimal cograph modification:
contradiction. Thus, u is mixed with regard to N(z). O

Definition 2. Let G be a cograph with cotree T and let x be a vertex to be inserted in G. A
node u of T is called a minimal insertion node iff there exists a minimal editing H of G + x
such that w is the insertion node associated to H.



Definition 3 (Completion-forced [19]). Let G be a cograph with cotree T' and let x be a
verter to be inserted in G. A completion-forced node u is inductively defined as a node satisfying
at least one of the three following consditions:

1. w is full, or
2. w is a parallel node with all its children non-hollow, or
3. w is a series node with all its children completion-forced.

Lemma 3. Let G be a cograph with cotree T and let x be a vertex to be inserted in G. A node
u of T 1s completion-forced iff there exists a unique cograph completion of Gy, + x, which is the
one where all the missing edges between x and V(u) are added.

Proof. This lemma is somehow a stronger version of Lemma 3 in [19] (because it gives an
equivalence instead of a simple implication), which we use for part of our proof. Let u be a
completion-forced node in 7. Then, u is also completion-forced in T, and Lemma 3 in [19]
implies that u is made full in all the completions of G, + x, which is what we wanted to prove.

We prove the converse implication by induction of |V (u)|. Consider a non-completion-forced
node u of T, we will show that there exists a completion of G, + = that does not make V(u)
full. If u is a series node, then u has at least one non-completion-forced child v. By induction
hypothesis, there exists a completion H' of G, + = that does not make V(v) full. Then, the
completion H of G, + z that coincides with H' on V' (v) and that makes all the other children
of u full is a cograph completion of G, + = that does not make V' (u) full. Now, if u is a parallel
node, then u has at least one hollow child v. Leave v hollow and make all the other children of
w full: this yields a cograph and again, V' (u) is not full in this completion. O

Definition 4 (Deletion-forced). A deletion-forced node u is inductively defined as a node
satisfying at least one of the three following conditions:

1. u is hollow, or
2. u is a series node with all its children non-full, or
3. w is a parallel node with all its children deletion-forced.

Lemma 4. Let G be a cograph with cotree T and let x be a vertex to be inserted in G. A node
u of T is deletion-forced iff there exists a unique cograph deletion of G, + x, which is the one
where all the edges between x and V (u) are deleted.

Proof. Note that since the inductive definition of a deletion-forced node is exactly the comple-
ment of the inductive definition of a completion-forced node (Definition 3), it follows that u is
deletion-forced in G + x iff u is completion-forced in G + Z where Z is a new vertex such that
the neighbourhood of Z in V(G) = V(G) is the complement of the neighbourhood of z in V(G).
With this observation, the current lemma appears to be simply a rewriting of Lemma 3 in the

complement graph. O

Definition 5 (Consistent and settled). An editing H of G + x is consistent at a node u of
T iff all the following conditions are satisfied:

1. H makes x adjacent to all the vertices y ¢ V(u) that have a series least common ancestor
with u and H makes x non-adjacent to all the vertices z & V(u) that have a parallel least
common ancestor with u, and

2. all the children of u are uniform in H, and



3. all the children of u that are hollow in G + x are hollow in H as well and all the children of
u that are full in G+ x are full in H as well.

If, in addition, u is mized in H, we say that H is settled at u. A minimum consistent editing
(resp. minimum settled editing) is an editing consistent with some node u (resp. settled at u)
and having minimum cost among such editings. The minimum cost of an editing settled at u is
denoted mincost(u).

Lemma 5. If H is an editing settled at u, then the insertion node of H is w. If H is a minimal
editing whose insertion node is u, then H is an editing settled at u.

Proof. Clearly, if H is settled at u, then u fulfills all the conditions of Theorem 1 and wu is then
the insertion node of H. Conversely, if u is the insertion node of H, then, from Theorem 1, u
satisfies conditions 1 and 2 of Definition 5. Moreover, assume for contradiction that u has one
hollow child v in G + z which is not hollow in H. Then, consider the completion H' obtained
by removing from H the edges added between z and V(v). In H’, either u or the lowest series
ancestor of u satisfies the conditions of Theorem 1. Therefore, H’' is a cograph completion of
G + x and so H is not minimal: contradiction. Thus, v is hollow in H. The case where v is a
full child of u can be treaten similarly and shows that Condition 3 of Definition 5 always holds,
which achieves the proof of the lemma. O

Lemma 6. Let G be a cograph with cotree T and let x be a vertex to be inserted in G. For any
mixzed node u of T, Ty, contains some minimal insertion node.

Proof. Consider a mixed node v lower possible in T}, that is having all its children uniform.
From Definition 5, there exists a unique editing of G + x settled at u, we denote it H and we
show that it is minimal.

Let H' be a cograph editing of G + x whose insertion node is v' and let us show that
the set of modifications defining H' is not strictly included in the one defining H. First, from
Lemma 2, v’ has to be a mixed node, and since there are no mixed node in T}, \ {v}, it follows
that o' & T, \ {v}. Moreover, since H does not modify any adjacency between z and vertices
of V(v) then clearly H is minimal among editings that have v as insertion node. Finally, from
Theorem 1, the only nodes of T' that are mixed in H’ are the ancestors of v’. Then, if v/ € T,,, v
is uniform in H'. Since v is mixed before editing, this implies that some adjacencies between x
and vertices of V(v) are changed in H', while H changes none of them: the set of modifications
of H' is not included in the one of H. This shows that H is minimal. Since H is settled at v
then the insertion node of H is v € T, (see Lemma 5) and the statement of the lemma follows. O

Lemma 7. An editing H settled at a mized node u is a minimal editing iff exactly one of the
two following conditions is satisfied:

— u is a parallel node and either at least two children of u are full in H or exactly one child
of w is full in H and this child is completion-forced.

— u s a series node and either at least two children of u are hollow in H or exactly one child
of u is hollow in H and this child is deletion-forced.

Proof. We prove it in the case where u is a parallel node. First, let us show that if there exists
an editing H' whose set of modifications is strictly included in the one of H, then Condition 1
of the lemma is not satisfied. First, we show that the insertion node u’' of H’ is necessarily in
T, \{u}. Note that if u’ & T,, then u is uniform in H’ (see Theorem 1). Moreover, as H is settled



at u, by definition, it both leaves some edges between = and V' (u) unchanged and leaves some
non-edges between x and V (u) unchanged. Thus, if ' ¢ T, H' is not included in H. Moreover,
if the insertion node of H' is u, H' is not included in H. Indeed, since H' and H are different,
from Definition 5, they can differ only on one mixed child v of u: one of H or H' makes v full
while the other one makes it hollow. As v is mixed in G + z, none of H and H' is included in
the other one. Thus, since H' is strictly included in H, its insertion node v’ belongs to Ty, \ {u}.

Let v be the child of u that is an ancestor of u’. Because u is parallel and is an ancestor of
the insertion node ' of H', from Theorem 1, it follows that all the children of u different from
v are hollow in H’; and they are uniform in H, because H is settled at u. Then, since the set
of modifications of H' is included in the one of H, the children of w distinct from v must also
be hollow in H, while v must be full, as u is mixed in H from Definition 5. Then, since the set
of modifications of H’ is included in the one of H, H' uses only addition of edges between x
and V(v). Moreover, since u’ belongs to T, v is mixed in H’. Consequently, H' restricted to
V(v) is a completion of G, + z that does not fill V(v). Thus, v is not completion-forced and
Condition 1 of the lemma is not satisfied.

Conversely, let us now show that if Condition 1 of the lemma is not satisfied, then H is not
minimal. In this case, u is a parallel node with exactly one child v full in H and this child v is
not-completion forced. Then, from Lemma 3, there exists a completion H)/ of G, 4+ x that does
not fill V(v). Let us denote N”(z) the neighbourhood of z in H” and Ny (z) the neighbourhood
of x in H. Clearly, the graph H’ obtained from G by adding vertex x with neighbourhood
N'(z) = (Ng(x)\V(v))UN"(z) is a cograph editing of G + x. Moreover, as N (x) C V(v), the
set of modifications of H' is strictly included in the one of H. Therefore, H is not a minimal
editing of G + .

This ends the proof in the case where u is a parallel node. The case where u is a series node
is very similar, by taking the complement. O

Definition 6 (Clean). A mized node u of T is clean iff one of the two following conditions
holds:

— the parent v of u is a parallel node and u is the unique non-hollow child of v, or
— the parent v of u is a series node and u is the unique non-full child of v.

Lemma 8. Let G be a cograph with cotree T and let x be a vertex to be inserted in G. A mized
node w of T is a minimal insertion node iff exactly one of the two following conditions are
satisfied:

1. w is parallel and either u has at least 3 children and no clean non-completion-forced child or
u has exactly 2 children, at least one of which is completion-forced.

2. u is series and either u has at least 3 children and no clean non-deletion-forced child or u
has exactly 2 children, at least one of which is deletion-forced.

Proof. Let us prove the lemma in the case of a parallel node. First, let us show that if the
conditions of the lemma are satisfied, then there exists one editing settled at u which is minimal.
If u has at least 3 children, then either u has no clean child or u has one clean child v which is
completion forced. In the latter case, the completion H settled at u obtained by filling v satisfies
Condition 1 of Lemma 7 and is therefore minimal. In the former case, since u is mixed, u has at
least one child v non-full and since u has no clean child, v has at least two children vq, v9 that
are non-hollow. Moreover, v, v1,v2 can always be chosen pairwise distinct. The completion that
empties v and fill v; and v9 again satisfies Condition 1 of Lemma 7 and is therefore minimal.
If u has exactly 2 children, at least one of them v; is completion forced and at least one
v is non-full (since u is mixed), and v; and ve can always be chosen distinct. Define H as the



editing settled at w that fills v; and makes vo hollow: H satisfies Condition 1 of Lemma 7, and
so H is minimal.

Conversely, we show that if the conditions of the lemma are not satisfied, then there is no
editing settled at u that is minimal. If u has at least 3 children and one clean non-completion-
forced child v, then all children of u different from v are hollow and v must be mixed (as u
is). It follows that there is only one editing H settled at u: the one that fills v and leave the
other children of u hollow. As v is non-completion-forced, H does not fulfill the conditions of
Lemma 7. Consequently, H is not minimal and there is no minimal editing settled at w.

If u has exactly 2 children, as u does not satisfies Condition 1 of the present lemma, then
its 2 children are non-completion-forced. Because u has 2 children, there exist at most two
editings settled at u: the editings H who fill one non-hollow child of u and makes the other one
hollow. Again, because the unique child filled in H is non-completion-forced, H does not satisfy
conditions of Lemma 7, which implies that there is no minimal editing settled at u in this case
as well.

This achieves the proof for a parallel node. The case of a series node is very similar by taking
the complement. O

4 An O(n)-time algorithm for minimal cograph editing of G + =

In this section, we denote NH the set of non-hollow nodes of T'. For a node v € T, we also
denote Cpp(u) its set of non-hollow children. Our algorithm takes as input the cotree T" of G,
where each node u stores the number of leaves of T}, and the new vertex x together with the
list of its neighbours N(z). It works in two steps.

First step. In the data structure we use, each node u of T stores the number |V (u)| of leaves
in T},. In addition, we compute some basic information about the nodes of T" with regard to the
new vertex x, in the same way as [19] does. More explicitely, for each non-hollow node w of T,
we determine the list of its non-hollow children, their number, the number of neighbours of z
in V' (u), whether u is completion-forced or not, whether w is full or mixed. In addition, we also
determine for each non-hollow node u whether it is deletion-forced. This can be easily done as
follows: for a series node, we just check that its number of full children is 0 and for a parallel
node, we check that all its non-hollow children are deletion-forced.

Second step. We parse the mixed nodes of T, which, from Lemma 6, are excatly the nodes
whose subtree contain some minimal insertion node. Observe, that when the set of mixed nodes
is not empty, it is connected and contain the root of T'. Therefore, the algorithm first checks
that the root is mixed, otherwise there is no mixed node in 7" and the only minimal editing is
the one having an empty set of modifications. Then, the algorithm checks for all the children of
the current node (initially the root) whether they are mixed and parse, in a depth-first manner,
those for which the test is positive (recall that this information is directly available after the
first step).

During this depth-first search, we compute for each node u encountered the number of
changes, denoted cost-above(u), to be performed on the ajacencies between x and the vertices
of V(G)\ V(u) in any editing settled at u. This can be easily computed! during the search by
noticing that:

— if the parent v of w is a parallel node, then cost-above(u) = cost-above(v) +
2wecwhfuy |V (W) NN(z)]; and

L Actually, for complexity reasons, the values of these expressions are computed by avoding to perform the sum,
see paragraph complexity below.



— if the parent v of u is a series node, then cost-above(u) = cost-above(v)+3 /s cc(o fuy [V (W)\
N(z)].

Then, for each mixed node u encountered during the depth-first search, the algorithm de-
termines whether u is an minimal insertion node by checking the conditions of Lemma 8. A
difficulty is that, according to Definition 5 and Lemma 7, the number of minimal editings having
a given insertion node u may be exponential in the number of children of w. This implies that our
algorithm cannot parse them one by one and preserve its linear complexity. Nevertheless, note
that, in linear complexity, our algorithm parses all minimal insertion node and that Lemma 7
somehow gives a way to consider at once all the minimal editings having insertion node u. Here
we use this possibility for determining, in O(|Cp,;(u)|) time, one editing H settled at u that is
minimum for the number of edits. In the case where u has exactly two children, this is very
easy as there are at most two editings settled at v: for each of them, we test whether it satisfies
conditions of Lemma 7, and we keep the one that has the minimum number of edits among
those satisfying these conditions. If v has at least 3 children, we proceed as follows.

As required by Definition 5, the children of u that are hollow in G 4+ z must be hollow in H
and the children of u that are full in G+ x must be full in H. Then, in order to define H, we just
have to decide for each mixed child of u whether it will be hollow or full in H. To that purpose,
we color the mixed children of u as red or blue, with the meaning that the children colored red
are full in H and the children colored blue are hollow in H. The following procedure assigns the
colors to children of u in three steps. We describe it for u a parallel node, the series case is very
easy to deduct by complement. First step: we color red all the mixed children v of u such that
[V(v) N N(z)| > |V (v) \ N(x)|, all the other mixed children are colored blue. Second step: if u
has no hollow child and no mixed child has been colored blue in the first step, then we select
one red mixed child v realising the minimum of the quantity |V (v) N N(x)| — |V (v) \ N(x)| and
we color v blue. Third step: if the number nb;jeq of children of u that are either full or colored
red is such that nbgieq < 2 (note that this can happen only when the test of the second step
failed and no color was changed at this step), then we select 2 — nby;jeq blue mixed children of
u that realise the minimum of the quantity |V (v) \ N(z)| — |V (v) N N(z)| and we color them
red (recall that u as at least 3 children). At the end of these steps, the editing H filling the red
mixed children of u and making its blue mixed children hollow realises the minimum number
of edits among the editings settled at u and satisfying conditions of Lemma 7, i.e. the minimal
editings whose insertion node is u.

The cost of the minimum completion H settled at node u is computed as mincost(u) =
cost-above(u) + 3 creaq) [V (0) \ N(@)] + 2y cpueq) [V (v) N N (x)| where red(u) is the set of
mixed children to be filled in H (colored red) and blue(u) is the set of mixed children to be
made hollow in H (colored blue). As our algorithm visits all the minimal insertion nodes u, it is
able to determine the minimum of the values computed for mincost(u) along the search, which
is the minimum number of edits among all the cograph editings of G + .

Complexity.

For the first step of the algorithm, all the information we need can be computed by seraching
the tree top-down from the leaves that are neighbour of = until the root of the tree. Therefore, the
nodes of u we encounter during the search are exactly the non-hollow nodes of u. Furthermore,
all the treatments we need to perform on a node u take a time O(|C,p(u)|). Then, the total
time spent by such a search of the tree is O(]NH|) and this is also the complexity of the first
step of the algorithm.

In the second step of the algorithm, all the tests we need to perform on a node u can be
done in O(|Cpp(u)|, because we never manipulate the hollow children of one node. We only
need to determine their number, which can be done by counting the number of non-hollow
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nodes instead. The computation of cost-above(u) can be done in O(1) time by noting that
the sums 3 ccn o3 V(W) \ N(@)] and 3=, con oy [V (@) N N(z)[can rather be computed
as [V (v) \ N(z)| — |[V(u) \ N(z)| and |V (v) N N(z)| — |V (u) N N(z)| respectively. Finally, for
a minimal insertion node u, once we have determined which of the mixed children of u should
be filled and which of them should be made hollow in an editing H settled at u and realising
the minimum number of changes, cost(u) can be computed very easily in O(|Cpp(u)|. Then
one key issue for preserving linear complexity is to be able to determine which children to fill
and which should be made hollow in H in O(|Cyp(u)| time. If u has only 2 children, this is
clear as there are only two editings settled at u (see algorithm above), and for each of them
their cost can be computed in constant time. In the case where u as at least 3 children, the
algorithm works in three steps. In the first step, it parses all the mixed children v and uses the
sign of the quantity |V (v) N N(z)| — |V (v) \ N(z)| to decide for each of them, in O(1) time,
whether they should be made full or hollow in H, by coloring them red or blue. During this
search which takes O(|C,p(u)|, one can also determine the minimum value of the quantities
[V(v)NN(x)|—|V(v)\ N(z)| and its two maximum values. This information allows to perform,
in constant time, the at most 2 corrections made on the colors assigned to mixed children of
u during the second and the third step. Overall, the three steps to determine one minimum
cost editing settled at u execute in O(|Cpp(u)| time, as all the other treatments performed on
a mixed node u. Consequently, the total complexity of the second step of the algorithm is
O(ZUET mixed ’Cnh(u)’) - O(‘NHD

Once the two steps of the algorithm are over, we have determined the insertion node v and
the set filled(u) of children of u that will be full in H (namely, the children of u that are full in
G+ and the mixed children of u in G+ that have been colored red), the others become hollow.
To finish one incremental step, we just need to update the tree. First, we insert x in the tree
as done in the algorithm of [17], this part of their algorithm takes O(|filled(u)|) = O(|Cpn(u)]).
Then, for all the ancestors of x in the new tree T, we need to update their number of children,
this takes O(NH) as all the ancestors of x in Ty are mixed nodes in 7'. Finally, the updating
step has complexity O(|NH]|) and this is the whole complexity of one incremental step of the
algorithm.

Let us note that, unfortunately, |V H| is not dominated by the degree d of z, as one unique
neighbour of  can gives rise to a branch of non-hollow nodes of T' that has size £2(n). There-
fore, for expressing the complexity of the whole editing algorithm, we can only observe that
O(|NH|) = O(n) and consequently obtain an O(n?) total complexity.

5 An O(n 4+ m)-time algorithm for minimal cograph editing

As observed above, the reason why the previous algorithm has a quadratic time complexity is
that the part of the cotree that it needs to search at each incremental step may be up to 2(n),
indepently of what is the degree d of the new vertex x. On the positive side, despite of this,
the minimum-cost insertion nodes are all located in some part of the tree containing mostly
neighbours of z, and whose size is consequently bounded by O(d). We formalise this intuition
with the following definition.

Definition 7 (Preponderant nodes). A node u of T is preponderant if |V (u) N N(x)| >
|V (u)\ N(x)| and u is a maximal preponderant node if u is preponderant and none of its strict
ancestors in T 1s.

The main observation we exploit in the O(n 4+ m)-time algorithm we design in this section
is the following.
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Lemma 9. For any node v € T, if mincost(v) is minimum among all nodes of T then there
exists some maximal preponderant node u such that v € T, or v is the parent of u.

Proof. Consider the minimum editing settled at v. From Lemma 1, it makes some child vy of
v full. Then, vy is necessarily a preponderant node, because otherwise, making v; hollow would
result in an editing consistent with v and having strictly smaller cost, which is impossible since
mincost(v) is minimum among all nodes of T'. O

Therefore, following Lemma 9, the first task of our algorithm will be to discover all the
maximal preponderant nodes of T, by paying attention to search only their subtrees, whose
total size is O(d), by definition. We can then use the previous algorithm to determine what is
the best editing settled in the subtree of each maximal preponderant node u. The total time
needed to do so is only O(3_, ax. preponderant [ZTul) = O(d). It remains that we need to compare
the minimum editings obtained in each subtree of maximal preponderant node and to take into
consideration the editings settled at their parents. This requires to search the part of the tree
which is outside of the subtrees of preponderant nodes. Fortunately, we can restrict ourselves
to searching again an O(d)-size part of T by exploiting the fact that we are interested only in
editings that are not more costly than the delete-all editing, i.e. the one making = an isolated
vertex in G + x. To express this condition more precisely, we first need some more definitions
and notations.

We denote I' the set of parents of the maximal preponderant nodes of T'. The algorithm
colours the neighbours of = in black and leaves the other vertices white. We denote B(u) =
|V (u) N N(x)| the number of black leaves of T3, and W (u) = |V (u) \ N(x)| its number of white
leaves. We denote diff-above(u) = cost-above(u) — (d — B(u)), which is the difference of cost,
restricted to the adjacencies between x and V(G) \ V(u), between any editing settled at u and
the delete-all editing. For a node u € T', we denote Cprep(u) its set of preponderant children
and we denote Byrep(u) = > e, ) B(V) and Wprep(u) = 3o cc . () W(v). Similarly, we
denote Cpin(u) the set of non-preponderant children of u and Bpin(u) = 3 ,cc, .. () B(v) and
Winin(u) = Zvecmm(u) W (v).

Deleting all the edges between the new vertex x and the vertices in N(x) is always a valid
cograph editing of G + x, which has cost d. Consequently, when we look for an editing of mini-
mum cost, we can consider only these editings that have cost no more than d. From Lemma 9
above, we know that minimum editings are settled in the subtrees of maximal preponderant
nodes or at their parents. Consider first the case of an editing settled at, or just consistent
with, some node w € T, where v is a maximal preponderant node. Compared to the delete-
all editing, restricted to the edits between x and the vertices of V(v), the editing consistent
with w can save at most B(v) edits, because this is the cost of the delete-all editing restricted
to the vertices of V(v). On the other hand, restricted to the edits between x and V \ V(v),
the editing consistent with w looses exactly diff-above(v) edits (which may be negative) com-
pared to the delte-all editing. It follows that if the editing consistent with w is no more costly
than the delete-all editing, then we must have diff-above(v) < B(v). Consequently, the edit-
ings we are interested in are settled in the subtree T, of some maximal preponderant node v
satisfying this condition. For the editings consistent with the parent u of some maximal pre-
ponderant node, we also have a similar condition that writes diff-above(u) < Bpyep(u). Indeed,
the minimum editing consitent with u makes all the preponderant children of u full and its non-
preponderant children hollow. Then, restricted to the edits between x and vertices of V(u), it
can save at most Bpep(u) edits compared to the delete-all editing, which makes all the children
of u hollow. Again, if the cost of the minimum editing consistent with u is no more than d,
then we must have diff-above(u) < Bpep(u). Moreover, note that if some maximal preponder-
ant node v satisfies the condition diff-above(v) < B(v), then its parent u necessarily satisfies
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the condition diff-above(u) < Byep(u), because by definition diff-above(u) < diff-above(v) and
B(v) < Byrey(u).

For this reason, in the rest of the algorithm we will concentrate on finding the nodes v € I’
that satisfy the condition diff-above(u) < Bpyep(u). Later, we will show how to determine which
of their preponderant children satisfy the condition diff-above(v) < B(v), which is much more
easy when we know that u satisfies the previous condition. Concerning the O(d) complexity,
roughly speaking, it comes from the fact that we are able to check whether u € I' satisfies
the condition diff-above(u) < Bpep(u) by a limited search of the branch between u and the
root of T that takes only O(Bprep(u)) time. In addition, when this condition is satisfied, we
can determine the exact value of diff-above(u) within the same time complexity. This allows us
to determine the exact values of the minimum editings settled in the subtrees of preponderant
children of u, among which we select the minimum. The outline of our algorithm is as follows.

General scheme of the algorithm. It is in three steps:

1. determine the maximal preponderant nodes of T',

2. for every node u that is the parent of some maximal preponderant node, determine whether
diff-above(u) < Bprep(u) and determine the exact value of diff-above(u) when this condition
is satisfied.

3. for such nodes u, for each of their preponderant children u/, determine one minimum settled
editing for each node v € T}.

Data structure. Each node u of the cotree T stores the number |V (u)| of leaves in T),. Together
with T, we store a factorising permutation 7 of G (see [15]), which is the order in which the
leaves are encountered in some depth-first search of T' (say the search where the children of each
node u are searched in the order they appear in the list of children of u). The main property
of a factorising permutation 7 is that for any node v € T', the leaves of T, form an interval of
7, denoted I,,. 7 is stored as a doubly-linked list and each node of T stores two pointers, one
to the left bound of I, in 7w and one to its right bound. Reciprocally, each cell y of 7 keeps two
lists: the list of nodes u such that y is the left bound of I, and the list of nodes u such that
y is the right bound of I,,. Both of these lists are sorted according to the inclusion order on
the intervals I,,, smaller intervals appearing first in the list. The predecessor and successor of a
vertex y in 7 are denoted pred(y) and succ(y) respectively.

We now detail each of the three steps of our algorithm, plus a preprocessing step that is
performed before Step 2.

5.1 Step 1: finding maximal preponderant nodes

We perform this task thanks to the factorising permutation 7. As for nodes, for an interval I of
7, we denote B(I) and W (I) its number of black vertices and white vertices respectively and we
say that I is preponderant if B(I) > W (I). The left bound of interval I is denoted [(I) and its
right bound r(I). We first determine a family Z of pairwise disjoint intervals of 7 whose union
contains all the preponderant intervals of .

Definition 8. A direct interval I is an interval such that I[(I) is black and r(I) is the leftmost
position on the right of [(I) such that B(I) = W(I). Simetrically, an indirect interval I is an
interval such that r(I) is black and I(I) is the rightmost position on the left of r(I) such that
B(I) = W(I). A mazimal direct interval (resp. maximal indirect interval) is a direct (resp.
indirect) interval which is mazximal for inclusion among all direct (resp. indirect) intervals.
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Remark 1. Any black vertex belong to some direct interval and to some indirect interval.

Remark 2. For any vertex a in some direct (resp. indirect) interval I such that a # [(I) (resp.
a # r(I)), we have B([a,r(I)]) < 0 (resp. B([I(I),a]) < 0).

Remark 3. The direct intervals do not overlap and neither do the indirect intervals. Conse-
quently, the maximal direct intervals are pairwise disjoint and so are the maximal indirect
intervals.

Lemma 10. Any preponderant interval I is included in the union of some direct and indirect
intervals.

Proof.

Assume for contradiction that there exists some vertex a € I that is neither in a direct
interval nor in an indirect interval. Note that necessarily, from Remark 1, a is white. Then,
the interval [I(]),pred(a)] (possibly empty), where pred(a) is the predecessor of a in 7, is the
union of some white intervals, some maximal direct intervals and possibly the right piece of
a maximal direct interval. Therefore, B([I(I),pred(a)]) < W([I(I), pred(a)]). Symetrically, we
have B([succ(a),r(I)]) < W([succ(a),r(I)]). Since a is white, we obtain B(I) < W(I), a
contradiction with the fact that I is a preponderant interval.

O

The algorithm to find all the maximal preponderant nodes of 7" is in four steps: i) it computes
all the maximal direct intervals and all the maximal indirect intervals, ii) it makes the union of
them and obtain an interval partition Z of this union, iii) for each interval I € Z, it searches for
the nodes of the tree that have their interval entirely included in I and iv) for each such node
it determines whether it is preponderant or not and whether it is maximal or not.

In step i), for identifying maximal direct intervals, build the list L of all the black vertices
that are preceeded by a white one. Start a scan of 7 (the factorising permutation) from each
of the vertex y in L, moving toward the right of 7. In this scan, maintain the difference diff
between the number of black vertices and the number of white vertices encountered so far in
the scan and stop the scan when diff becomes null. During this scan, mark all the vertices
encountered with a green mark. At the end of the scan, put one pointer from the cell of y to the
rightmost cell reached by the scan from y (the cell where diff became 0). Withdraw y from L
and place it in the list M of the left bounds of maximal direct intervals found so far. When the
vertex y considered in L is already marked in green, do not perform its scan and simply remove
y from L. During a scan, if a green-marked vertex 1 is encountered, jump directly to the cell
pointed by its associated pointer and remove y’ from the list M (the direct interval starting
at ¢/ is no longer maximal in the ones we have found, it is included in the direct interval of y
being currently scanned). At the end, list M exactly contains the vertices y such that the direct
interval D, starting at y is maximal and we have a pointer to the last vertex of this interval.
Since we do not scan twice a same part of m (thanks to the green marks), the total time taken
by all these scans is O(3_, ¢,/ [Dy|) = O(d) since the Dy are disjoints (see Remark 3) and each
of them is preponderant. Proceed in the same way to obtain the list of all maximal indirect
intervals, but use a distinct marking color, say yellow marks instead of green marks.

For step ii), we can procced as follows. We denote My, and M;, 4 the lists of maximal direct
intervals and maximal indirect intervals respectively. We start from any interval in Mg, U M;,q
and extend it to find the maximal union of intervals of My U M;,q containing it. Let say we
start from a maximal direct interval I, which we immediately withdraw from My;., and we
first try to extend it to the right. Notice that since the maximal indirect intervals are pairwise
disjoint, there exists at most one of them that overlaps I on the right of I. In order to try to
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discover it, we scan I from left to right and everytime we encounter the left bound of some
maximal indirect interval J, we remove J from M;,; and we check whether the right bound of
J belongs to I or not. If it does not belong to I, we change the current interval I, = I to
be extended to the right for the new interval I, = [succ(r(I)),r(J)]. Then we try to extend
I to the right again, but with a direct interval instead of an indirect one. We continue this
process until we cannot extend the current interval I.,, to the right anymore. Then, we come
back to Iy = I and we now try to extend I, to the left, until it is not possible anymore.
When both the right extension process and the left extension process terminate, the intervals
that we have discovered are exactly the intervals in the maximal overlapping union containing
I. As long as at least one of My;,. and M;,q is not empty, we pick a new interval I in them and
perform the extension process to compute the maximal overlapping union containing /. Then,
we can check the cell preceding and following each overlapping union in order to merge those
intervals that are next to each other without overlapping. At the end of this step, we obtain
a set Z of disjoint intervals that are unions of both direct and indirect intervals and that are
maximal for this property.

In step iii), we consider an interval I € 7 and we determine all the nodes of 7" whose interval
is included in I. Let us recall that in the data structure, the left bounds of the intervals of the
nodes of the cotree are stored explicitely in the cells of the factorising permutation, sorted by
increasing right bound. We make a first scan of I and mark all its cells using pink color. In a
second scan, for each cell, we go through its list of left bounds and check that the corresponding
right bound is also in I (i.e. marked in pink). We stop to scan the list of left bounds the first
time that we encounter a right bound out of I, because we are sure that all the other right
bounds in this list will also be out of I, as the list is sorted by increasing right bound. At the
end of the second scan, we obtain the set S of all the nodes that have their two bounds in I.
Note that there are O(B(I)) vertices in I and that there are then O(B(I)) nodes in S.

For step iv), we perform a scan of I from left to right, in which we compute, for each cell y, the
difference diff(y) between the number of black vertices and white vertices encountered since the
beginning of the scan until y. Then, for each node u in S, u is preponderant iff B(I,,) —W(I,) =
diff(pred(l(1,))) — diff(r(I,)) > 0. Finally, a last scan of I allows to determine among the nodes
in D that are preponderant nodes, which one are maximal. All these computations take O(B(I))
time, because I has size O(B(I)).

At the end of these four steps, we obtain the set of all maximal preponderant nodes of T',
in time O(d).

5.2 Preprocessing step: assigning a shorcut to the parent of each maximal
preponderant node

In this section we show how to decide for any non-preponderant node v whether W (u) — B(u) <
s, where s is any positive integer, in time O(min{W (u) — B(u), s}). This is done by counting the
white leaves and the black leaves encountered in a (partial) depth-first search of the subtree Ty,
that performs a limited number of edge traversals, controlled by some parameter of the search. In
order to achieve the desired O(min{W (u) — B(u), s}) time complexity, we need to precompute
some parts of the search and to keep track of the result of these precomputed searches by
assigning a shorcut to each node in I". The routine that decides whether W (u) — B(u) < s, for
any u € T, and that assigns its shorcut to some v € I' is the same. It is named Search-tree
and it is described in Algorithm 1 below.

The shorcut we assign to u € I is the node on which stops the call to Search-tree(u, exc(u)),
where exc(u) =3_, cc. . ) (B(ui) = W(u;)). These shorcuts are crucial later in order to obtain
a linear complexity for our algorithm. Indeed, we will need to search some subtrees of T several
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times and these shorcuts avoid to repeat some portions of these searches that would threaten
the linear complexity. We now describe generically how Routine Search-tree(u, s) searches the
subtree of any non-preponderant node u with a budget s.

Before performing any call to Routine Search-tree, we color in grey the parents u of
maximal preponderant nodes of 7' and we assign them an excess exc(u) =3, . ecp,«ep(u)(B (u;) —
W (u;)), as above. We also shorcut their list of children in order to exclude all preponderant
children from it. We do this by redirecting the pointers in the list so that they jump over the
ranges of consecutive preponderant children. The resulting list of children of u, containing only
its non preponderant children, is denoted C’(u) and the first child and the last child in this list
are denoted first’(u) and last’(u) respectively. The tree resulting from these modifications of
the children lists is denoted T".

Routine Search-tree(u, s) performs a depth-first search of the modified subtree T}, of u,
in which the number of edge traversals is controlled by the variable named ttl in Algorithm 1,
which stands for time to live. Everytime an edge of T), is traversed, either upward or downward,
the ttl is decreased by 1. and the search stops when the ttl becomes negative. The value of this
paramater ttl is initially set at 2 + 5s (Line 1 of Algorithm 1), where s is the budget of the
search. In addition to its initial budget s, the search also uses the excesses exc(v) of the grey
nodes v it encounters in order to parse their subtrees T),. The goal of Routine Search-tree(u, s)
is to return a pointer on the node of T}, where the search stopped, that is where the ttl reached
a negative value for the first time, and the difference (stored in the variable cpt in Algorithm 1)
between the number of black leaves and the number of white leaves encountered during the
search before it stopped. In order to be able to resume the search later, the routine also returns
the node visited at the previous step, just before it stopped. Indeed, knowing the current node
of the search and the previous one is enough to determine unambiguously the next node to be
visited by the depth-first search (this is the purpose of Function Next, see Algorithm 2). In
the case where the ¢t does not become negative, the routine stops when T;, has been entirely
searched and returns a pointer to node u itself. In this case, the value of ¢pt at the end of the
search is precisely W (u) — B(u), which is what we aim at determining.

Initially, for all grey nodes u of T, shortcut(u), precshort(u) and weightshort(u) are
all set to L. Routine Search-tree(u,s) (see Algorithm 1) mainly relies on the func-
tion Next (v, Uprec, cpt,ttl) (see Algorithm 2). The purpose of function Next is to determine
the next node to be visited by the depth-first search and to update the ttl of the search and the
difference cpt between the number of white leaves and the number of black leaves encountered
during the search. To this purpose, it takes as parameter the current node v € T;, on which the
search is, the preceeding node vpre. on which the search was at the previous step, the current
ttl and the current difference of leaves cpt. One basic and important property of function Next
is that it moves from v to a neighbour of v in T”, either its parent or one of its children, except
when v is a grey node. In this later case, Next moves to the other extremity of the shortcut of
v, which can be any node in the subtree T7,.

The following lemma states the validity of the way we use Routine Search-tree throughout
the paper in order to decide whether W (u) — B(u) < s for some non-preponderant node u of T'.

Lemma 11. After all the shorcuts of the nodes in I' have been assigned, for any non-preponderant
node u and any positive integer s, we have W (u) — B(u) < s iff Search-tree(u,s) scans all
the subtree of u and returns a value cpt > —s.

Proof. It is not difficult to see that cpt exactly counts the difference between the number of
black leaves and white leaves encountered in the part of the subtree of u that is scanned? by the

2 Note that the subtrees of preponderant nodes do not actually need to be searched as we already know their
number of black and white leaves.
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Algorithm 1: Search-tree(u, s)

1 Pre-conditions: u € I" and u is not the root of 7'

2 Post-conditions: returns a triple (end, prec, weight) which is made of the node end of T, on which ends
the search, the preceding node prec visited by the search and the difference weight between the number
of white leaves and te number of black leaves encountered during the search.

3 begin

4 cpt < 0; ttl < 2 4 5s;

5 (v, Vpree, cpt, ttl) « next(u, parent(u), cpt, ttl);

6 while ¢t > 0 and (v # u or vprec # last’(u)) do

7 if (Vprec = parent(v) and color(v) = grey and shortcut(v) = L) then
8 | (shortcut(v), precshort(v), weightshort(v)) < Search-tree(v, exc(v));
9 end
10 (v, Vprec, cpt, ttl) < next(v, Vprec, cpt, ttl);
11 end
12 (end, prec, weight) < (v, Vprec, cpt);
13 return (end, prec, weight);
14 end

call to Search-tree(u, s). Therefore, if Search-tree(u, s) goes through all the subtree of u, the
statement of the lemma clearly holds. The difficulty here is to show that conversely, when the
search terminates before having entirely scanned the subtree of u, then we have W (u)—B(u) > s.

Let A be the set of grey nodes in 7}, and let A’ C A be the subset of nodes v € A such that
the call to Search-tree(v, exc(v)) that assigns its shorcut to v entirely discovers the tree T, i.e.
shorteut(v) = v and precshort(v) = last'(v). Let A C A’ be the nodes of A’ that are maximal
in 7" and let us denote AT C A the subset of nodes in A that are not a strict descendant of a
node in A. Note that by definition A C A™. In the rest of the proof, we consider only the case
where u ¢ A since otherwise the Search-tree(u, s) discovers all T, and the statement directly
holds as explained above.

Observe that by construction of Routine Search-tree, a call to Search-tree(u,s) termi-
nates on the same node of T}, independently of whether the shorcut of nodes v € A* have been
assigned before the time when the call is made or not. Therefore, we can choose to assign their
shorcut to the nodes in A and not to assign their shorcut to the nodes in A1\ A. Now, uncolor
the nodes of AT\ A (that were colored grey by definition) and observe that Search-tree(u, s)
in 77, which runs with an initial ¢t/ value of 2 + 5s, terminates on the same node as the call to
Search-tree in the uncolored version of 7], with an initial ¢t/ value of 2 + 5s + SUM, where
SUM = Zv€A+\A(2 + 5exc(v)). We denote T' the modification of 7" where all the strict de-

scendants of nodes in A have been removed, i.e. nodes of A become leaves in T'. It should be
clear that the minimum initial value of ¢t/ needed for a call to Search-tree(u,s) in order to
entirely scans the uncolored version of T,, where nodes of A have been assigned their shorcut
and nodes of AT\ A have not, is exactly 2|E(T)|+ |A|. Therefore, in order to prove the lemma,
we just need to prove that 2|E(T)| + |A] < 2 + 5(W(u) — B(u)) + SUM, which, in the case
where W (u) — B(u) < s, implies that 2| E(T)| + |A] < 2+ 55+ SUM.

First, note that the internal nodes of T have at least two children, except the grey nodes in
AT\ A, which may have only one child because their preponderant children have been removed
to obtain tree T”. Denoting L the set of leaves of T', we then have |E(T)| < |At \ A| + 2|L|.
Now, observe that L contains only leaves of T’, which are all white, and the nodes in A.
Therefore, we have W (u) — B(u) = |L\ A| — > pear\acrc(v) +3 0,4 (Wv) —B(v)) > |L\A|—
> ovear\a exc(v) Al = |[L|=32, ¢ g4\ 4 exc(v), which gives [L] < W(u)—=B(u)+3_, ¢ g+ g €xc(v).
Combining this with |E(T)| < |A*\ A| + 2|L|, we get 2|E(T)| + |A| < 2|At\ A] +4(W (u) —
B(u)) +4ZUGA+\A exc(v) 4 |A|. As we also have |A] < Y weiW () = B(v)) = W(u) — B(u) +
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Algorithm 2: Next (v, vppee, cpt, ttl)

1 Pre-conditions: vy € C(v) U {parent(v)}.
2 begin
3 if v is a leaf or vprec = last’(v) then
4 ‘ Uneat — parent(v);
5 end
6 else
7 if v = parent(vprec) then
8 Unewt $— SUCCC! (v) (Vpree);
9 if Unest is a leaf then cpt < cpt — 1;
10 end
11 else
12 if color(v) = grey and shortcut(v) # L then
13 ‘ cpt < cpt + weightshort(v); Vnest < shortcut(v); v < precshort(v);
14 end
15 else
16 Unest < first'(v);
17 if vpeqt is a leaf then cpt < cpt — 1;
18 end
19 end
20 end
21 ttl < ttl — 1;
22 return (Unest, v, cpt, ttl);
23 end

D vearaexc(v) — L\ A §~W(u) — B(u) + 3, c 4\ 4 €xc(v), we finally obtain 2|E(T)| + |A| <
5(W(u) — B(u)) + 2|AT \ A| + 52 peanaerc(v) = 5(W(u) — B(u)) + SUM < 2+ 5(W(u) —
B(u)) + SUM.

O

Complexity of the preprocessing step. As mentionned above, the shorcut assigned to
node u is the node end € T, on which ends the call to Search-tree(u,2 + 5exc(u)). Be-
cause Routine Search-tree recursively calls itself (Line 8 of Algorithm 1) on all the nodes
in I' that it encounters and that have not been searched yet, at the end of the call to Rou-
tine Search-tree(u, 2 + Sexc(u)) that we use to assign its shorcut to u, the shorcuts of all the
nodes in I'N T, are assigned. Therefore, in order to assign their shorcuts to all the nodes in I,
we start with a list containing all of them and we call Routine Search-tree on the first node
in the list. Everytime one call to Search-tree is made on a node in I, this node is withdrawn
from the list. When all calls that have been launched terminate, if the list is not empty then we
call Routine Search-tree on its first element, until the list become empty and all the necessary
shorcuts have been assigned.

The time spent by one call to Search-tree(u,2 + Sexc(u)), if we exclude the time spent
in the recursive calls that occur inside this one, is O(2 + bexc(u)) = O(exc(u)) as the search
stops after traversing 2 + 5Sexc(u) edges or shorcuts. Therefore, as each node u € I' is searched
only once, thanks to the shorcut that is assigned to it and that avoid to search T, again in
the subsequent calls to Search-tree(v, 2 + 5exc(v)) where v is an ancestor of u, the total time
complexity of assigning their shorcuts of all the nodes in I" is O(}_ . exc(u)) = O(d).

Complexity of a call to Search-tree(u,t) after the preprocessing step. After all the
shorcuts have been assigned to the nodes in I', a call to Search-tree(u,2 + 5s), where u is a
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non-preponderant node, takes time O(min{W (u) — B(u), s}). Indeed, after preprocessing, an
execution of Routine Search-tree no longer calls itself recursively, it only follows the shorcuts
that have already been assigned. Therefore, as observed before, the execution time of the routine
is bounded by the initial value of the ttl variable, that is 2 + 5s = O(s). Moreover, from
Lemma 11, if the call to Search-tree(u, 2+ 5s) does not entirely discover the subtree of u then
W(u) — B(u) > s and we then have O(s) = O(W(u) — B(u)). On the other hand, when the
search entirely spans T},, as explained in the proof of Lemma 11, because of the shorcuts of the
nodes in A, the search is contained into a part of T}, that is denoted T in the proof. Moreover,
we also proved that if the nodes in A—i—\fl have no shorcuts, then the number of times the search
needs to traverse an edge or a shorcut (of a node in A) is at most 5(W (u) — B(u)) + SUM. As
the shorcuts of nodes in A* \ A save exactly ZveAJr\A(Z + 5exc(v)) = SUM edge traversals,
then the number of edge and shorcut traversals that Search-tree actually uses to entirely scan
T, does not exceed 5(W(u) — B(u)) = O(W(u) — B(u)). As this number is also always O(s)
(see above), the time complexity of a call to Search-tree(u,2 + 5s) after all the shorcuts have
been assigned is O(min{W (u) — B(u), s}).

5.3 Step 2: determining diff-above for the parents of maximal preponderant
nodes

The purpose of this section is to determine for any parent u of some maximal preponderant node,
whether it satisfies the condition diff-above(u) < Bpyep(u) and for any maximal preponderant
node u, whether it satisfies the condition diff-above(u) < B(u). For all those nodes, we also
want to determine the exact value of diff-above(u). Before doing this, we explain why we can
first focuss exclusively on the parents of maximal preponderant nodes, whose set is denoted I,
and even restrict ourselves to a subset of them, denoted I'*, that we call traceable. We will need
the following definitions that are extensions of the notions cost-above and diff-above that we
used before.

Definition 9. For u € T and v € Anc(u) \ {u}, we denote |u,v] = (Anc(u) \ {u}) N Desc(v)
and we define:

cost-abovey, (u) = ZwGSerﬂ]u,v] Zw/EC(w)\Anc(u) W(’UJ/) + EwEParﬂ]u,v] Zw’EC(w)\Anc(u) B(w/)’
del-above, () = 3 e1u 0] 2w ec(w\ Anc(w) B(W') and
diff-above, (u) = cost-above, (u) — del-above, (w) = 3_,c sernjuv] 2w ec(w)\ Anc(w) (W (W) —B(w")).

Focussing on the set I' of the parents of maximal preponderant nodes. As explained
above, our goal is to determine diff-above both for the maximal preponderant nodes wu; such that
diff-above(u;) < B(u;) and for their parents u such that diff-above(u) < Bpyep(u). We can first
focuss on achieving this task only for the parents u of maximal preponderant nodes, because
from the result for © we can deduce the result for its preponderant children wu;.

Indeed, if diff-above(u) > Bprep(u) then we have diff-above(u;) > B(u;), because diff-above(u;) >
diff-above(u) and Bppep(u) > B(u;). Therefore if some node u in I" does not satisfy the condition
required for the parents of maximal preponderant nodes, namely diff-above(u) < Bpep(u), then
its preponderant children u; do not satisfy the condition required for the maximal preponderant
nodes, namely diff-above(u;) < Bu;).

On the other hand, if a node u € I" satisfies the condition diff-above(u) < Bpyep(u) and if
we have then determined the value of diff-above(u), we can also determine diff-above(u;) for all
its preponderant children w; by observing that diff-above(u;) = diff-above, (u;) + diff-above(u).
If u is a parallel node, diff-above,(u;) = 0 and we immediately get the value of diff-above(u;)
as it is equal to diff-above(u). If u is a series node, this requires more computation, but it can
be done within the linear complexity we aim at, as follows.
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Using the notations we set above, we have diff-above, (u;) = Wiin(w) + Wppep(u) — W (u;) —
(Bmin(uw)+Bprep(u) —B(u;)). In this quantity, everything is known except Wiyipn(w) and Bypyin ().
We want to determine whether diff-above(u;) < B(u;), which writes, with what precedes,
Winin(w) + Wprep(u) — W (i) — (Bmin(w) + Bprep(u) — B(u;)) < B(u;). This gives Wiyin(u) —
Bpin(u) < Bprep(u) — Wppep(u) + W(u;). Since W(u;) < Wpypep(u), we obtain Wi, (u) —
Biin(u) < Bprep(u), which is a necessary condition for diff-above(u;) < B(u;). Consequently, we
first check this necessary condition by searching, thanks to Routine Search-tree, the subtrees
of the non-preponderant children of u with a global budget of Bp,cp(u) (the subtree of each
non-preponderant child of u is searched with the budget remaining from the previous searches).
If the condition does not hold, then diff-above(u;) > B(u;) for all the preponderant children w;
of u. As a consequence, as explained above, we can safely discard all the editings settled in the
subtrees of the preponderant children of u, as none of them has a cost smaller than the delete-all
editing. On the other hand, if the condition Wyyin (1) — Bpin(4) < Bprep(u) holds, then we have
searched entirely the subtrees of all the non-preponderant children of u and consequently, we
have determined the value of W, (u) and By (u). We can then determine the exact value of
diff-above(u;) for each preponderant child w; of u and keep only those for which the condition
diff-above, (u;) < B(u;) is satisfied, if any.

Considering only the subset I'* of the traceable nodes in I'. For complexity reason,
we will not be able to determine all the nodes u in I" that satisfy the condition diff-above(u) <
Bprep(u). We will discard some of them, for which we know for sure that they have an ancestor
v such that the minimum editing consistent with v is less costly than any editing settled at v or
in the subtree of some preponderant child of u. These nodes that we will discard are called non
traceable, as defined below. They can be discard safely from the set of nodes in I" we consider
as none of the editings settled at such nodes or in the subtrees of their preponderant children
is minimum.

Definition 10 (Traceable). A node u € I' is traceable iff for all ancestors v of u, diff-above,(u) <
Bprep(u).

From the definition, one can immediately see that all taceable nodes satisfy the condition
diff-above(u) < Bprep(u). We now prove the property we use in order to discard non traceable
nodes.

Lemma 12. For u € I' a non traceable node, if there exists ' € {u} U Uusecprep) V (1)
such that mincost(u’) < d, then there exists v € I' N Anc(u) \ {u} such that for any v’ €
{u} UlUuecprep) V(Tu;), we have mincost(u') > mincost(v).

Proof. Let w be a necessarily strict ancestor of u such that diff-above,, (1) > Bprep(u). Observe
that a minimum editing H,, consistent with v’ always make all the non-preponderant children of
u hollow. Then, compared to the delete-all editing, and restricted to the subset of vertices V (u),
H,y can save at most Bpep(u) edits. Moreover, since diff-above,, (1) > Bprep(u), then, restricted
to the subset of vertices V(w), H,s is more costly than the editing H,, consistent with w that
makes all the children of w, and so w itself, hollow. By definition, H, is at least as costly as the
minimum editing H,, consistent with w, which makes all the preponderant children of w full
and all the non-preponderant children of w hollow. It follows, that cost(H,/) > mincost(w). If
w has at least one preponderant child, then v = w belongs to I" and then satisfies the statement
of the lemma.

On the other hand, if w has no preponderant child, its minimum consistent editing H,,
makes all the children of w, and so w itself, hollow. This means that restricted to the vertices
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of V(w), Hy is the same as the delete-all editing. But we know from the hypothesis of the
lemma that there exists some v’ € {u} UUy,ec,,., ) V(Tu;) such that mincost(u’) < d. As we
showed previously that mincost(u") > mincost(w), this implies that cost(w) < d. Consequently,
it must be that diff-above(w) < 0. From the definition of diff-above, this gives that there exists
a series ancestor w’ of w such that >° vcc(u Anc() (W (w”) — B(w")). Then, w' has at least
one preponderant child and so w’ € I' and w’ # w. Take the lowest ancestor v of w that belongs
to I'. v may be series or parallel, but in any case, the minimum editing H, consistent with v
cannot be more costly than H,,, because H,, either makes all the children of v not ancestor of
w hollow or all of them full, while H,, makes the preponderant children of v full and the others
hollow. Consequently, we have mincost(v) < mincost(w) < mincost(u’), which ends the proof.

O

Let us denote TP the tree made of u and all the subtrees of preponderant children of w.
In other words, Lemma 12 states that any non traceable node u € I" such that T)"" contains
some minimum consistent editing better than the delete-all editing has some ancestor v such
that mincost(v) is less than any minimum consistent editing in 7% . This directly implies that
u also has such an ancestor v that is traceable. This is the reason why we can safely discard a
non traceable node in I" when we identify one: its tree T2 “? does not contain any minimum-cost
insertion node.

Searching up the branch of © € I'. From now, we concentrate on the core of the problem,
which is determining for which parents u of maximal preponderant nodes we have diff-above(u) <
Bprep(u) and in the positive, determining the exact value of diff-above(w). This is done by search-
ing, upward in the tree, the branch from u to the root of T, for each u parent of some maximal
preponderant node. This search stops either when:

1. we encounter an ancestor v of u such that diff-above,(u) > Bpyep(u); then we can discard u
as the cost of the editing settled at any node of T}, is greater than the cost of some editing
settled at some ancestor of v.

2. we encounter an ancestor v of u such that v is the parent of some maximal preponderant
node, i.e. v € I', and Bppep(v) > Bprep(u) — diff-above, (u); then, for complexity reasons,
we stop the search from u and instead starts the search from v. Afterwards, when we have
determined whether v satisfy the condition diff-above(v) < Bpyep(v), we can decide whether
u satisfies this condition.

3. we reach the root of the tree; then we have diff-above(u) < Bppep(u) and we will check
afterwards whether there exist some node w in T; such that the cost of the editing settled
at w is at most d and we will determine the set of all such nodes w € T,,.

The main idea of the search is contained in Rules 3 and 1 above. When the search terminates
because of Rule 3, this is a success: u satisfies the condition diff-above(u) < Bprep(u). On the
opposite, when the search terminates because of Rule 1, this is a fail as u is not traceable, so
we discard it. Rule 2 is used for complexity reasons. In this case, we cannot yet decide whether
u satisfies the desired condition, but we will do this later thanks to the result of the search
initiated at v, which will preserve the O(d) time complexity.

We perform the search as follows. We use a budget bud that is initialesd on node u with
the value bud = Bprep(u). Then, we climb the branch from w to the root r of 7', the current
node of the search being denoted v. Along the search we maintain bud such that its value on
node v is always Bpcp(u) — diff-above,(u) (note that this equality holds initially when v = w).
To this purpose, when the search moves from node v to node p = parent(v), we update bud by
withdrawing from it the quantity diff-above,(v). If p is a parallel node then diff-above,(v) = 0
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and the value of bud remains unchanged. If p has at least one preponderant node, then we check
whether bud > Bpyep(p). In the positive, the search started from u continues, otherwise it stops
and u is made a child of p in an auxiliary forest F', whose role is explained later.

If p is a series node, we have diff-above,(v) = Wprep(p) — Bprep(P) + 2, e, (o) {03 (W (Vi) —
B(v;)), as v is necessarily a non-preponderant child of p. We distinguish two cases. First, if p has
no preponderant children then diff-above,(v) writes diff-above,(v) = >, cc . o (W (Vi) —
B(v;)) and the search started from u will continue iff the budget remaining on v is non-negative,
i.e. bud — diff-abovep,(v) > 0. This also writes bud > 3_, cc - 1,3 (W (vi) — B(v;)). In order to
determine whether this condition holds, we search the subtrees of the non-preponderant children
of p distinct from v thanks to the routine Search-tree with a total budget of bud. This means
that we start the search of the first non preponderant child of p with a budget bud and the
searches of the other children with the budget remaining from the previous searches. This allows
to determine in time O(bud) whether the budget remaining on p, namely bud — diff-above,(v) is
non-negative. If this holds, then bud is updated to this new value, otherwise, the search started
from u stops and w is discarded.

Now, we examine the case where p has at least one preponderant child. There are then two
conditions for the search started from u to continue. First, as previously, the remaining budget on
p must be non-negative, and second, this remaining budget must be at least Bpyrep(p) — Wprep(p)-
The second condition is stronger and writes bud— (Wprep(p) — Bprep(P) + 224, e, (o g0} (W (V3) —
B(vi))) = Bprep(p) — Wprep(p), ie. bud = 32, co - on o3 (W(vi) — B(v;)). In order to check
this condition, again, we simply have to search the subtrees of the non-preponderant children
of p distinct from v with a total budget of bud, which we do using Routine Search-tree.
The time needed for this search is again O(bud). If the search goes until the end, then the
condition is fulfilled and as we completely searched all the subtrees of the non-preponderant
children v; of p distinct from v, we then know for each of them the value of W(v;) — B(v;).
We can therefore determine the value of diff-above,(v) and update the value of bud, as bud <
bud =3, ceoin o} (W (i) = B(vi)) + (Bprep(p) = Wprep(p)), in order to continue the search
started from wu. If the condition to continue is not fulfilled, then we stop the search started from
u and make u a child of p in the auxiliary forest F' that we already mentionned above.

Synchronising the searches initiated at nodes u € I'. The main idea for getting an O(d)
time complexity is to ensure that each black leaf will participate to the budget of only one
search. This is true for the initial budgets By ep(u) of the searches. But unfortunately, when the
next node p in the search is a series node with some preponderant child, an additional quantity
Bprep(p) — Wprep(p) is added to the current budget of the search. This means that this quantity
Bprep(p) — Wprep(p) will contribute to the budget of all the searches that were initiated at some
node in the subtree of p and that continue after p, which threatens the linear complexity we
aim at. Therefore, for preserving the complexity, instead of continuing all the searches that
should continue beyond p, we only continue one of them, say f, that reached p with maximum
remaining budget and we make the other searches children of this search f in F. In this way,
the quantity Bprep(p) — Wprep(p) contributes only to search f and the total time complexity of
all the searches is bounded by O(}_,cr Bprep(u)) = O(d).

There is an additional difficulty to be solved: we have to be sure that at the time we
determine the search reaching p with maximum remaining budget, all the searches that will
eventually reach p have done so already. To ensure this, we launch the searches in an order such
that all the searches initiated at nodes v € Desc(u) are launched before the search initiated
at node u € I is launched, i.e. we use an order ¢ that is a linear extension of the descendant
relationship on nodes of I'. In order to compute ¢ in O(d) time, we need to discard some
irrelevant nodes of I" as before. Indeed, as we already noted, we can safely discard the nodes
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of u € I' that have an ancestor v such that diff-above,(u) > Bpep(u). So for all ancestors v of
u, we must have diff-above, (u) < Bpyep(u). Since diff-above, (u) > [(Anc(u) N Desc(v) N Ser) \
rl- Zwe(Anc(u)\{u})ﬂDesc(v)ﬂSer Bprep(w), where Ser is the set of series nodes of the cotree T,

we obtain |(Anc(u) N Desc(v) N Ser) \ I'l < 3, anc(u)nDesc(w)nser Bprep(w). We denote I the
subset of nodes u € I' that satisfy this condition, these are the only relevant nodes for our
purpose and we can safely discard the other nodes of I'. Now, our goal is then to determine all
the nodes of I" and the decendant relationship between them.

We proceed as follows. We place all the nodes w € I' in a queue, denoted @, and we set
them active with an associated budget of Byep(u). Then, for each node u in @), we search the
branch of u up toward the root of 7" with a budget initially set at Bpyep(u). During this search
we jump over paralallel nodes and consider only the series nodes. The current budget of the
search is decreased by one everytime a series node not in I is encountered. The search stops
when the budget become null or a node in I is encountered or the root of T' is encountered.
Then, node u is removed from ) and become inactive. If the search stopped on a node v in ~
with a non-null budget, then u is made a child of v in an auxiliary forest denoted F and we keep
track of the remaining budget of the search when it reached v. When all the nodes in @) have
been processed, i.e. queue Q is empty, we search each tree Fj of the forest F starting from its
root. By this search, we determine what is the maximum M ax,¢p,, over all the leaves [ of Fi, of
the sum of the remaining budgets of all nodes on the branch of F} between leaf [ and the root
of ;. If Maxyem > 0, then the node @ on which stopped the search initiated at the root of Fj is
made active and placed in queue @) with an associated budget Max,en,. When all the subtrees
of F; have been treated and for each of them a new active node has been eventually placed in
Q, a new round starts. As previously, for every node u in () we perform the search initiated
from u with its associated budget. If at the beginning of one round, @ is empty then the process
stops. During this process, all the nodes encountered during the searches (including the parallel
nodes over which we jump) are marked and each node maintain a list of its marked children.
If the root of T is not marked, then I' = @ and the only minimum editing is the one making
z an isolated vertex. Otherwise, the nodes of I" are all marked, as well as all their ancestors.
We can therefore discover all of them by searching the set of marked nodes accessible from the
root. Overall, the complexity of this process is O(d). Indeed, each neighbour of x contributes
to the initial budget Bprep(u) of exactly one search. Moreover, the budgets used in one round
are the budgets remaining from the previous round. Therefore, the part of the tree T' that is
discovered has size O(d).

Using the forest F'. Afterwards, when the searches of all the branches are over, we use
the auxiliary forest F' to determine for each node u in F whether u satifies the condition
diff-above(u) < Bpyep(u). We proceed as follows. We examine each tree Fj in F, starting from
its root. If the root r; of F; was discarded during the algorithm, then we discard all the nodes
in the tree F;. Otherwise, the serach started from r; has reached the root r of T" and r; satisfies
the condition diff-above(r;) < Bprep(ri). We then search the tree Fj starting from r; and for
every node v in F; we determine whether it satisfies the condition diff-above(v) < Byyep(v) and
determine the value of diff-above(v) in the positive. If v does not satisfies this condition, then
we discard all the nodes in the subtree rooted at v in Fj;, beacuse none of them satisfies the
condition. If v satisfies the condition, we check whether its children u in F; do as well.

If v is a parallel node, this is straightforward: we just need to check whether bud,(v) >
diff-above(v), where bud, (v) is the remaining budget when the search started from u reached v
(i.e. bud,(v) = Bpyep(u) — diff-above, (u)). The key point here is that when v is a parallel node,
we have already determined the value of bud, (v) at the moment when the search initiated at u

23



stopped at v. So we have all the necessary knowledge to test that the condition is satisfied for
U.

When v is a series node, the search initiated at w stopped at v without determining the
exact value of bud,(v). We only know that this value is less than Bp,.,(v). We then have to
determine whether it is non negative and determine it precisely in this case. Let v" be the child
of v that is an ancestor of u. We have bud, (v) = bud, (v") — diff-above, (v"), and diff-above, (v") =
Wrep(v) — Bprep(v) + Zviecmm(v)\{v/}(W(vi) — B(v;))- So the condition bud,,(v) > 0 also writes
bud(v') = Worep(0) = Byrep(0) + Y- oy gory (W (05) = B(01)), that is budy (') + Brep(v) -
Worep(v) = 220, ccim @)\ foy (W (vi) = B(vi)). In order to determine whether this holds, we should
search the subtrees of the non preponderant children of v in T that are different from v' with
a total budget of budy(v") + Bprep(v) — Wprep(v). But in order to keep a linear complexity,
we cannot afford to do so for all the children w of v in Fj. Instead, we show that performing
two slightly different searches is enough. First, we take the maximum value bud,,q, of bud, (v')
among all children u of v in Fj. then, we come back to T" and we search the subtrees rooted at
the non preponderant children of v in 7" with a total budget of budaz + Bprep(v) — Wprep(v). Let
us denote the non preponderant children of v in T" as vy, v, . . ., v, indexed in the order in which
we search them. Denote v, the last child in this order that is searched by our searches (of total
budget bud,maz + Bprep(v) — Wprep(v)). Observe that necessarily, for all v; > v, the search of the
subtrees rooted at the nodes of Cpnin(v) \ {v;} with total budget bud,, (v;) + Bprep(v) — Wprep(v)
does not terminate, because it needs to search all the subtrees of vi,vy...,vs with a budget
lower than the previous search (since budy, (v;) < budpmqz). Now, perform the search with budget
budmaz + Bprep(v) — Wprep(v) considering the children of v in the reverse order v, vs_1,...,v;
and denote v; the last child that we reach. Again, for all v; < v, the search corresponding to
v; does not terminate. Therefore, if s < ¢ then we can safely discard all the children of v in F;
as none of them satisfies the condition. On the opposite, if t < s then, during the two searches,
we have entirely searched all the subtrees rooted at the children v; of v in T" and for all of them
we precisely know the values of W (v;) and B(v;), which is enough to determine which are the
children of v in F; that satisfy the desired condition. Finally, in the case where v; = vy, vs is
the only pretendent to satisfy the condition, which we can easily check as we know the values
of W(v;) and B(v;) for all the other children of v in 7.

Finally, after examining all the trees of the forest F', we obtain the set I™ C I" of all the par-
ents u of some maximal preponderant nodes such that u satisfies the condition diff-above(u) <
Bprep(u) and for all u € I'*, we know the exact value of diff-above(u). The fundamental property
of the set I'* is that all the minimal cograph editings of G + x that have cost at most d and
at most the cost of the minimum editings settled at their ancestors are settled either at some
node u € I'* or at some node in the subtree of some preponderant child of some u € I'™*.

5.4 Step 3: listing the minimum settled editings in the subtree of u

Let us start with the editing settled at some node u € I'*. We have cost(u) —d = diff-above(u) +
costr, (u) — B(u), where costr, (u) is the cost restricted to V(u) of the editing settled at u. As
we have costr, (u) = Bmin(u) + Wyrep(u), this gives cost(u) — d = diff-above(u) + Bpin(u) +
Wrep(t) = (Bmin (1) +Bprep(u)) = diff-above(u)+Wpyep(t) —Bprep(u). So the condition cost(u) <
d also writes diff-above(u) < Bppep(u) — Wirep(u). This condition is easy to test as we already
determined all the quantities in its expression. If the condition is satisfied we keep the editing
settled at w in the output set of solutions and we obtain its cost as d+diff-above(u) +Wyyep(u) —
Byrey(w).

We now turn to the editings settled at a node w in the subtree of some preponderant child
u’ of u € I'*. Remember that we showed already how to determine whether diff-above(u’) <
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B(w'), so we consider only such children u’ of u. Again, we have cost(w) — d = diff-above(w) +
costr, (w) — B(w) = diff-above(u’) + diff-above,s (w) 4 costr, (w) — B(w). Since we also have
diff-above,/ (w) = cost-above, (w) — (B(u') — B(w)), we obtain cost(w) — d = diff-above(u’) +
cost-above,/(w)+costr,, (w) — B(u') = diff-above(u') +costr, , (w) — B(u’). As we want cost(w) <
d, this gives costy ,(w) < B(u') — diff-above(u’). We already know the exact value of B(u')
and diff-above(u’), so we can apply the algorithm of Section 4 to G[V(v')] + x in order to
determine all the minimal insertion nodes w of T,y and keep only those such that costr ,(w)) <
B(u') — diff-above(u’). This takes time O(|V (u')|) = O(B(v')), since u’ is a preponderant node.
So overall, doing so for all the maximal preponderant nodes of T takes O(d) time.

6 Conclusion and perspectives

We designed an O(n + m)-time algorithm for minimal cograph editing using the fact that there
always exists an editing of cost at most m. This is not true for pure completion but also holds
for pure deletion. Therefore, the most immediate question is whether the same approach can
be used in order to obtain a linear-time algorithm for the minimal cograph deletion problem.
More generally, our result, which, to the best of our knowledge, is the first algorithm for an
inclusion-minimal editing problem, suggests that considering minimal editing instead of minimal
completion, its more popular restricted version, may allow to design faster algorithms. Since at
the same time, the editing problem is likely to provide smaller sets of edits than the completion
problem, this possibility should be explored for other target classes of graphs as well.
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