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Abstract

We study optimization problems that may be expressed as “Boolean constraint satisfaction
problems”. An instance of a Boolean constraint satisfaction problem is given by m constraints
applied to n Boolean variables. Different computational problems arise from constraint satis-
faction problems depending on the nature of the “underlying” constraints as well as on the goal
of the optimization task. Here we consider four possible goals: MaXx CSP (MIN CSP) is the
class of problems where the goal is to find an assignment maximizing the number of satisfied
constraints (minimizing the number of unsatisfied constraints). MAx ONEs (MIN ONES) is the
class of optimization problems where the goal is to find an assignment satisfying all constraints
with maximum (minimum) number of variables set to 1. Each class consists of infinitely many
problems and a problem within a class is specified by a finite collection of finite Boolean functions
that describe the possible constraints that may be used.

Tight bounds on the approximability of every problem in MAX CSP were obtained by
Creignou [11]. In this work we determine tight bounds on the “approximability” (i.e., the ra-
tio to within which each problem may be approximated in polynomial time) of every problem
in Max ONEs, MIN CSP and MIN ONES. Combined with the result of Creignou, this com-
pletely classifies all optimization problems derived from Boolean constraint satisfaction. Our
results capture a diverse collection of optimization problems such as MAX 3-SAT, Max Cur,
Max CriQUE, MIN CuT, NEAREST CODEWORD etc. Our results unify recent results on the
(in)approximability of these optimization problems and yield a compact presentation of most
known results. Moreover, these results provide a formal basis to many statements on the be-
havior of natural optimization problems, that have so far only been observed empirically.
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1 Introduction

The approximability of an optimization problem is the best possible performance ratio that is
achieved by a polynomial-time approximation algorithm for the problem. The approximability is
studied as a function of the input size and is always a function bounded from below by 1. Research
in the nineties has led to dramatic progress in our understanding of the approximability of many
central optimization problems. The results cover a large number of optimization problems, deriving
tight bounds on the approximability of some, while deriving “asymptotically” tight bounds on many

more. 1

In this paper we study optimization problems derived from “Boolean constraint satisfaction prob-
lems” and present a complete classification of these problems based on their approximability. Our
work is motivated by an attempt to unify this recent progress on the (in)approximability of combi-
natorial optimization problems. In the case of positive results, i.e., bounding the approximability
from above, a few paradigms have been used repeatedly and these serve to unify the results nicely.
In contrast, there is a lack of similar unification among negative or inapproximability results. Inap-
proximability results are established by approximation preserving reductions from hard problems,
and such reductions tend to exploit every feature of the problem whose hardness is being shown,
rather than isolating the “minimal” features that would suffice to obtain the hardness result. As a
result inapproximability results are typically isolated, and are not immediately suited for unifica-
tion.

The need for a unified study is however quite essential at this stage. The progress in the under-
standing of optimization problems has shown large amounts of diversity in their approximability.
Despite this diversity, natural optimization problems do seem to exhibit some noticeable trends in
their behavior. However in the absence of a terse description of known results it is hard to extract
the trends; leave alone, trying to provide them with a formal basis. Some such trends are described
below:

e There exist optimization problems that are solvable exactly, that admit polynomial time
approximation schemes or PTAS (i.e., for every constant o > 1, there exists a polynomial
time a-approximation algorithm), that admit constant factor approximation algorithms, log-
arithmic factor approximation algorithms and polynomial factor approximation algorithms.
But this list appears to be nearly exhaustive, raising the question: “Are there “natural”
optimization problems with intermediate approximability?” 2

e A number of minimization problems have an approximability of logarithmic factors. However
so far no natural maximization problem has been shown to have a similar approximability,
raising the question: “Are there any “natural” maximization problems which are approx-
imable to within polylogarithmic factors, but no better?”

e Papadimitriou and Yannakakis [39] define a class of optimization problems called MAX SNP.
This class has played a central role in many of the recent inapproximability results, and yet

"We say that the approximability of an optimization is known asymptotically, if we can determine a function
f: Z — Z and constants c1,c2 such that the approximability is between 1 4+ f(n) and 1 + ¢1 f(n?). This choice is
based on the common choice of an approximation preserving reduction. See Definition 2.7.

2There are problems such as the minimum feedback arc set for which the best known approximation fac-
tor is O(log nloglogn) [16] and the asymmetric p-center problem where the best known approximation factor is
O(log™ n) [38]. However, no matching inapproximability results are known for such problems.



even now the class does not appear to be fully understood. The class contains a number
of NP-hard problems, and for all such known problems it turns out to be the case that the
approximability is bounded away from 1! This raises the natural question: “Are there any
NP-hard problems in MAX SNP that admit polynomial time approximation schemes?”

In order to study such questions, or even to place them under a formal setting, one needs to first
specify the optimization problems in some uniform framework. Furthermore, one has to be careful
to ensure that the task of determining whether the optimization problem studied is easy or hard
(to, say, compute exactly) is decidable. Unfortunately, barriers such as Rice’s theorem (which says
this question may not in general be decidable) or Ladner’s theorem (which says problems may not
be just easy or hard [35]) force us to severely restrict the class of problems which can be studied in
such a manner.

Schaefer [42] isolates one class of decision problems which can actually be classified completely.
He obtains this classification by restricting his attention to “Boolean constraint satisfaction prob-
lems”. A problem in this class is specified by a finite set F of Boolean functions on finitely many
variables, referred to as the constraints. (These functions are specified by, say, a truth table.)
A function f : {0,1}* — {0,1}, when applied to k variables 1,...,7) represents the constraint
f(x1,...,2x) = 1. An instance of a constraint satisfaction problem specified by F consists of m
“constraint applications” on n Boolean variables where each constraint application is the appli-
cation of one of the constraints from F to some ordered subset of the n variables. The language
SAT(F) consists of all instances which have an assignment satisfying all m constraints. Schaefer
describes six classes of function families, such that if F is a subset of one of these classes, then the
decision problem is in P, else he shows that the decision problem is NP-hard.

Our Setup: In this paper we consider four different optimization versions of Boolean constraint
satisfaction problems. In each case the problem is specified by a family F, and the instance by m
constraints from F applied to n Boolean variables. The goals for the four versions vary as follows:
In the problem MAx CSP(F) the goal is to find an assignment that maximizes the number of
satisfied constraints. Analogously in the problem MIN CSP(F) the goal is to find an assignment
that minimizes the number of unsatisfied constraints. Notice that while the problems are equivalent
w.r.t. exact computation, their approximability may be (and often is) very different. In the problem
MAx ONES(F) (MIN ONES(F)) the goal is to find an assignment satisfying all constraints, while
maximizing (minimizing) the number of variables set to 1. We also consider the weighted version of
all the above problems. In the case of WEIGHTED MAx CSP(F) (WEIGHTED MIN CSP(F)) the
instance includes a non-negative weight for every constraint and the goal is to maximize (minimize)
the sum of the weights of the satisfied (unsatisfied) constraints. In the case of WEIGHTED MAX
ONES(F) (WEIGHTED MIN ONES(F)) the instance includes a non-negative weight for every variable
and the goal is to find an assignment satisfying all constraint maximizing (minimizing) the weight
of the variables set to 1. The collection of problems {MAXCSP(F) | F finite} yields the class MAX
CSP, and similarly we get the classes (WEIGHTED) MIN CSP, MAX ONES, MIN ONES.

Together these classes capture a host of interesting optimization problems. MAX CSP is a subset
of MAX SNP and forms a combinatorial core of the problems in MAX SNP. It also includes a
number of well-studied MAX SNP-complete problems, including MAX 3-SAT, MAX 2-SAT, and
Max Cut. MAX ONES shows more varied behavior among maximization problems and includes
MAX CLIQUE and a problem equivalent to MAX CuT. MIN CSP and MIN ONES are closely related
to each other capturing very similar problems. The list of problems expressible as one of these



includes: The s-t MIN CUT problem, VERTEX COVER, HITTING SET with bounded size sets, Integer
programs with two variables per inequality [25], MIN UNCuT [20], MIN 2CNF DELETION [33], and
NEAREST CODEWORD [2]. The ability to study all these different problems in a uniform framework
and extract the features that make the problems easier/harder than the others shows the advantage
of studying optimization problems under the constraint satisfaction framework.

We provide a complete characterization of the asymptotic approximability of every optimization
problem in the classes mentioned above. For the class MAX CSP such a classification was obtained
by Creignou [11] who shows that every problem in the class is either solvable to optimality in
polynomial time, or has a constant approximability bounded away from 1. For the remaining
classes we provide complete characterizations. The detailed statement of our results, comprising of
22 cases, appear in Theorems 2.11-2.14. (This includes a technical strengthening of the results of
Creignou [11].) In short the results show that every MAX ONES problem is either solvable optimally
in P, or has constant factor approximability, or polynomial approximability or it is hard to find
feasible solutions. For the minimization problems, the results show that the approximability of every
problem lies in one of at most 7 levels. However it does not pin down the approximability of every
problem — but rather highlights a number of open problems in the area of minimization that deserve
further attention. In particular, it exposes a class of problems for which MiN UNCUT is complete,
a class for which MIN 2CNF DELETION is complete and a class for which NEAREST CODEWORD
is complete. The approximability of these problems is not yet resolved.

Our results do indeed validate some of the observations about trends exhibited by optimization
problems. We find that when restricted to constraint satisfaction problems; the following can be
formally established. The approximability of optimization problems does come from a small number
of levels; maximization problems do not have a log-approximable representative while minimization
problems may have such representatives (e.g. MIN UNCuUT). NP-hard MAx CSP problems are also
MAX SNP-hard. We also find that weights do not play any significant role in the approximability
of combinatorial optimization problems, a thesis in the work of Crescenzi et al. [15]3.

Finally, we conclude with some thoughts on directions for further work. We stress that while con-
straint satisfaction problems provide a good collection of core problems to work with, they are by no
means an exhaustive or even near-exhaustive collection of optimization problems. Our framework
lacks such phenomena as polynomial time approximation schemes (PTAS); it does not capture sev-
eral important optimization problems such as TSP and numerous scheduling, sequencing and graph
partitioning problems. One possible reason for the non-existence of PTAS is that in our problems
the input instances have no restrictions in the manner in which constraints may be imposed on the
input variables. Significant insight may be gleaned by restricting the problem instances. A widely
prescribed condition is that the incidence graph on the variables and the constraints should form a
planar graph. This restriction has been studied by Khanna and Motwani [28] and they show that it
leads to polynomial time approximation schemes for a general class of constraint satisfaction prob-
lems. Another input restriction of interest could be that variables are allowed to participate only in
a bounded number of constraints. We are unaware of any work on this front. An important exten-
sion of our work would be to consider constraint families which contain constraints of unbounded
arity (such as those included in the class MIN FTII; studied by Kolaitis and Thakur [34]). Such
an extension would allow us to capture problems such as SET COVER. Other directions include
working with larger domain sizes (rather than Boolean domains for the variables), and working

30ur definition of an unweighted problem is more loose than that of Crescenzi et al. In their definition they
disallow instances with repeated constraints, while we do allow them. We believe that it may be possible to remove
this discrepancy from our work by a careful analysis of all proofs. We do not carry out this exercise here.



over spaces where the solution space is the set of all permutations of [n] rather than {0,1}".

Related Work: The works of Schaefer [42] and Creignou [11] have already been mentioned above.
We reproduce some of the results of Creignou in Theorem 2.11, with some technical strengthen-
ings. This strengthening is described in Section 2.5. Another point of difference with the result of
Creignou is that our techniques allow us to directly work with the approximability of optimization
problems, while in her case the results formally establish NP-hardness and the hardness of approx-
imation can in turn be derived from them. A description of these techniques appear in Section 2.6.
Among other works focusing on classes showing dichotomy is that of Feder and Vardi [17] who con-
sider the “largest” possible class of natural problems in NP that may exhibit a dichotomy. They
motivate constraint satisfaction problems over larger domains and highlight a number of central
open questions that lie on the path to the resolution of the complexity of deciding them. Creignou
and Hermann [12] show a dichotomy result analogous to Schaefer’s for counting versions of con-
straint satisfaction problems. In the area of approximability, the works of Lund and Yannakakis [37]
and Zuckerman [45] provide two instances where large classes of problems are shown to be hard
to approximate simultaneously — to the best of our knowledge these are the only cases where the
results provide hardness for many problems simultaneously. Finally we mention a few results that
are directly related to the optimization problems considered here. Trevisan et al. [43] provide an al-
gorithm for finding optimal implementations (or ”gadgets” in their terminology) reducing between
Max CSP problems. Karloff and Zwick [27] describe generic methods for finding “semidefinite
relaxations” of MAX CSP problems - and use these to provide approximation algorithms for these
problems. These results further highlight the appeal of the “constraint satisfaction” framework for
studying optimization problems.

2 Definitions and Results

2.1 Constraints, Constraint Applications and Constraint Families

We start by formally defining constraints and constraint satisfaction problems. Schaefer’s work [42]
proposes the study of such problems as a generalization of 3-satisfiability (3-SAT). We will use the
same example to illustrate the definitions below.

A constraint is a function f : {0,1}¥ — {0,1}. A constraint f is satisfied by an input s € {0, 1}* if
f(s) =1. A constraint family F is a finite collection of constraints {fi,..., fi}. For example, con-
straints of interest for 3-SAT are described by the constraint family Fssar = {ORy; : 1 <k < 3,0 <
4 <k}, where ORyj : {0,1}F — {0,1} denotes the constraint —z; \/ -+ =z; V241 V-V zp. A
constraint application, of a constraint f to n Boolean variables, is a pair (f, (i1,...,i;)), where
the indices i; € [n] select k of the n Boolean variables to whom the the constraint is applied.
(Here and throughout the paper we use the notation [n] to denote the set {1,...,n}.) For example
to generate the clause (z5\/ —z3\/ z2) we could use the constraint application (OR3 1, (3,5,2)) or
(OR3,1,(3,2,5)). Note that the applications allow the constraint to be applied to different ordered
sets of variables but not literals. This distinction is an important one, and is the reason that we need
all the constraints OR3 9, OR3,1 etc. to describe 3-SAT. In a constraint application (f, (i1,...,i)),
we require that i; # iy for j # j', i.e., the variables are not allowed to be replicated within a
constraint application. This is why we need both the functions OR2 ¢ as well as OR3 g in 3-SAT.



Constraints and constraint families are the ingredients that specify an optimization problem. Thus
it is necessary that their description be finite. (Notice that the description of Fsgar is finite.)
Constraint applications are used to specify instances of optimization problems (as well as instances
of Schaefer’s generalized satisfiability problems) and the fact that their description lengths grow
with the instance size is crucially exploited here. (Notice that the description size of a constraint
application used to describe a 3-SAT clause will be Q(logn).) While this distinction between
constraints and constraint applications is important, we will often blur this distinction in the rest
of this paper. In particular we may often let the constraint application C' = (f, (i1,...,ix)) refer
just to the constraint f. In particular, we will often use the expression “C' € F” when we mean
“f € F, where f is the first component of C”. We now describe Schaefer’s class of satisfiability
problems and the optimization problems considered in this paper.

Definition 2.1 (SAT(F))

INSTANCE: A collection of m constraint applications of the form {(f;, (i1(7), ... ik; (1))}, on
Boolean variables x1, %3, ..., v, where f; € F and kj; is the arity of fj.

OBJECTIVE: Decide if there exists a Boolean assignment to the x;’s which satisfies all the con-
straints.

For example, the problem SAT(F3saT) is the classical 3-SAT problem.

Definition 2.2 (MaAXx CSP(F) (MIN CSP(F)))

INSTANCE: A collection of m constraint applications of the form {(fj, (i1(4),. .- ik; (1)) }]oy, on
Boolean variables x1, %2, ..., v, where f; € F and kj; is the arity of fj.

OBJECTIVE: Find a Boolean assignment to x;’s so as to mazimize (minimize) the number of
satisfied (unsatisfied) constraints.

In the weighted problem WEIGHTED MAX CSP(F) (WEIGHTED MIN CSP(F)) the input instance
includes m non-negative weights wy. ..., w, and the objective is to find an assignment which maz-
imizes (minimizes) the sum of the weights of the satisfied (unsatisfied) constraints.

Definition 2.3 (Max ONES(F) (MiN ONES(F)))

INSTANCE: A collection of m constraint applications of the form {(f;, (i1(3), ... ik; (1))}, on
Boolean variables x1, %3, ..., v, where f; € F and kj; is the arity of fj.

OBJECTIVE: Find a Boolean assignment to x;’s which satisfies all the constraints and mazimizes
(minimizes) the total number of variables assigned true.

In the weighted problem WEIGHTED MAX ONES(F) (WEIGHTED MIN ONES(F)) the input instance
includes n non-negative weights wy. ..., w, and the objective is to find an assignment which satisfies
all constraints and mazimizes (minimizes) the sum of the weights of variables assigned true.

The class (WEIGHTED) MAx CSP is the set of all optimization problems (WEIGHTED) MAX
CSP(F) for every constraint family F. The classes (WEIGHTED) MAX ONEs, MIN CSP, MIN
ONES are defined similarly.

The optimization problem MAX 3SAT is easily seen to be equivalent to MAX CSP(Fzgar). This and
the other problems MAX ONES(F3saT), MIN CSP(FssaT) and MIN ONES(Fssar) are considered
in the rest of this paper. More interesting examples of MAX ONES, MIN CSP and MIN ONES
problems are described in Section 2.3. We start with some preliminaries on approximability that
we need to state our results.



2.2 Approximability, Reductions and Completeness

A combinatorial optimization problem is defined over a set of instances (admissible input data); a
finite set sol(x) of feasible solutions is associated to any instance. An objective function attributes
an integer value to any solution. The goal of an optimization problem is, given an instance z, find
a solution y € sol(z) of optimum value. The optimum value is the largest one for mazimization
problems and the smallest one for minimization problems. A combinatorial optimization problem
is said to be an NPO problem if instances and solutions can be recognized in polynomial time,
solutions are polynomial-bounded in input size, and the objective function can be computed in
polynomial time (see e.g. [10]).

Definition 2.4 (Performance Ratio) A solution s to an instance Z of an NPO problem A is
r-approzimate if it has a value V' satisfying:

max { 0P¥(I)7 OP‘T/(I) } <r

An approximation algorithm for an NPO problem A has performance ratio R(n) if, given any
instance Z of A with |Z| = n, it outputs an R(n)-approzimate solution.

We say that a NPO problem is approximable to within a factor R(n) if it has a polynomial-time
approximation algorithm with performance ratio R(n).

Definition 2.5 (Approximation Classes) An NPO problem A is in the class PO if it is solvable
to optimality in polynomial time. A is in the class APX (resp. log-APX/ poly-APX) if there
exists a polynomial-time algorithm for A whose performance ratio is bounded by a constant (resp.
logarithmic/polynomial factor in the size of the input).

Completeness in approximation classes can be defined using appropriate approximation preserving
reducibilities. In this paper, we use two notions of reducibility: A-reducibility and AP-reducibility.
We discuss the difference between the two and the need for having two different notions after the
definitions.

Definition 2.6 (A-reducibility [14]) An NPO problem A is said to be A-reducible to an NPO
problem B, denoted A<a B, if two polynomial time computable functions F and G and a constant
« exist such that:

(1) For any instance T of A, F(Z) is an instance of B.

(2) For any instance T of A and any feasible solution S’ for F(I), G(Z,S') is a feasible solution
for T.

(8) For any instance T of A and any r > 1, if §' is a r-approzimate solution for F(ZI) then
G(Z,S') is an (ar)-approzimate solution for I.

Definition 2.7 (AP-reducibility [13]) For a constant a > 0 and two NPO problems A and
B, we say that A is a-AP-reducible to B, denoted A<apB, if two polynomial-time computable
functions F' and G exist such that the following holds:

(1) For any instance T of A, F(Z) is an instance of B.

(2) For any instance T of A, and any feasible solution S' for F(ZI), G(Z,S') is a feasible solution
for T.



(8) For any instance T of A and any r > 1, if 8’ is an r-approzimate solution for F(ZI), then
G(Z,S') is an (14 (r — 1)a+ o(1))-approzimate solution for T, where the o()-notation is with
respect to |Z|.

We say that A is AP-reducible to B if a constant o > 0 exists such that A is a-AP-reducible to B.

Remark:

1. Notice that Conditions (3) of both reductions only preserve the quality of an approximate
solution in absolute terms (to within the specified limits) and not as functions of the instance
size. For example, an A-reduction from II to II' which blows up instance size by quadratic
factor and an O(n'/3) approximation algorithm for II' combine to give only an O(n?/3) ap-
proximation algorithm for II.

2. The difference between the two reductions is the level of approximability that is preserved
by them. (Condition (3) in the definitions.) A-reductions preserve constant factor approx-
imability or higher, i.e., if IT is A-reducible to II' and II' is approximable to within a factor
of r(n), then II is approximable to within ar(n®) for some constants «,c. This property suf-
fices to preserve membership in APX (log-APX, poly-APX), i.e., if Il is in APX (log-APX,
poly-APX) then IT" is also in APX (resp. log-APX, poly-APX). However it does not preserve
membership in PO or PTAS, as can be observed by setting r = 1.

3. AP-reductions reductions are more sensitive than A-reductions. Thus if II is AP-reducible to
I1, then an r-approximate solution is mapped to an h(r) approximate solution where h(r) — 1
as r — 1. Thus AP-reductions preserve membership in PTAS as well. However they need not
preserve membership in PO (due to the o(1)-term in their preservation of approximability).

4. Condition (3) of the definition of AP-reductions is strictly stronger than the corresponding
condition in the definition of A-reductions. Thus, every AP-reduction is also an A-reduction.
Unfortunately, neither one of these reductions on their own suffice for our purposes. We
need AP-reductions to show APX-hardness of problems, but we need the added flexibility of
A-reductions for other hardness results.

5. The original definitions of AP-reducibility and A-reducibility of [14] and [13] were more gen-
eral. Under the original definitions, the A-reducibility does not preserve membership in
log-APX, and it is not clear whether every AP-reduction is also an A-reduction. The re-
stricted versions defined here are more suitable for our purposes. In particular, it is true that
the Vertex Cover problem is AP X-complete under our definition of AP-reducibility.

Definition 2.8 (APX, log-APX, and poly-APX-completeness) An NPO problem 11 is APX-
hard if every APX problem is AP-reducible to I1. An NPO problem 11 is log- AP X-hard (poly-APX-
hard) if every log-APX (poly-APX) problem is A-reducible to II. A problem 11 is APX (log-APX,
poly-APX )-complete if it is in APX (resp. log-APX, poly-APX) and it is APX (resp. log-APX,
poly-APX )-hard.

The class APX contains the class MAX SNP as defined by Papadimitriou and Yannakakis [39].
The containment is strict in a syntactic sense (e.g. MAX SNP does not contain any minimization
problems); however, when one takes the closure of APX under AP-reductions, one obtains the class
MAX SNP [29]. The notion of reductions used here is also less stringent than the notion of reduc-
tion used in [39]. Thus APX, APX-hardness, and APX-completeness are (mild) generalizations
of the notions of MAX SNP, MAX SNP-hardness, and MAX SNP-completeness.



Most problems we consider are known/shown to be in PO, or else are AP X-complete or poly-APX-
complete. However in some cases, we will not be able to establish the exact approximability of a
given problem. However, we will nevertheless be able to compile all problems into a finite number
of equivalence classes, with some equivalence classes being defined as “problems equivalent to 117
for some problem II of unknown approximability. The following definition captures this concept.

Definition 2.9 (II-completeness) For NPO problems I1 and I, TI' is said to be I1-complete if
I[I<AIl" and IT'<AII.

2.3 Problems captured by Max CSP, Max Ones, MIN CSP and MiIN ONES

We first specify our notation for commonly used functions.

— 0 and 1 are the functions which are always satisfied and never satisfied respectively. Together
these are the trivial functions. We will assume that all our function families do not have any
trivial functions.

— T and F are unary functions given by T'(z) = z and F(z) = —z.

— For a positive integer 4 and non-negative integer j < 4, OR;; is the function on 7 variables
given by ORi,j(acl, e .’L‘z) = 1 V e \/ —|.’L‘j V $j+1 V e \/ Zi. ORz = ORi,U; NANDi = ORiyi;
OR = ORgy; NAND = NAND:;.

— Similarly, AND; ; is given by AND; j(z1,...2;) = 21 A+~ A-z; Azjpa A---Azi. AND; =
AND; o; NOR; = AND; ;; AND = AND,; NOR = NOR,.

— The function XOR; is given by XOR(z1,...,z;) =1 ® -+ & z;. XOR = XORa.
— The function XNOR; is given by XNOR(zy,...,z;) = =(z1 & --- & z;). XNOR = XNORs.

Now we enumerate some interesting maximization and minimization problems which are “captured”
by (i.e., are equivalent to some problem in) MAx CSP, MAx ONES, MIN CSP and MIN ONES. The
following list is interesting for several reasons. First, it highlights the importance of these classes
as ones that contain interesting optimization problems, and shows the diversity of the problems
captured by these classes. Furthermore, each of these problems turn out to be “complete” problems
for the partitions they belong to. Some are even necessary for a full statement of our results. Last,
for several of the minimization problems listed below, their approximability is not yet fully resolved.
We feel that these problems are somehow representative of the lack of our understanding of the
approximability of minimization problems. We start with the maximization problems.

— For any positive integer k, MAX kSAT = MAX CSP({OR; |z € [k],0 < j <i}). MAX kSAT is a
well-studied problem and known to be MAX SNP-complete [39], for k > 2. Every MAX SNP-
complete problem is in APX (i.e., approximable to within a constant factor in polynomial
time) [39]. Also for MAX SNP-complete problem there exists a constant « greater than 1,
such that the problem is problem is not a-approximable unless NP = P [3].

— For any positive integer £, MAX EESAT = MAX CSP({ORy ;|0 < j < k}). The problem MAX
EESAT is a variant of MAX ESAT restricted to have clauses of length exactly k.

— Max Cutr = Max CSP({XOR}). Max Cur is also MAX SNP-complete [39] and the best
known approximation algorithm for this problem, due to [22], achieves a performance ratio of
1.14 = 1/.878
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MAX CLIQUE = MAX ONES(NAND). MAX CLIQUE is known to be approximable to within
a factor of O(n/log?n) in an n-vertex graph [9] and is known to be hard to approximate to
within a factor of Q(n!=¢) for any € > 0 unless NP = RP [18, 23].

We now go on to the minimization problems.

The well known minimum s-¢ cut problem in directed graphs is equivalent to WEIGHTED MIN
CSP(F) for F = {ORy,1, T, F}. This is shown in Section 5.1. This problem is well-known to
be solvable exactly in polynomial time.

The HITTING SET problem restricted to instances in which all sets are of size at most B, can
be captured as MIN ONES(F) for F = {ORg|k < B}. Also, of interest to our paper is a
slight generalization of this problem which we call the Implicative HITTING SET-B Problem
(MIN THS-B) which is MIN CSP({ORy, : £ < B} U{ORgy 1, F'}). The MIN ONES version of
this problem will be of interest to us as well. The HITTING SET-B problem is well-known to
be approximable to within a factor of B. We show that MIN IHS-B is approximable to within
a factor of B + 1.

MIN UNCuT = MIN CSP({XOR}). This problem has been studied previously by Klein et
al. [32] and Garg et al. [20]. The problem is known to be MAX SNP-hard and hence not
approximable to within some constant factor greater than 1. On the other hand, the problem
is known to be approximable to within a factor of O(logn) [20].

MIN 2CNF DELETION = MIN CSP({OR,NAND}). This problem has been studied by Klein
et al. [33]. They show that the problem is MAX SNP-hard and that it is approximable to
within a factor of O(logn loglogn).

NEAREST CODEWORD = MIN CSP({XOR3,XNOR3}). This is a classical problem for which
hardness of approximation results have been shown by Arora et al. [2]. The MIN ONES version
of this problem is essentially identical to this problem. For both problems, the hardness result
of Arora et al. [2] shows that approximating this problem to within a factor of Q(ZIOgl_e ") is
hard for every € > 0, unless NP C QP. No non-trivial approximation guarantees are known
for this problem (the trivial bound being a factor of m, which is easily achieved since deciding
if all equations are satisfiable amounts to solving a linear system).

Lastly we also mention one more problem which is required to present our main theorem.
MIN HorN DELETION = MIN CSP({ORj3,,7,F}). The currently known bounds on the
approximability of this problem are similar to those of the NEAREST CODEWORD, i.e., it is in
poly-APX and hard to approximate to within a factor of 90(log' = n) (see Lemma 7.21).

2.4 Properties of function families

We start with the six properties defined by Schaefer:

A constraint f is 0-valid (resp. I-valid) if f(0,...,0) =1 (resp. f(1,...,1) =1).

A constraint is weakly positive (resp. weakly negative) if it can be expressed as a CNF-formula
having at most one negated variable (resp. at most one unnegated variable!) in each clause.

“Such clauses are usually called Horn clauses.
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— A constraint is affine if it can be expressed as a conjunction of linear equalities over Z,.
— A constraint is Z2enf if it is expressible as a 2CNF-formula.

The above definitions extend to constraint families naturally. For instance, a constraint family F
is O-valid if every constraint f € F is 0-valid. The above definitions are central to Schaefer’s main
theorem, restated below.

Theorem 2.10 (Schaefer’s Theorem [42]) For any constraint family F, SAT(F) is in P if F
is 0-valid or 1-valid or weakly positive or weakly negative or affine or 2cnf; else deciding SAT(F) is
NP-hard.

We use the shorthand “F is (not) decidable” to say that deciding membership in SAT(F) is solvable
in P (is NP-hard). Abusing our vocabulary slightly, we say MAX ONES(F) (or MIN ONES(F)) is
not decidable, to indicate that determining if a given instance of this problem has a feasible solution
is NP-hard.

We need to define some additional properties to describe the approximabilities of the optimization
problems we consider:

— [ if 2-monotone if f(x1,..., ;) is expressible as (x;; A--- Axi,) V(-zj A--- A -z, ), for some
p,q >0, (p,q) # (0,0) (i.e., f is expressible as a DNF-formula with at most two terms - one
containing only positive literals and the other containing only negative literals).

— A constraint is width-2 affine if it is expressible as a conjunction of linear equations over Zy
such that each equation has at most 2 variables.

— A coustraint is strongly 0-valid if it is satisfied by all assignments with at most one 1. (Note
that a strongly 0-valid constraint is also 0-valid.)

— A constraint f is IHS-B+ (for Implicative Hitting Set-Bounded+) if it is expressible as a CNF
formula where the clauses are of one of the following types: z1\ ---\ zx for some positive
integer k < B, or -z \/ 29, or mz;. IHS-B— constraints and constraint families are defined
analogously (with every literal being replaced by its complement). A family is a THS-B family
if the family is a IHS-B+ family or a IHS-B— family.

We use the following shorthand for the above families: (1) Fj is the family of 0-valid constraints;
(2) F; is the family of 1-valid constraints; (3) Fgo is the family of strongly 0-valid constraints; (4)
Fou is the family of 2-monotone constraints; (5) Figs is the family of IHS-B constraints; (6) Faa
is the family of width-2 affine constraints; (7) Faocnr is the family of 2CNF constraints; (8) Fj is
the family of affine constraints; (9) Fwp is the family of weakly positive constraints; (10) Fwy is
the family of weakly negative constraints.

2.5 Main Results

We now present the main results of this paper. A pictorial representation is available in Appen-
dices B.1, B.2, B.3 and B.4. All theorems are stated assuming that F has no trivial constraints, i.e.,
constraints that are always satisfied or never satisfied. The first theorem is a minor strengthening
of Creignou’s theorem [11] so as to cover problems such as MAX EkSAT. The remaining theorems
cover MAX ONES, MIN CSP and MIN ONES respectively.
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Theorem 2.11 (MAX CSP classification) For any constraint set F, the problem (WEIGHTED)
Max CSP(F) is always either in PO or is APX-complete. Furthermore, it is in PO if and only if
F is O-valid or 1-valid or 2-monotone.

Theorem 2.12 (MAX ONES classification) For any constraint set F, the problem (WEIGHTED)
Max ONES(F) is either in PO or is APX-complete or poly-APX-complete or decidable but not
approximable to within any factor or not decidable. Furthermore,

(1) If F is 1-valid or weakly positive or affine with width 2, then (WEIGHTED) MAX ONES(F) is
in PO.

(2) Else if F is affine then (WEIGHTED) MAX ONES(F) is APX-complete.

(38) Else if F is strongly 0-valid or weakly negative or 2CNF then (WEIGHTED) MAX ONES(F)
is poly-APX-complete.

(4) Else if F is 0-valid then SAT(F) is in P but finding a solution of positive value is NP -hard.
(5) Else finding a feasible solution to (WEIGHTED) MAX ONES(F) is NP-hard.

Theorem 2.13 (MIN CSP classification) For any constraint set F, the problem (WEIGHTED)
MiIN CSP(F) is in PO or is APX-complete or MIN UNCuUT-complete or MIN 2CNF DELETION-
complete or NEAREST CODEWORD-complete or MIN HORN DELETION-complete or or even deciding
if the optimum is zero is NP-hard. Furthermore,

(1) If F is O-valid or 1-valid or 2-monotone, then (WEIGHTED) MIN CSP(F) is in PO.
(2) Else if F is IHS-B then (WEIGHTED) MIN CSP(F) is APX-complete.

(3) Else if F is width-2 affine then (WEIGHTED) MIN CSP(F) is MIN UNCUT-complete.
(4) Else if F is 2CNF then (WEIGHTED) MIN CSP(F) is MIN 2CNF DELETION-complete.
(5) Else if F is affine then (WEIGHTED) MIN CSP(F) is NEAREST CODEWORD-complete.

(6) Else if F is weakly positive or weakly negative then (WEIGHTED) MIN CSP(F) is MIN HORN
DELETION-complete.

(7) Else deciding if the optimum wvalue of an instance of (WEIGHTED) MIN CSP (F) is zero is
NP-complete.

Theorem 2.14 (MIN ONEs classification) For any constraint set F, the problem (WEIGHTED)
MIN ONES(F) is either in PO or APX-complete or NEAREST CODEWORD-complete or MIN HORN
DELETION-complete or poly-AP X -complete or inapprozimable to within any factor or not decidable.
Furthermore,

(1) If F is O-valid or weakly negative or width-2 affine, then (WEIGHTED) MIN ONES(F) is in
PO.

(2) Else if F is 2CNF or IHS-B then (WEIGHTED) MIN ONES(F) is APX-complete.
(3) Else if F is affine then MIN ONES(F) is NEAREST CODEWORD-complete.
(4) Else if F is weakly positive then (WEIGHTED) MIN ONES(F) is MIN HORN DELETION-

complete.
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(5) Elseif F is 1-valid then MIN ONES(F) is poly-APX-complete and WEIGHTED MIN ONES(F)
is decidable but hard to approzimate to within any factor.

(6) Else finding any feasible solution to (WEIGHTED) MIN ONES(F) is NP-hard.

2.6 Techniques

Two simple ideas play an important role in this paper. First is the notion of an implementation
which shows how to use the constraints of a family F to enforce constraints of a different family F’,
thereby laying the groundwork of a reduction among problems. The notion of an implementation
is inspired by the notion of gadgets formalized by Bellare et al. [8] who in our language define
implementations for specific pairs of function families (F, F'). In this work we unify their definition,
so as to make it work for arbitrary pairs of function families. This definition of implementation also
finds applications in the work of Trevisan et al. [43] who, in our language, show uniform methods
for searching for efficient implementations for pairs of function families (F, F").

A second simple idea we exploit here is that of working with weighted versions of optimization
problems. Even though our primary concerns were only the approximability of the unweighted
versions of problems, many of our results use as intermediate steps the weighted versions of these
problems. The weights allow us to manipulate problems more locally. However, simple and well-
known ideas eventually allow us to get rid of the weights and thereby yielding hardness of the
unweighted problem as well. As a side-effect we also show that the unweighted and weighted
problems are equally hard to approximate in all the relevant optimization problems. This extends
to minimization problems the results of Crescenzi et al. [15].

The definitions of implementations and weighted problems follows in Section 3. Section 4 shows
some technical results showing how we exploit the fact that we have functions which don’t exhibit
some property. The results of this section play a crucial role in all the hardness results. This sets us
up for the proofs of our main theorems. In Section 5 we show the containment results and hardness
results for Max CSP. Similarly Sections 6, 7, and 8 deal with the classes MAX ONES, MIN CSP,
and MIN ONES, respectively.

3 Implementations

We now describe the main technique used in this paper to obtain hardness of approximation results.
Suppose we want to show that for some constraint set F, the problem Max CSP(F) is APX-hard.
We will start with a problem that is known to be APX-hard, such as MAX CuT, which turns
out to be MAx CSP({XOR}). We will then wish to reduce this problem to Max CSP(F). The
main technique we use to do this is to “implement” the constraint XOR using constraints from the
constraint set 7. We show how to formalize this notion next and then show how this translates to
approximation preserving reductions.

Definition 3.1 (Implementation) A collection of constraint applications C1,...,Cy, over a set
of variables x = {x1,...,2,} called primary variables and y = {y1,...,yq} called auxiliary vari-
ables, is an a-implementation of a constraint f(x) for a positive integer « if the following conditions
are satisfied:

(1) For any assignment to x and y at most « constraints from Ci,...,Cy, are satisfied.
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(2) For any x such that f(x) =1, there exists y such that exactly a constraints are satisfied.
(3) For any x,y such that f(x) =0, at most (o — 1) constraints are satisfied.

Definition 3.2 (Strict/Perfect Implementations) An a-implementation is a strict a-imple-
mentation if for every x such that f(x) = 0, there exists y such that exactly (o — 1) constraints are
satisfied. An a-implementation (not necessarily strict) is a perfect implementation, if « = m.

We say that a constraint set F (strictly / perfectly) implements a constraint f if there exists a
(strict / perfect) a-implementation of f using constraints of F for some a < oo. We use the
notation F=>,f to denote that F «-implements f, and F=f to denote that F implements f.

Similarly we use the notation F S:/p> f to denote that F implements f strictly /perfectly. The above
notation is also extended to allow the target to be a family of functions. For instance, F=—=7F'
denotes that F implements every function in F'.

Remark: The definition of [8] defined (non-strict and non-perfect) implementations for specific
choices of f and F. For each choice they provided a separate definition. We unify their definitions
into a single one. Furthermore as we will show later, the use of strictness and/or perfectness greatly
enhance the power of implementations. These aspects are formalized for the first time here.

A constraint f 1l-implements itself strictly and perfectly ({f} i_/_p>1 f). Some more examples of
strict and/or perfect implementations are given below.

Proposition 3.3 {XOR} 2£, XNOR.

Proof: The constraints XOR(z,zpyx) and XOR(y, zpyx) perfectly and strictly implement the

constraint XNOR(z,y). O
Proposition 3.4 If f(x) = fi(x) A+ A fe(x), then {f1,..., fu} =k [

Proof: The collection {fi(x),..., fr(x)} is a perfect (but not necessarily strict) k-implementation
of f(x). O

The following lemma shows that the implementations of constraints compose together, if they are
strict or perfect.

Lemma 3.5 If F, == F} and F, == F., then F, == F.. An analogous result holds for perfect
implementations also.

Proof: It suffices to consider the case when F,. consists of a single function f. Furthermore, we
observe that it suffices to prove the following simpler assertion (to prove the lemma): If F == g
and F U {g} == f then F == f. To see that this suffices, let Fy = {g1,...,q;}. Define Fy = F,,
Fi=FsU{g1,...,9i}. Note that by hypothesis we have F; == fand F; == g;11 and F; == f.
The assertion above says that if F;.; == f, then F; == f. Thus by induction Fy == f.

We now prove the assertion: If 7 == g and F U {g} == f then F == f. Let C},...,Cy,, be
constraint applications from F U {g} on variables x,y giving an «;-implementation of f(x) with
x being the primary variables. Let C1,...,Cy,, be constraint applications from F on variable set
x', 2z’ yielding an ag-implementation of g(x’). Further let the first 5 constraints of C1,...,Cy,, be
applications of the constraints g.

We create a collection of m; + 3(mgo — 1) constraints from F on a set of variables x,y,z'1,...,23,
where x and y are the original variables, and z}, ... ,z’ﬁ are new sets of disjoint auxiliary variables.
(Le., the vectors z’; and z'; do not share any variables, if i # j.)
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The my + B(mg — 1) constraints introduced are as follows. We include the constraint applications

CB41,...,Cp, on variables x,y and for every constraint application Cj, for j € {1,...,5}, on
variables v; (which is a subset of variables from x,y) we place the constraints C’{’j, ey C,’nw- on

variable set v;,z'; with z’; being the auxiliary variables.

We now show that this collection of constraints satisfies properties (1)-(3) from Definition 3.1 with
a = a1 + ((ay — 1). Additionally we show that perfectness and/or strictness is preserved. We start
with properties (1) and (3).

Consider any assignment to x satisfying f. Then any assignment to y satisfies at most a; constraints
from the set C1,...,Cy,,. Let v of these be from the set Cy,...,C3. Now for every j € {1,...,3}
any assignment to z'; satisfies at most ap of the constraints C1 ;,...,C},, ;. Furthermore if the
constraint C; was not satisfied by the assignment to x,y, then at most ay — 1 constraints are
satisfied. Thus the total number of constraints satisfied by any assignment is at most yag + (5 —

v) (a2 — 1)+ (a1 —y) = aq + (g — 1). This yields property (1). Property (3) is achieved similarly.

We now show that if the ;- and ay-implementations are perfect we get property (2) with perfect-
ness. In this case for any assignment to x satisfying f, there exists an assignment to y satisfying

C1,...,Cp,. Furthermore for every j € {1,..., 3}, there exists an assignments to z'; satisfying all
the constraints C7 ;,...,Cy, ;. Thus there exists an assignment to x,y,z'1,...,2z's satisfying all

my + B(mg — 1) constraints. This yields property (2) with perfectness.

Finally we consider the case when the «;- and ay-implementations are strict (but not necessarily
perfect) and show that in this case also the collection of constraints above satisfies Property (2)
with strictness. Given an assignment to x satisfying f there exists an assignment to y satisfying
aq constraints from Cy,...,Cyy,, . Say this assignment satisfied v clauses from the set C1,...,Cj
and oy — 7y constraints from the set Cgi1,...,Cy,,. Then for every j € {1,...,3} such that the
clauses C; is satisfied by this assignment to x,y, there exists an assignment to z’; satisfying as
clauses from the set C1 ;,...,C}, . Furthermore, for the remaining values of j € {1,..., 3} there
exists an assignment to the variables z’; satisfying az — 1 of the constraints C ;,...,Cy,, ; (here
we are using the strictness of the ay implementations). This setting to y,z'1,...,2 3 satisfies
yaz+ (B —7v) (a2 — 1)+ a1 —v = a1 + B(az2 — 1) of the m constraints. This yields Property (2). A

similar analysis can be used to show the strictness. O

Next we show a simple monotonicity property of implementations.

Lemma 3.6 For integers o, with a < o, if F=f then F== f. Furthermore, strictness
and perfectness are preserved under this transformation.

Proof: Let constraint applications C1, ..., Cy, from F on x,y form an a-implementation of f(x).
Let g be any constraint from F and let k be the arity of g. Let Cri1,...,Chiiar—a be & — «
applications of the constraint g on new variables z = {z1,...,2;}. Then the collection of con-
straints C1,...,Cpra o On variable set x,y,z form an o/-implementation of f. Furthermore the
transformation preserves strictness and perfectness. O

3.1 Reduction from strict implementations
Here we show how strict implementations are useful in establishing AP-reducibility among MAX

CSP problems. But first we need a simple statement about the approximability of MAx CSP
problems.
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Proposition 3.7 ([39]) For every constraint family F there exists a constant k such that given
any instance T of WEIGHTED MAX CSP (F) with constraints of total weight W a solution satisfying
constraints of weight W/k can be found in polynomial time.

Proof: The proposition follows from the proof of Theorem 1 in [39] which shows the above for every
MAX SNP problem. (Note, in particular, that a random assignment satisfies a constant fraction
of WEIGHTED MAX CSP(F) instance; and such an assignment can be found deterministically by
using the method of conditional probabilities.) O

Lemma 3.8 If F/ == F then MAx CSP(F) <ap Max CSP(F).

Proof: The reduction uses Proposition 3.7 above. Let § a constant such that given an instance
Z of Max CSP(F) with m constraints an assignment satisfying % constraints can be found in
polynomial time.

Recall that we need to show polynomial time computable functions F' and G such that F' maps an
instance Z of MAX CSP(F) to an instance of MAX CSP(F'), and G maps a solution to F(Z) back
to a solution of 7.

Given an instance Z on n variables and m constraints, the mapping F simply replaces every
constraint in Z (which belongs to F) with a strict a-implementation using constraints of F', for
some constant a. (Notice that by Lemma 3.6 some such « does exist.) The mapping retains
the original n variables of Z as primary variables and uses m independent copies of the auxiliary
variables; one independent copy for every constraint in Z.

Let (x,y) be a r-approximate solution to the instance F'(Z), where x denotes the original variables
of 7 and y denote the auxiliary variables introduced by F. The mapping G uses two possible
solutions and takes the better of the two: The first solution is x; and the second solution z’ is the
solution which satisfies at least m /3 of the constraints in Z. G outputs the solution which satisfies
more constraints.

We now show that a r-approximate solution leads to an r’-approximate solution where ' < 14+~(r—
1) for some constant y. Let OPT denote the value of the optimum to Z. Then the optimum of F(Z)
is exactly OPT +m(« — 1). This computation uses the fact that for every satisfied constraint in the
optimal assignment to Z, we can satisfy « constraints of its implementation by choosing the auxiliary
variables appropriately (from Properties (1) and (2) of Definition 3.1); and for every unsatisfied
constraint exactly a — 1 constraints of its implementation can be satisfied (from Property (3) and
strictness of the implementation). Thus the solution (x,y) satisfies at least 1(OPT + m(a — 1))
constraints of F/(Z). Thus x satisfies at least 1(0PT+m(a—1)) —m(a— 1) constraints in Z. (Here
we use Properties (1) and (3) of Definition 3.1 to see that there must be at least 2(0PT + m(a —
1)) — m(a — 1) constraints of Z in whose implementations exactly « constraints must be satisfied.)
Thus the solution output by G satisfies at least

m
B
constraints. Using the fact that max{a,b} > Aa + (1 — A)b for any A € [0,1] and using A =
we lower bound the above expression by

}

max{%(OPT +m(a— 1)) —m(a—1)

OPT
r+pBla—-1)(r—1)
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Thus

< OPT
= op1/(r + Bla—1)(r — 1))

=r+pa-1r—-1)=14+Ba-1)+1)(r—1).

Thus we find that G maps r-approximate solutions of F'(Z) to (14 +(r — 1))-approximate solutions
to Z for v = B(a — 1) + 1 < oo as required. O

3.2 Reductions from perfect implementations

We now show how to use perfect implementations to get reductions. Specifically we obtain reduc-
tions among WEIGHTED MAX ONES, WEIGHTED MIN ONES and MIN CSP problems.

Lemma 3.9 If 7' =% F then WEIGHTED MAX ONES(F) (WEIGHTED MIN ONES(F)) is AP-
reducible to WEIGHTED MAX ONES(F') (resp. WEIGHTED MIN ONES(F')).

Proof: Again we need to show polynomial time computable functions ' and G such that F' maps an
instance Z of WEIGHTED MAX ONES(F) (WEIGHTED MIN ONES(F)) to an instance of WEIGHTED
Max ONES(F’) (WEIGHTED MIN ONES(F)), and G maps a solution to F(Z) back to a solution of
T

Given an instance Z on n variables and m constraints, the mapping F simply replaces every
constraint in Z (which belongs to F) with a perfect a-implementation using counstraints of F',
for some constant «. (Notice that by Lemma 3.6 some such a does exist.) The mapping retains
the original n variables of Z as primary variables and uses m independent copies of the auxiliary
variables; one independent copy for every constraint in Z. Further, F(Z) retains the weight of
the primary variables from Z and associates a weight of zero to all the newly created auxiliary
variables. Given a solution to F(Z), the mapping G is simply the projection of the solution back
to the primary variables. It is clear that every feasible solution to Z can be extended into a feasible
solution to F(Z) such that opT(Z) = oPT(F(Z)). Furthermore, the mapping G maps feasible
solutions to F'(Z) into feasible solutions to Z with the same obective. (This is where the perfectness
of the implementations is being used.) Thus the optimum of F'(Z) equals the value of the optimum
of Z and given an r-approximate solution to F'(Z), the mapping G yields an r-approximate solution
to Z. O

Lemma 3.10 If F' =& F then MIN CSP(F) <p MIN CSP(F').

Proof: Let a be large enough so that any constraint from F has a perfect a-implementation using
constraints from F'. Let Z be an instance of MIN CSP(F) and let Z’ be the instance of MIN
CSP(F') obtained by replacing each constraint of Z with the respective a-implementation. Once
again each implementation uses the original set of variables for its primary variables and uses its
own independent copy of the auxiliary variables. Note that the optimum of Z' may be as high as
ao if o is the optimum of Z (since the implementations are not strict). It is easy to check that
any assigment for Z' of cost V yields an assigment for Z whose cost is between V/a and V. In
particular, if the solution is an r-approximate solution to Z' then, V > — and thus it induces a
solution that is at least an («r)-approximate solution to Z. (Note that if the implementations were
strict, we would have obtained an AP-reduction by the above.) O
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3.3 Weighted vs. unweighted problems

Lemma 3.9 crucially depends on its ability to work with weighted problems to obtain reductions.
The following lemma shows that in most cases showing hardness for weighted problems is sufficient.
Specifically it shows that as long as a problem is weakly approximable, its weighted and unweighted
versions are equivalent. The result uses a similar result from Crescenzi et al. [15] who prove that
for a certain class of problems in poly-APX that they term “nice”, weighted problems AP-reduce
to problems with polynomially-bounded integral weights. (We include a sketch of their proof,
specialized to our case for the sake of completeness.) Using this result we scale all weights down
to small integers and then simulate the small integral weights by replication of clauses and/or
variables. (We note that the little-oh slackness in the definition of AP-reduction is exploited in this

step.)

Lemma 3.11 For every family F, if WEIGHTED MAX ONES(F) is in poly-APX, then WEIGHTED
MAX ONES(F) AP-reduces to MAX ONES(F). Analogous results hold for MIN CSP(F), MAX
CSP(F) and MIN ONES(F).

Proof: Fix a family F. We first reduce WEIGHTED MAX ONES(F) to WEIGHTED MAX ONES(F)
restricted to instances with polynomially bounded positive integer weights, provided WEIGHTED
MAx ONES(F) is in poly-APX. This step uses a scaling idea as in [15, Theorem 4]. Essentially
the same proof also works for the cases of WEIGHTED MAX CSP(F), WEIGHTED MIN CSP(F)
or WEIGHTED MIN ONES(F). Given an instance Z = (x,C,w) of WEIGHTED MAX ONES(F),
we will define a new vector of weights w’ and use this to define a new instance Z' = (x, C, w') of
WEIGHTED MAX ONES(F) with polynomially bounded weights. Let A be a p(n)-approximation
algorithm for WEIGHTED MAX ONES(F); and let ¢ be the value of the solution returned by A on Z.
We let N = n?(p(n))? +np(n), and let w! = [%J +1, and finally let w} = min{w!, N - p(n) + 1}.
It is clear that the weights w} are polynomially bounded. Further note that if w} < w! then no
feasible solution to Z (or Z') can have x; set to 1, since any such solution would have value at least
w; > t - p(n), contradicting the assumption that A is a p(n)-approximation algorithm. Thus, in
particular, we have oPT(Z') > (N/t) - oPT(Z). Given an r-approximate solution s’ to Z' we return
the better of the solutions s’ and the solution returned A as the solution to Z. It is clear that
if 7 > p(n), then the returned solution is still an r-approximate solution. Below we see that an
r-approximate solution to Z', with r < p(n), is also a (r + 1/n)-approximate solution to Z of value
at least

(t/N) - (opT(Z')/r) —n) > opPT(Z)/r — (nt/N)
> opT(Z)/r — (n-opPT(Z)/N)
= OPT(I)(% B nr21-l— T
oprT(Z)/(r+1/n)

This concludes the first step of the reduction. In the next step we give an AP-reduction from the
class of problems with polynomially bounded weights to the unweighted case.

We start with the case of WEIGHTED MAX CSP(F) first. Given an instance of WEIGHTED MAX

CSP(F) on variables z1, ..., z,, constraints C, ..., Cy, and polynomially bounded integer weights
wi, ..., Wn; we reduce it to the unweighted case by replication of constraints. Thus the reduced
instance has variables z1, ..., %, and constraint {{C/ }izi i, where constraint CJ = C;. Tt is clear
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that the reduced instance is essentially the same as the instance we started with. Similarly we
reduce WEIGHTED MIN CSP(F) to MiN CSP(F).

Given an instance Z of WEIGHTED MAX ONES(F) on variables z1,. .., z,, constraints Cy, ..., Cy,
and weights wy, ..., w,; we create an instance Z' of
MAX ONES(F) on variables {{yf};”;l}?zl For every constraint C; of Z of the form f(z;,...,z;,),

and for every j € {1,...,k} and n; € {1,...,w;;} we impose the constraints f(y?ll,...,yzv?). We
now claim that the reduced instance is essentially equivalent to the instance we started with. To
see this, notice that given any feasible solution y to the instance Z', we may convert it to another
feasible solution y’ in which, for every i, all the variables {(y')!|; = 1,...,w;} have the same
assignment, by setting (y’)g to 1 if any of the variables yf, J = 1,...,w; is set to 1. Notice
that this preserves feasibility; and only increases the contribution to the objective function. The
assignment y’ now induces an assignment to x with the same value of the objective function. Thus
the reduced instance is essentially equivalent to the original one. This concludes the reduction from
WEIGHTED MAX ONES(F) to MAX ONES(F). The reduction from WEIGHTED MIN ONES(F) to
MIN ONES(F) is similar. O

4 Characterizations: New and Old

In this section we characterize some of the properties of functions that we study. Most of the
properties are defined so as to describe how a function behaves if it exhibits the property. For the
hardness results however we need to see how to exploit the fact that a function does not satisfy
some given property. For this we would like to see some simple witness to the fact that the function
does not have a given property. As an example consider the affineness property. If a function is
affine, it is easy to see how to use this property. What will be important to us is whether there
exists a simple witness to the fact that a function f is not affine. Schaefer [42] provides such a
characterization: If a function is not affine, then there exist assignments sy, s and s3 that satisfy f
such that s; @ sy @ s3 does not satisfy f. This is exploited by Schaefer in his classification theorem
(and by us, in our classifications). In this section, we describe other such characterizations and
the implementations that are obtained from them. First we introduce some more definitions and
notations that we will be used in the rest of the paper.

4.1 Definitions and Notations

For s € {0,1}%, we let 5 € {0,1}* denote the bit-wise complement of s. For a constraint f of arity
k, let f~ be the constraint f(s) = f(5). For a constraint family F, let ¥~ = {f~ : f € F}.
For s1,s9 € {0, 1}’“, 51 @ s2 denotes the bitwise exclusive-or of the assignments s; and sp. For
s € {0,1}*, Z(s) denotes the subset of indices i € [k] where s is zero and O(s) denotes the subset
of indices where s in one.

For a constraint f of arity k, S C [k] and b € {0,1}, f|sp) is the constraint of arity k' =
k —|S| defined as follows: For variables z;,,...,;,, where {i1,... iz} = [k] — S, we define
flespy(@iyy -y miy,) = f(21,...,7%) where z; = b for i € S. We will sometimes use the notation
flip) to denote the function f|;). For a constraint family F, the family Flo is the family
{flsplf € F,S C larity(f)]}. The family F|; is defined analogously. The family F|o; is the family
(Flo)|1 (or equivalently the family (F|1)lo)-
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Definition 4.1 (C-closed) A constraint f is C-closed (complementation-closed) if for every as-
signment s, f(s) = f(3).

Definition 4.2 (Existential zero/existential one) A constraint f is an ezxistential zero con-
straint if f(0) =1 and f(1) = 0. A constraint f is an existential one constraint if f(0) =0 and

f(1) = 1.

The terminology above is motivated by the fact that an existential zero constraint application
f(x1,...,xx) forces at least one of the variables to be zero (while an all zero assignment definitely
satisfies the application).

Every constraint f can be expressed as the conjunction of disjuncts. This representation of a
function is referred to as the conjunctive normal form (CNF) representation of f. Alternately, a
function can also be represented as a disjunction of conjuncts and this representation is called the
disjunctive normal form (DNF) representation.

A partial setting to the variables of f that fixes the value of f to 1 is called a term of f. A
partial setting that fixes f to 0 is called a clause of f. We refer to the terms and clauses in a
functional form: Le., we say OR3,1(z1,22,23) = 21V 22/ ~23 is a clause of f(z1,...,z,) if setting
z1 = x9 = 0 and z3 = 1 fixes f to being 0. Similarly we use the AND; ; to denote the terms.
Notice that a DNF (CNF) representation of f can be obtained by expressing as the conjunction
(disjunction) of its terms (clauses).

Definition 4.3 (Minterm/Maxterm) A partial setting to a subset of the variables of f is a
mainterm if it is a term of f and no restriction of the setting to any strict subset of the variables
fizes the value of f. Analogously a clause of f is a maxterm if it is a minimal setting to the variables
of f so as to fix its value to 0.

As in the case of terms and clauses, we represent minterms and maxterms functionally, i.e., using

ORZ',]' and ANDiyj.

Definition 4.4 (Basis) A constraint family F' is a basis for a constraint family F if any con-
straint of F can be expressed as a conjunction of constraints drawn from F'.

Thus, for example, the basis for affine constraints is the set {XOR,|p > 1} U{XNOR,|p > 1}. The
basis for width-2 affine constraints is the set 7 = {XOR,XNOR, 7, F'}, and the basis for 2CNF
constraints is the set 7 = {ORg9, ORy1,ORy2, T, F}. The definition of a basis is motivated by
the fact that if ' is a basis for F, then F' can perfectly implement every function in F (see
Proposition 3.4).

4.2 0-validity and 1-validity

The characterization of 0-valid and 1-valid functions is obvious. We now show what can be imple-
mented with functions that are not O-valid and not 1-valid.

Lemma 4.5 Let f be a non-trivial constraint which is C-closed and is not 0-valid (or equivalently
not 1-valid)®. Then {f} 22 XOR.

’Notice that C-closedness implies that f is 0-valid if and only if it is 1-valid.

21



Proof: Let k£ denote the arity of f and let ky and k; respectively denote the maximum number
of 0’s and 1’s in any satisfying assignment for f; clearly kg = k;. Now let S; = {z1,...,z3;} and
Sy =1{y1,...,y3r} be two disjoint sets of 3%k variables each. In the first phase of the proof, we place
a large number of constraints on the variables of S; and Sy that ends up implementing, perfectly
but not necessarily strictly, the constraints XOR(z;,y;), for every ¢ and j. In the second phase
we will introduce two new variables x and y and augment the constraints so as to implement the
constraint XOR(z,y) perfectly and strictly.

We start by placing the constraint f on a large collection of inputs as follows: For every satisfying
assignment s, we place (*F)(,**)) constraints on the variable set S; U Sy such that every i-variable
subset of S, appears in place of 0’s in s and every (k — i) variable subset of S, appears in place of
1’s in the assignment s, where ¢ denotes the number of 0’s in s. Let this collection of constraints be
denoted by Z. We will first show that Z gives a perfect (but possibly non-strict) implementation

of the constraint XOR(z;,y;).

Clearly, any solution which assigns identical values to all variables in S, and the complementary
value to all variables in Sy, satisfies all the constraints in Z. We will show the converse, i.e., every
assignment satisfying all the above constraints assigns identical values to all variables in S, and
the complementary value to every variable in Sy.

Fix any assignment satisfying all the constraints and let Z and O respectively denote the set
of variables set to zero and one respectively. We claim that any solution which satisfies all the
constraints must satisfy either Z = S; and O = Sy or Z = S and O = S,.

Note first that at least one of the conditions |S; N Z| > k or |S; N O] > k must hold. Consider the
case where |S; N Z| > k. In this case, we will show that S; = Z and Sy = O. (A similar argument
for the other case will show S, = O and Sy = Z.)

e First we claim that |S, N Z| < k and thus |S, N O] > 2k. Assume for contradiction that
|Sy N Z| > k. Then there exists a constraint application in Z with all its input variables
coming from the sets S, N Z and S, N Z. By definition of Z all these variables are set to zero
and hence this constraint application is unsatisfied (by the 0-validity of f).

e Next we claim that every variable of S, is set to 0: Assume otherwise and, w.l.o.g., let z;
be set to 1. Let s be an assignment with minimal number of 0’s. Assume w.l.o.g. that
s = 0ko1k=ko W lo.g., let y1,...,yor be set to one. (We know 2k such variables exist since
|Sy N O| > 2k.) By our choice of constraint applications, f(z1,..., %k, Y1,-- ., Yk—k,) IS OnE
of the constraint applications. But at most ky — 1 variables of this constraint are set to 0 and
thus this application can not be satisfied.

e Finally, similar to the above step, we can show that every variable in S, is set to 1.

Thus we have shown that if |S, N Z| > k, then S, = Z and S, = O. The other case is similar, and
this concludes the first phase.

We next augment the collection of constraints above as follows. Consider a least Hamming weight
satisfying assignment s for f. Without loss of generality, we assume that s = 10¥=F1—=11k1 We
add the constraints f(z,z1,..., Tk —1,Y1s---+Yk,) a0 f(Y, T15 s Thky—1,Y1s--- Yk, ). We now
argue that the resulting collection of constraints yields a perfect and strict implementation of the
constraint XOR(z, y).
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Clearly s' = 0F~*11%1 is not a satisfying assignment (since it has smaller Hamming weight than s).
Since f is C-closed, we have the following situation :

f0
k—ki1—1 k1
—N
s 0 00..0 11..1 0
s 1 00..0 11..1 1
5 0 11..1 00..0 1
s 1 11..1 00...0 0

If £ = 1, then to satisfy the first of the two constraints (in addition to all the earlier constraints)
above, we must have Z = S;, O = Sy and thus must have y = 0. Similarly if z = 0 then we must
have O = 5, Z = S, and y = 1. Thus the given constraints do form a perfect implementation of
XOR(z,y). Finally if © = y, then the setting O = S, and Z = S, satisfies all constraints except
one (which is one of the last two additional constraints). Thus the implementation satisfies the
strictness property as well. O

Lemma 4.6 Let fo, f1 and g be non-trivial constraints, possibly identical, which are not 0-valid,
not 1-valid, and not C-closed, respectively. Then { fo, f1,9} s:/p> {T, F}.

Proof: We will only describe the implementation of constraint 7°(+); the implementation for the
constraint F(-) is identical.

Assume, for simplicity, that all the three functions fy, fi and g are of arity k. We use an imple-
mentation similar to the one used in the proof of Lemma 4.5. To implement 7'(x), we use a set of
6k auxiliary variables S; = {x1,..., 23} and Sy = {y1,...,ysx}. For each h € {fo, f1,g}, for each
satisfying assignment s of h, if j is the number of 0’s in s we place the (3;“) (kgf j) constraints h with
all possible subsets of S, appearing in the indices in Z(s) and all possible subsets of S, appearing in
O(s). Finally we introduce one constraint involving the primary variable z. Let s be the satisfying
assignment of minimum Hamming weight which satisfies fp. Notice that s must include at least

one 1. Assume, without loss of generality that s = 10¥=%1=11¥1 Then we introduce the constraint
application fo(Z,Z1,. .., Th—ky—1,Y1s---» Yk )-

It is clear that by setting all variables in S, to 0 and all variables in S, to 1 we get an assignment
that satisfies all constraints except possibly the last constraint (which involves z). Furthermore the
last constraint is satisfied if and only if x = 1. Thus, to prove the lemma, it suffices to show that
any solution which satisfies all the constraints above must set x to 1, all variables in S to 0 and
all variables in S, to 1.

Fix an assignment satisfying all the constraints. Let O be the set of variables in S, U Sy set to one
and Z be the set of variables set to zero. We need to show that S, N O = () and we do so in stages.

e First, we consider the possibility |S; N O| > k. We consider two cases.

— Case: |Sy; N Z| > k: Consider a satisfying assignment s such that g(5) = 0. Such an
assignment must exist since ¢g is not C-closed. Note that the constraint applications
include at least one where g is applied to variables where the positions corresponding to
O(s) come from S, N Z and positions corresponding to Z(s) come from S, N O. But this
constraint is not satisfied by the assignment (since ¢g(5) = 0).
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— Case: |SyNO| > 2k: Let s; be a satisfying assignment for f;. Note that the application
of the constraint f; with the positions corresponding to O(s) coming from S, NO and the
positions corresponding to Z(s) coming from S, N O is one of the constraints imposed
above, and is not satisfied (since f; is not 1-valid).

Thus in either case, we find a constraint that is not satisfied and thus this possibility (|S,NO| >
k) can not occur. Thus we conclude |S, N O| < k.

e From the above, we have |S; N Z| > 2k. If |S, N Z| > k, then we can find an application
of the constraint fy to the variables in the set Z, that will not be satisfied. Thus we have
|Sy N Z| < k and thus |S, N O| > 2k. This can now be used to conclude that S, N Z = ¢ as
follows. Consider a satisfying assignment with smallest number of ones. The number of ones
in such an assignment is positive since fy is not 0-valid. If we consider all the constraints
corresponding to this assignment with inputs from Sy and S, N Z only, it is easy to see that
there will be at least one unsatisfied constraint if S, N Z # ¢. Hence each variable in Sy is set
to one in this case. Finally, using the constraints on the constraint f; which is not 1-valid, it
is easy to conclude that in fact Z = §,.

Having concluded that S, = Z and S, = O, it is easy to see that the constraint fo(z,z1, ..., Tr—k -1,
Y1, .-, Yk, ) is satisfied only if z = 1. Thus the set of constraints imposed above yields a strict and
perfect implementation of 7'(-). The constraint F(-) can be implemented in an analogous manner.
a

For the CSP classes, it suffices to consider the case when F is neither 0-valid nor 1-valid. For the
MAx ONEs and MIN ONES classes we also need to consider the case when F only fails to have
one of these two properties. So keeping these classes in mind we prove the following lemma, which
shows how to obtain a weak version of 7" and F' in these cases.

Lemma 4.7 If F is not C-closed and not 1-valid, then F S:/p> f for some existential zero constraint
fo. Analogously, if F is not C-closed and not 0-valid, then F s:/p> f1 for some existential one
constraint fi.

Proof: We only prove the first part of the lemma. The second part is similar.

The proof reduces to two simple sub-cases. Let f € F be a constraint that is not 1-valid. If f is
0-valid, then we are done since f is an existential zero constraint. If f is not 0-valid, then F has a
non-C-closed function, a non 0-valid function and a non-1-valid function, and hence by Lemma 4.6,
F perfectly and strictly implements F' which is an existential zero function. O

4.3 2-monotone functions

Definition 4.8 (0/1-term) A set V C {1,...,k} is a O-term (1-term) for a k-ary constraint f if
every assignment s with Z(s) DV (resp. O(s) D V) is a satisfying assignment for f.

The choice of the name reflects the fact that a O-term is a term consisting of all negated variables
(or variables set to 0) and a 1-term consists of all positive variables.

Lemma 4.9 A constraint f is a 2-monotone constraint if and only if all the following conditions
are satisfied:
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(a) for every satisfying assignment s of f either Z(s) is a O-term or O(s) is a 1-term.
(b) if Vi and Vs are 1-terms for f, then Vi N V4 is a 1-term, and
(c) if Vi and Vs are O-terms for f, then Vi NVy is also a 0-term.

Proof: Recall that a 2-monotone constraint is one that can be expressed as a disjunction of two
terms. Every satisfying assignment must satisfy one of the two terms and this gives Property (a).
Properties (b) and (c) are obtained from the fact that the constraint has at most one term with all
positive literals and at most one term with all negative literals.

Conversely consider a constraint f which satisfies properties (a)-(c). Let s1,...,s; be the satisfying
assignments of f such that Z(s;) is a O0-term, for ¢ € {1,...,l}. Let t;....,tx be the satisfying
assignments of f such that O(t;) is a 1-term, for j € {1,...,k}. Then Z = N;Z(s;) is a 0-term and
O =N;0(t}) is a 1-term for f respectively (using (b) and (c)) and together they cover all satisfying
assignments of f. Thus f(x) = (Aiez—z;) V (Ajeox;), which is 2-monotone. O
We now use the characterization above to prove, in Lemma 4.11, that if a function f is not 2-
monotone, then the family {f, T, F'} implements the function XOR. We first prove a simple lemma
which shows implementations of XOR by some specific constraint families. This will be used in
Lemma 4.11.

Lemma 4.10 1. {ANDy;} == XOR.

2. For everyp > 2, we have { f,, T, F'} i—/—p> XOR, where fy(x1,...,2p) = ORy(z1,...,25) ANAND,(z1,...,2p).

3. For every p > 2, we have {NAND,, T, F'} == XOR.

Proof: For Part (1) we observe that the constraints {ANDgy ;(x1,22), ANDy (22, 21)} provide a
strict (but not perfect) 1-implementation of XOR(z1, z2).

For Part (2) notice that the claim is trivial if p = 2, since the function f, = XOR. For p > 3,
the constraints {fy(z1,...,2p), T(x3),...,T(zp)} perfectly and strictly implement NAND(z1, z2).
Similarly the constraints {f,(z1,...,zp), F'(z3),...,F(zp)} perfectly and strictly implement the
constraint OR(z1, z2). Finally the constraints OR(z1,z2) and NAND(z1, z2) perfectly and strictly
implement the constraint XOR(z1,z2). Part (2) follows from the fact that perfect and strict
implementations compose (Lemma 3.5).

Finally for Part (3), we first use the constraints {NAND,(z1,...,z}), F(z3),...,F(zp)} to im-
plement, strictly and perfectly, the constraint NAND(z1,z3). Now we may use {NAND(z, z2),
NAND(x1.x2),T(z1),T(z2)} to obtain a 3-implementation of the constraint XOR(z1,z2). (Note
that in the case the implementation is not perfect.) O

Lemma 4.11 Let f be a constraint which is not 2-monotone. Then {f,T, F} == XOR.

Proof: The proof is divided into three cases, which depend on which of the 3 conditions defining
2-monotonicity is violated by f. We first state and prove the claims.

Claim 4.12 If f is a function violating property (a) of Lemma 4.9, then {f, T, F} == XOR.

Proof: There exists some assignment s satisfying f, and two assignments sy and s; such that
Z(s) C Z(sp) and O(s) C O(s1), such that f(s9) = f(s1) = 0. Rephrasing slightly, we know that
there exists a triple (s, s, s1) with the following properties:

f(s0) = f(s1) =05 f(s) = 1; Z(s0)2Z(5)2%(s1) (1)
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Note that the condition Z(s¢)2Z(s)2Z(s1) implies that O(sp) C O(s) C O(s1). We call property
(1) the “sandwich property”. Of all triples satisfying the sandwich property, pick one that minimizes
|Z (s0) N O(s1)]-

Without loss of generality, assume that Z(so) N O(s1) ={1,...,p}, Z(so)NZ(s1) ={p+1,...,¢},
and O(s9)NO(s1) = {q+1,...,k}. (Notice that the sandwich property implies that O(s¢)NZ(s1) =
(.) Let f; be the constraint given by fi(z1,...,2p) = f(z1,...,2p,0,...,0,1,...,1). Notice that
the constraint applications f(z;...x) and T'(x;) for every i € O(sp) N O(s1) and F(x;) for every
i € Z(s9) N Z(s1) implement the function f;. Thus it suffices to show that {f;,T, F'} implements
XOR.

Below we examine some properties of the constraint f;. We will use the characters t,t',t;,t} to
denote assignments to fi, while we use the characters s, s, s;, s; to denote assignments to f. Note
that:

1. f1(0) = f1(1) =0.
2. f1 has a satisfying assignment. Thus p (the arity of f1) is at least 2.

3. If fi(t1) = O for some t # 1, then for every assignment ¢ such that Z(¢)2Z(t;), it is the
case that f1(¢1) = 0: This follows from the minimality of |Z(so) N O(s1)| above. If not then
consider the assignments s}y = sg, s’ = t097P1¥~9 and s} = #;097P1¥=4. The triple (s}, s', s})
also satisfies the sandwich property and has a smaller value of |Z(sf,) N O(s})].)

4. If f1(to) = 0 for some ty # 0, then for every assignment ¢ such that O(£)DO(ty), it is the case
that fi(¢) = 0. (Again from the minimality of |Z(s¢) N O(s1)].)

These properties of f; now allow us to identify f; almost completely. We show that either (a) p = 2
and fi(z122) is either ANDy ; (21, 22) or ANDg (2, 21); or (b) f is satisfied by every assignment
other than the all zeroes assignment and the all ones assignment. In either case {f1, T, F'} strictly
implements XOR by Lemma 4.10, Parts (1) and (2). (Note that Part (1) of Lemma 4.10 only yields
a strict (but not perfect) implementation.) Thus proving that either (a) or (b) holds concludes the
proof of the claim.

Suppose (b) is not the case. Le., fi is left unsatisfied by some assignment ¢ and ¢ # 0 and ¢ # 1.
Then we will show that the only assignment that can satisfy f; is £. But this implies that ¢, ¢, 0
and 1 are the only possible assignments to f1, implying p must be 2 thereby yielding that (a) is
true. Thus it suffices to show that if f1(¢) = 0, and ¢’ # %, then f1(¢') = 0. Since #’ is not the
bitwise complement of £, there must exist some input variable which shares the same assignment
in ¢t and t'. W.l.o.g. assume this is the variable 2. Consider the case that this variable takes on
the value 0 in the assignment ¢. Then we claim that the assignment f;(01...1) = 0. This is true
since O(01...1)20(t). Now notice that f(¢') = 0 since Z(¢')2Z(01...1). (In case the first variable
takes on the value 1 in the assignment ¢, is symmetric.) Thus we conclude that either (a) or (b)
always holds and this concludes the proof of the claim. O

Claim 4.13 Suppose f wviolates property (b) of Lemma 4.9. Then {f,T,F} S:/p> XOR.

Proof: Let V4 and V, be two 1-terms such that V3 N Vs is not a 1-term. I.e., There exists an
assignment s s.t. O(s)DV; NV, and f(s) = 0. Among all such assignments let s be the one with
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the maximum number of 1’s. The situation looks as shown below:

i
Vs
i\0(s) Vinva 12\0(s)
— — —
S 00..0 11..1 11..1 11..1 00..0 00..011...1
—— o e N N N e
p q r t u v w

In other words s = 0P19T"+0u+t?1% and f(s) = 0. Furthermore, every assignment of the form
[pratryltutotw gatisfies f and every assignment of the form P 417 THusv W gatisfies f (where the
xs above can be replaced by any of 0/1 independently). In particular this implies that p,u > 1.
Consider the function f; on p+wu > 2 variables obtained from f by restricting the variables in O(s)
to 1 and restricting the variables in Z(s) — (V3 U V3) to 0. Notice that the constraint applications
flz1...x), T(x;) for i € O(s) and F(z;) for i € Z(s) — (V1 U Va) strictly implement f;. Thus it
suffices to show that {f1,7, F'} implements XOR. We do so by observing that fi(z1...zpyy) is the
function NAND,, . Notice that f;(0) = 0. Furthermore if f;(¢) = 0 for any other assignment ¢ then
it contradicts the maximality of the number of 1’s in s. The claim now follows from Lemma 4.10,
Part (3), which shows that the family {NAND,,, T, F'} implements XOR, provided p +u > 2. O

Claim 4.14 Suppose f wviolates property (c) of Lemma 4.9. Then {f,T,F} S:/p> XOR.

Proof: Similar to proof of the claim above. O

The lemma now follows from the fact any constraint fo that is not 2-monotone must violate one of
the properties (a), (b) or (¢) from Lemma 4.9. O

4.4 Affine functions

Lemma 4.15 ([42]) f is an affine function if and only if for every three satisfying assignments
51,82 and s3 to f, s1 D s2 P s3 s also a satisfying assignment.

We first prove a simple consequence of the above which gives a slightly simpler sufficient condition
for a function to be affine.

Corollary 4.16 If f is not affine, then there exist two satisfying assignments s1 and sy for f such
that s1 ® sz does not satisfy f.

Proof: Assume otherwise. Then for any three satisfying assignments s1, so and s3, we have that
f(s1 @ s2) =1 and hence f((s1 @ s2) ® s3) = 1, thus yielding that f is affine. O

Lemma 4.17 If f is an affine constraint then any function obtained by restricting some of the
variables of f to constants and existentially quantifying over some other set of variables is also

affine.

Proof: We use Lemma 4.15 above. Let f; be a function derived from f as above. Counsider any
three assignments s}, s, and s5 which satisfy fi. Let s1 s and s3 be the respective extensions which
satisfy f. Then the assignment s; ® sy @ s3 extends s} @ s, @ sy and satisfies f. Thus s| ® s, @ s§
satisfies fi. Thus (using Lemma 4.15) again, we find that f; is affine. O

Lemma 4.18 If f is an affine function which is not of width-2 then {f} i—/—p> XOR,, or {f} i—/—p>
XNOR,, for some p > 3.
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Proof: Let k be the arity of f. Define a dependent set of variables to be a set of variables § C
{1,...,k} such that not every assignment to the variables in S extends to a satisfying assignment
of f. A dependent set S is minimally dependent set if no strict subset S’ C S is a dependent set.
Notice that f can be expressed as the conjunction of constraints on its minimally dependent sets.
Thus if f is not of width-2 then it must have a minimally dependent set S of cardinality at least 3.
Assume S = {1,...,p}, where p > 3. Consider the function

filzr .. zp) = Fzpia, ... zp st o, ... 2p).

f1 is affine (by Lemma 4.17), is not satisfied by every assignment and has at least 27! satisfying
assignments. Thus f; has exactly 2P~! assignments (since the number of satisfying assignments
must be a power of 2). Thus f; is described by exactly one linear constraint and by the minimality
of S this must be the constraint XOR(z; ...zp) or the constraint XNOR(z; ... z,). O

4.5 Horn Clauses, 2CNF and ITHS

Lemma 4.19 If f is a weakly positive (weakly negative / IHS-B+/ IHS-B-/ 2CNF) constraint
then any function obtained by restricting some of the variables of f to constants and existentially

quantifying over some other set of variables is also weakly positive (resp. weakly negative / IHS-B+/
IHS-B-/ 2CNF ).

Proof: It is easy to see that f remains weakly positive (weakly negative / IHS-B+/ IHS-B-/
2CNF) when some variable is restricted to a constant. Hence it suffices to consider the case where

some variable y is quantified existentially. (Combinations of the possibilities can then be handled

by a simple induction.) Thus consider the function fi(z1,...,zx) def Jy s.t. f(z1,...,2k,y). Let

flay,. .z, y) = (Z\ICj(i‘)) A (7\ (€5 (@) \/y)/\ (7\1 Cll(fi)\/ﬁy))

Jo=1 Jji1=1

be a conjunctive normal form expression for f which shows it is weakly positive (weakly negative
/ IHS-B+/ IHS-B-/ 2CNF), where the clauses Cj, CJQO and C}l involve literals on the variables
Llyeee sy L

We first show a simple transformation which creates a conjunctive normal form expression for f;.
Later we show that f; inherits the appropriate properties of f.

Define mgy x m; clauses 0]001]1( z) = def CO (Z)V C}l (Z). Next, we note that f1(Z) can be expressed as
follows:

h@) = A0V fi(z1)
. ((/\OJ-(f))/\(/\o;O(az)))v( AGE NG )
j jo

_ (/\oj(g—c))/\(/\co VN @) )
= (/,\Cj(j /\(/\/\C,?oljla_j> (2)
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To conclude we need to verify that the right hand side of (2) satisfies the same properties as f.
Furthermore we only have to consider clauses of the form C][.]Olj . (%) since all other clauses are directly
from the expression for f. We verify this below:

e If f is weakly positive, then the clause C]OO involves at most one negated variable, and the
clause C}l involves no negated variable (since the clause participating in f is (C’}1 (Z)V —y)
which has a negated y involved in it). Thus the clause defining C][-]Oljl also has at most one
negated variable.)

e Similarly if f is weakly negative, then the clauses C9L. has at most one positive literal.

Joj1
e If f is 2CNF, then the clauses C]OO and C}l are of length 1 and hence the clause CYL is of

Jojt
length at most 2.

e If f is IHS-B+ then the clause C]OO either has only one literal which is negated or has only
positive literals. Furthermore C;l has at most one positive literal. Thus C_'?Oljl either has

only positive literals or has at most two literals one of which is negated. Hence C][-]Oljl is also
[HS-B+.
e Similarly if f in IHS-B— then the clause Cjooljl is also IHS-B—.
This concludes the proof of the lemma. O

Lemma 4.20 f is a weakly positive (weakly negative) constraint if and only if all its mazterms are
weakly positive (weakly negative).

Proof: We prove the lemma for the weakly positive case. The other case is similar. For the easy
direction, recall that a function can be expressed as the conjunction of all its maxterms. If all
maxterms are weakly positive then this gives a weakly positive representation of f.

For the other direction, assume for contradiction that f be a weakly positive constraint that has
C=-oV---V2,Vrps1V--- Vo4 as a maxterm, for some p > 2. Let the arity of f be k.
Consider the function

def _ —_
f1($1£1;2) = Ela;q+1, ey Tk s.t. f(.%‘lelp 20q pxq_,_l PN :L‘k)
Since C is an admissible clause in a CNF representation of f, we have that if we set z,..., 2, to
1 and setting xp41,...,74 to 0 then no assignment to x41,...,z; satisfies f. Thus we find that

fi(11) = 0. By the fact that clause is a maxterm we have that both the assignments z; ...z, =
017710977 and 7 ... zy = 10177207 P can be extended to satisfying assignments of f. Thus we find
that f1(10) = f1(01) = 1. Thus f; is either the function NOR or XOR. It can be verified easily that
neither of these is 2-monotone. (Every basic weakly positive function on 2 variables is unsatisfied
on at least one of the two assignments 01 or 10.) But this is in contradiction to Lemma 4.19 that
showed that every function obtained by restricting some variables of f to constants and existentially
quantifying over some others should yield a weakly positive function. O

Lemma 4.21 f is a 2CNF constraint +f and only if all its mazterms are 2CNF.

Proof: The “if” part is obvious. For the other direction we use Lemma 4.19. Assume for contradic-
tion that f has a maxterm of the form z; \/ 22\ 23V - -V V ~2pr1 V- -V 24, (For simplicity
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we assume p > 3. Other cases where one or more of the variables x1,...,x3 are negated can be
handled similarly.) Consider the function

def — —
fl(.’L‘l.’L‘g.’L‘g) = Ela;q+1,...,a;k s.t. f($1,$2,$3,0p 3’1q p,a;q+1,...,a;k).

Then since 21 \/ z2 V z3 ... is a maxterm of f, we have that f1(000) = 0 and f;(100) = f,(010) =
f1(001) = 1. We claim that f; can not be a 2CNF function. If not, then to make f1(000) = 0, at
least one of the clauses x1, x2, 23, z1 \/ 22, 2V 3 or x3\/ z1, should be a clause of f; in any 2CNF
representation. But all these clauses are left unsatisfied by at least one of the assignments 100, 010
or 001. This validates our claim that f; is not a 2CNF constraint. But f; was obtained from f by
setting some variables to a constant and existentially quantifying over others and by Lemma 4.19
f1 must also be a 2CNF function. This yields the desired contradiction. O

Lemma 4.22 An affine function [ is a width-2 affine function if and only if all its minimally
dependent sets are of cardinality at most 2.

Proof: We use the fact that Fopn C Focnr N Fa. Suppose f € Foa has a minimally dependent
set of size p > 3 and say the set is x1,...,z,. Then by existential quantification over the variables
Zp+i,--.,2, and by setting the variables z4,...,z, to 0, we obtain the function fi(z1,z2,23)
which is an affine function (by Lemma 4.17) with 1,22, 23 as a minimally dependent set. Thus
this function is either XOR3 or XNORj3. But now notice that neither of these functions is a 2CNF
function. But since f is a 2CNF function Lemma 4.19 implies that f; must also be a 2CNF function.
This yields the required contradiction. O

5 Classification of Max CSP

The main results of this section are in Sections 5.1 and 5.2. These results were originally obtained
by Creignou [11]. Her focus however is on the the complexity of finding optimal solutions to the
optimization problems. The proofs for hardness of approximation are left to the reader to verify.
We give full proofs using the notions of implementations. Our proof is also stronger since it does
not assume replication of variables as a basic primitive. This allows us to talk about problems such
as MAX EESAT. In Section 5.3 we extend Schaefer’s results to establish the hardness of satisfiable
MAXx CSP problems. Similar results, again with replication of variables being allowed, were first
shown by Hunt et al. [26].

5.1 Containment results for MaAax CSP

We start with the polynomial time solvable cases.

Proposition 5.1 WEIGHTED MAX CSP(F) (WEIGHTED MIN CSP(F)) is in PO if F is O-valid
(1-valid).

Proof: Set each variable to zero (resp. one); this satisfies all the constraints. O

Before proving the containment in PO of MAx CSP(F) for 2-monotone function families, we show
that the corresponding WEIGHTED MIN CSP(F) is in PO. The containment for WEIGHTED MAX
CSP(F) will follow easily.
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Lemma 5.2 WEIGHTED MIN CSP(F) is in PO if F is 2-monotone.

Proof: This problem reduces to the problem of finding s-t min-cut in directed weighted graphs.
2-monotone constraints have the following possible forms :

(a) ANDp(xil, e ,xip),
(b) NOR(zj,,...,zj,), and
(C) ANDp(xil,...,xip)VNORq(:Ujl,...,qu).

Construct a directed graph G with two special nodes F' and T and a vertex v; corresponding to
each variable z; in the input instance. Let co denote an integer larger than the total weight of all
constraints.

Now we proceed as follows for each of the above classes of constraints :

e For a constraint C' of weight w of the form (a), create a new node ec and add an edge from
each v;,, [ € [p], to ec of capacity co and an edge from ec to T of capacity w.

e For a constraint C' of weight w of the form (b), create a new node ec and add an edge from
ec to each vj,, | € [g], of capacity oo, and an edge from F' to e¢ of capacity w.

e Finally, for a constraint C of weight w of the form (c), we create two nodes ec and ec. For
every | € [p], we add an edge from v;, to ec of capacity oo, and for every I € [¢], we add an
edge from e¢ to vj, of capacity oo, and finally an edge from ec to eg of capacity w. (Note in
this case there are no edges connecting F or T to any of the vertices.)

Notice that each vertex of type ec or éc can be associated with a term: ec with a term on positive
literals and €; with a term on negated literals. We use this association to show that the value of
the min F-T cut in this directed graph equals the weight of the minimum number of unsatisfied
constraints in the given WEIGHTED MIN CSP(F) instance.

Given an assignment which fails to satisfy constraints of weight W, we associate a cut as follows:
Vertex v; is placed on the F' side of the cut if and only if it is set to 0. A vertex e¢ is placed on the
T side if and only if the term associated with it is satisfied. A vertex e¢ is placed on the F side
if and only if the term associated with it is satisfied. It can be verified that such an assignment
has no directed edges of capacity co going from the F' side of the cut to the 7' side of the cut.
Furthermore for every constraint C' of weight w, the associated edge of capacity w crosses the cut
if and only if the constraint is not satisfied. Thus the capacity of this cut is exactly W and thus
we find that the min F-T cut value is at most W.

In the other direction, we show that given a F-T cut in this graph of cut capacity W < oo, there
exists an assignment which fails to satisfy constraints of weight at most W. Such an assignment
is simply to assign x; = 0 iff v; is on the F side of the cut. Note that for any constraint C, the
associated vertices ec and € (whichever exist) may be placed on the 7" and F' sides of the cut
(respectively) only if the associated term is satisfied (else there will be an edge of capacity oo
crossing the cut). Thus, if a constraint C' of capacity w is not satisfied by this assignment, then the
edge of capacity w corresponding to C' must cross the cut. Summing up we find that the assignment
fails to satisfy constraints of total weight at most W.
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Putting both directions together, we find that the min F-T cut in this graph has capacity exactly
equal to the optimum of the WEIGHTED MIN CSP{XOR} instance, and thus the latter problem
can be solved exactly in polynomial time. O

For the sake of completeness we also prove the converse direction to the above lemma. We show
that the s-t min-cut problem can be phrased as a MIN CSP(F) problem for a 2-monotone family
F.

Lemma 5.3 The s-t min-cut problem is in WEIGHTED MIN CSP({ORy,T, F'}).

Proof: Given an instance G = (V, E) of the s-t min-cut problem, we construct an instance of
WEIGHTED MIN CSP(F) on variables z1,zo, ..., x, where x; corresponds to the vertex i € V —

{s,t}:

e For each edge e = (s,4) with weight we, we create the constraint F'(z;) with weight we.
e For each edge e = (i,t) with weight we, we create the constraint 7'(z;) with weight w,.

e For each edge e = (4,7) with weight w, and such that i,j & {s,t}, we create the constraint
ORQ,I(ZI)j, x;) with weight we.

Given a solution to this instance of WEIGHTED MIN CSP(F), we construct an s-t cut by placing
the vertices corresponding to the false variables on the s-side of the cut and the remaining on the
t-side of the cut. It is easy to verify that an edge e contributes to the cut iff its corresponding
constraint is unsatisfied. Hence the optimal MIN CSP(F) solution and the optimal s-t min-cut
solution coincide. O

Going back to our main objective, we obtain as a simple corollary to Lemma 5.2 the following:
Corollary 5.4 For every F C Foy, WEIGHTED MAX CSP(F)e PO.

Proof: Follows from the fact that given an instance Z of WEIGHTED MAX CSP(F), the optimum
solution to Z viewed as an instance of WEIGHTED MIN CSP(F) is also an optimum solution to the
WEIGHTED MAX CSP(F) version. O

Finally we prove a simple containment result for all of Max CSP(F) which follows as an easy
consequence of Proposition 3.7.

Proposition 5.5 For every F, WEIGHTED MAX CSP(F) is in APX.

Proof: Follows from Proposition 3.7 and the fact that the total weight of all constraints is an
upper bound on the optimal solution. O

5.2 Negative results for Max CSP

In this section we prove that if F & Fy, Fi, Fom then MAx CSP(F) is APX-hard. We start with
a simple observation which establishes MAX CSP(XOR) as our starting point.

Lemma 5.6 MaAx CSP(XOR) is APX-hard.
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Proof: We observe that MAX CSP(XOR) captures the MAX CUT problem shown to be APX-
hard by [39, 3]. Given a graph G = (V, E) with n vertices and m edges, create an instance Z¢g of
MAx CSP({XOR}) with one variable z,, for every vertex u € V and with constraints XOR(z,, z,)
corresponding to every edge {u,v} € E. It is easily seen there is a one-to-one correspondence
between (ordered) cuts in G' and the assignments to the variables of Zi which maintains the values
of the objective functions (i.e., the cut value and the number of satisfied constraints). O

We start with the following lemma which shows how to use the functions which are not 0-valid or
1-valid.

Lemma 5.7 If F  Fy,F1 then MAX CSP(F U{T,F}) is AP-reducible to MAX CSP(F) and
MIN CSP(F UA{T, F}) is A-reducible to MIN CSP(F).

Proof: Let fy be the function from F that is not 0-valid and let f; be the function that is not
1-valid. If some function g in F is is not C-closed, then, by Lemma 4.6 F perfectly and strictly
implements 7" and F. Hence, by Lemmas 3.8 and 3.10, Max CSP(F U {T, F'}) is AP-reducible to
MAx CSP(F) and MIN CSP(F U{T, F'}) is A-reducible to MIN CSP(F).

Otherwise, every function of F is C-closed and hence by Lemma 4.5, F perfectly and strictly
implements the XOR function and hence, by Proposition 3.3, the XNOR. function. Thus it suffices
to show that MAX CSP(F U{T, F'}) is AP-reducible to MAX CSP(F U{XOR,XNOR}) (and MIN
CSP(F U{T, F}) is A-reducible to MIN CSP(F U {XOR,XNOR})) for C-closed families F. Here
we use an idea from [8] described next.

Given an instance Z of MAX CSP(F U{T, F'}) on variables z1,...,z, and constraints C,...,Cy,,
we define an instance Z' of MAx CSP(FU{XOR,XNOR}) (MiN CSP(FU{XOR,XNOR})) whose
variables are z1, ..., z, and additionally one new auxiliary variable . Each constraint of the form
F(z;) (resp. T(z;)) in Z is replaced by a constraint XNOR(z;, zp) (resp. XOR(z;, zp)). All the
other constraints are not changed. Thus Z’ also has m constraints. Given a solution ay,...,a,,ap
for 7' that satisfies m’ of these constraints, notice that the assignment —aq,...,—a,,ap also
satisfies the same collection of constraints (since every function in F is C-closed). In one of these
cases the assignment to zp is false and then we notice that a constraint of Z is satisfied if and only
if the corresponding constraint in Z’ is satisfied. Thus every solution to Z' can be mapped to a
solution to Z with the same contribution to the objective function. O

The required lemma now follows as a simple combination of Lemmas 4.9 and 5.7.
Lemma 5.8 If F & Fy, Fi,Fom, then MAX CSP(F) is APX-hard.

Proof: By Lemma 4.11 FU{T, F'} strictly implements the XOR function. Thus Max CSP(XOR)
AP-reduces to MAaX CSP(FU{T, F'}) which in turn (by Lemma 5.7) AP-reduces to MAX CSP(F).
Thus MAx CSP(F) is APX-hard. O

5.3 Hardness at Gap Location 1

Schaefer’s dichotomy theorem can be extended to show that in the cases where SAT(F) in NP-
hard to decide, it is actually hard to distinguish satisfiable instances from instances which are not
satisfiable in a constant fraction of the constraints. This is termed hardness at gap location 1 by
Petrank [40] who highlights the utility of such hardness results in other reductions. The essential
observation needed is that perfect implementations preserve hardness gaps located at 1 and that
Schaefer’s proof is based on perfect implementations.
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However Schaefer’s proof of NP-hardness in his dichotomy theorem relies on the ability to replicate
variables within a constraint application. Specifically, the following lemma can be abstracted from
his paper.

Lemma 5.9 ([42]) If F is not 0-valid or 1-valid or affine or bijunctive or weakly positive or weakly
negative, then F U {XNOR} =L Figar.

In this section, we show that a family F that is not decidable also perfectly implements the XNOR
constraint and thus the lemma above can be strengthened. We start with the following lemma that
shows how to use functions that are not weakly negative.

Lemma 5.10 If f is not weakly negative then {f,T, F'} £, XOR or {f,T,F} £, OR. Similarly,
if f is not weakly positive then {f,T, F'} £, XOR or {f,T,F} £, NAND.

Proof: We only prove the first part — the second part follows by symmetry. By Lemma 4.20 we
find that f has a maxterm with at least two positive literals. W.l.o.g. the maxterm is of the form
z1Vaa\V--xp\V ~zpp1 V-V —xg, with p > 2. We consider the function f’ which is f existentially
quantified over all variables but x1,...,z,. Further we set x3,...,z, to 0 and z,41,...,24 to L.
Then the assignment 1 = o = 0 is a non-satisfying assignment. The assignments z; = 0 # x9
and 1 # 0 = zo must be satisfying assignments by the definition of maxterm (and in particular
by the minimality of the clause). The assignment x; = x9 = 1 may go either way. Depending on
this we get either the function XOR or OR. O

Corollary 5.11 If fo is not weakly positive and f3 is not weakly negative, then { fa, f3,T, F'} SN
XOR.

Lemma 5.12 If F is not 0-valid or 1-valid or weakly positive or weakly negative, then F s:/p>
{XOR, XNOR}.

Proof: If F is C-closed then, by Lemma, 4.5, we immediately get a strict and perfect implementation
of XOR. If it is not C-closed then, by Lemma 4.6, we get perfect and strict implementations of the
constraints 1" and F. Applying Corollary 5.11 now, we get a perfect and strict implementation of
XOR in this case also. Finally we use Proposition 3.3 to get a perfect and strict implementation
of XNOR from the constraint XOR. O

Combining Lemma 5.9 and the above, we get the following corollary:

Corollary 5.13 If F is not 0-valid or 1-valid or affine or bijunctive or weakly positive or weakly
negative, then F £ F3SAT-

Thus we get the following theorem.

Theorem 5.14 For every constraint set F either SAT(F) is easy to decide, or there ezists € =
er > 0 such that it is NP-hard to distinguish satisfiable instances of SAT(F), from instances where
1 — € fraction of the constraints are not satisfiable.

6 Classification of MAX ONES

Again we will first prove the positive results and then show the negative results. But before we do
either, we will show a useful reduction between unweighted and weighted MAX ONES(F) problems
which holds for most interesting function families F.
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6.1 Preliminaries

We begin with a slightly stronger notion of the definition of polynomial-time solvability of SAT(F)
(than that of [42]). We then show that given this stronger form of polynomial time decidability
the weighted and unweighted cases of MAX ONES(F) are equivalent by showing that this stronger
form of polynomial time decidability leads to a polynomial approximation algorithm. We conclude
by showing that for the MAX ONES problems which we hope to show to be APX-complete or
poly-APX-complete, the strong form of decidability does hold.

Definition 6.1 We say that a constraint family F is strongly decidable if, given m constraints from
F on n variables x1,...,z, and an index 7 € {1,...,n}, there exists a polynomial time algorithm to
find an assignment to x1,...,x, satisfying all m constraints and additionally satisfying the property
z; = 1 if one such exists.

Lemma 6.2 For every strongly decidable constraint family F, WEIGHTED MAX ONES(F) is in
poly-APX.

Proof: Consider an instance of WEIGHTED MAX ONES(F) with variables x1,...,z,, constraint
applications C', ..., C), and weights wy,...,w,. Assume w; < wy < --- < wy,. Let ¢ be the largest
index such that there exists a feasible solution with z; = 1. Notice that ¢ can be determined in
polynomial time due to the strong decidability of . We also use the strong decidability to find an
assignment with z; = 1. It is easily verified that this yields an n-approximate solution. (Weight of
this solution is at least w;, while weight of optimal is at most Z;-:l w; < iw; < nw;.) O

Before concluding we show that most problems of interest to us will be able to use the equivalence
established above between weighted and unweighted problems.

Lemma 6.3 If F C F' for any F' € {F1,Fso, FocNF, Fa, Fwp, FwN}, then F is strongly decid-
able.

Proof: Recall that for i € [k], f|((;,1) is the constraint obtained from f by restricting the ith input
to 1. Define F* to be the constraint set:

F L FU{flialf € Foi € [K]}

First, observe that the problem of strong decidability of F reduces to the decision problem SAT(F™).
Further, observe that if 7 C F' for 7' € {F1, Facnr, Fa, Fwp, Fwn }, then F* C F' as well. Lastly,
if 7* C Fgp, then F* C Fy. Thus in each case we end up with a problem from SAT(F) for a family
F which is polynomial time decidable in Schaefer’s dichotomy. O

Lemma 6.4 If F £ fo for some existential zero constraint fo, then F £ Flo. Similarly, if
F = f1 for some exzistential one constraint fi, then F == Fli.

Proof: Let f € F. We show how to implement the constraint f(0,z1,...,z5_1). The proof can be
extended to other constraints in F|y by induction. Let fy be an existential zero constraint imple-
mentable by F and let K be the arity of f;. Then the constraints f(y;,x1,...,zx—1), for i € [K],
along with the constraint fo(y1,...,yx) perfectly implement the constraint f(0,z1,...,2¢ 1). (Ob-
serve that since at least one of the y;’s in the set yi,...,yx is zero, the constraint f(0,z1,...,2Z5_1)
is being enforced. Furthermore, we can always set all of y1,...,yx to zero, ensuring that any as-
signment to z1,...,z,_1 satisfying f(0,z1,...,z_1) does satisfy all the constraints listed above.)
O
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6.2 Containment results

Lemma 6.5 If F is 1-valid or weakly positive or width-2 affine, then WEIGHTED MAX ONES(F)
s in PO.

Proof: If F is 1-valid, then setting each variable to 1 satisfies all constraint applications with the
maximum possible variable weight.

If F is weakly positive, consider the CNF formulae for the f; € F such that each clause has at most
one negated variable. Clearly, clauses consisting of a single literal force the assignment of these
variables. Setting these variables may create new clauses of a single literal; set these variables and
continue the process until all clauses have at least two literals or until a contradiction is reached. In
the latter case no feasible assignment is possible. In the former case, setting the remaining variables
to one satisfies all constraints, and there exists no feasible assignment with a greater weight of ones.

In the case that F is affine with width 2, we reduce the problem of finding a feasible solution to that
of checking whether a graph is bipartite, and then use the bipartition to find the optimal solution.
Notice that each constraint corresponds to a conjunction of constraints of the form X; = X; or
X; # Xj. Create a vertex X; for each variable X; and for each constraint X; # X, add an edge
(Xi, X;). For each constraint X; = X, identify the vertices X; and X; and associate the sum of
their weights to the identified vertex; if this creates a self-loop, then clearly no feasible assignment
is possible. Check whether the graph is bipartite; if not, then there is no feasible assignment. If it
is bipartite, then for each connected component of the graph choose the larger weight side of the
bipartition and set the corresponding variables to one. O

Lemma 6.6 If F is affine then WEIGHTED MAX ONES(F) is in APX.

Remark: Our proof actually shows that MAX ONES(F) has a 2-approximation algorithm. Com-
bined with the fact that the AP-reduction of Lemma 3.11 does not lose much in the approximation
factor we essentially get the same factor for WEIGHTED MAX ONES(F) as well.

Proof: By Lemmas 3.11, 6.2 and 6.3 it suffices to consider the unweighted case. (Lemma 6.3 shows
that F is strongly-decidable; Lemma 6.2 uses this to show that WEIGHTED MAX ONES(F) is in
poly-APX; and Lemma 3.11 uses this to provide an AP-reduction from WEIGHTED MAX ONES(F)
to MAX ONES(F).)

Given an instance Z of MAX ONES(F), notice that finding a solution which satisfies all constraints
is the problem of solving a linear system of equations over GF[2]. Say the linear system is given by
Az = b, where A is an m X n matrix, and b is a m x 1 column vector, and the z is an n x 1 vector.
Assume w.l.o.g. that the rows of A are independent. By simple row operations and reordering
of the variables, we can set up the linear system as [I|A']x = t/. Thus if 2/ represents the vector
(x1,...,2m;) and 2" represents the vector (x,11,...,z,) then the set of feasible solutions to the
given linear system are given by

{(xl’$ll>|$ll c {0’ 1}n—m’xl — —A’.’I)” + bl}

Pick a random element of this set by picking z” at random and setting z’ accordingly. Notice that
foranyi e {m+1,...,n} z; =1 w.p. % Furthermore, for any ¢ € [m], z; is either forced to 0 in all
feasible solutions, or z; is forced to 1 in all feasible solutions or z; = 1 w.p. 1/2. Thus, if S C [n]
is the set of variables which are ever set to 1 in a feasible solution, then expected number of 1’s in
a random solution is at least |S|/2. But S is an upper bound on OPT. Thus the expected value of
the solution is at least OPT/2 and hence the solution obtained is 2-approximate solution. O
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Proposition 6.7 If F C F' for some F' € {F1,Fso, FacNFs Fa,Fwp, FwN }, then WEIGHTED
Max ONES(F) € poly-APX.

Proof: Follows immediately from Lemmas 6.2 and 6.3. O

Proposition 6.8 ([42]) If F C Fy, then SAT(F) is in P.

6.3 Hardness results
6.3.1 APX-hard case

We wish to show in this section that if F is an affine family but not width-2 affine, then MAX
ONES(F) is APX-hard. By Lemmas 6.2 and 3.11 it suffices to show this for WEIGHTED MAX
ONES(F). The basic APX-hard problems we work with in this section are described in the following:

Lemma 6.9 WEIGHTED MAX ONES(XNOR3) and WEIGHTED MAX ONES({XOR,XNOR4}) are
APX-hard.

Proof: We reduce the MAX CUT problem to the WEIGHTED MAX ONES(XNORg3) problem as
follows. Given a graph G = (V, E) we create a variable x, for every vertex v € V and a variable y,
for every edge e € E. The weight w, associated with the vertex variable z, is 0. The weight w, of
an edge variable y, is 1. For every edge ¢ between u and v we create the constraint y.®x, ®x, = 0.
It is clear that any 0/1 assignment to the z,’s define a cut and for an edge e = {u, v}, y, is one iff
u and v are on opposite sides of the cut. Thus solutions to the WEIGHTED MAX ONES problem
correspond to cuts in G with the objective function being the number of edges crossing the cut.
This shows the APX-hardness of WEIGHTED MAX ONES(XNOR3).

The reduction for WEIGHTED MAX ONES({XOR,XNOR4}) is similar. Given a graph G = (V, E),

we create the variables z, for every v € V, gy, for every e € E and one global variable z (which

is supposed to be zero) and m def |E| auxiliary variables y. for every e € E.. For every edge

e = {u,v} in G we impose the constraints y. ® z, ® z, ® z = 0. In addition we throw in the
constraints z @y, = 1 for every i € {1,...,m}. Finally we make the weight of the vertex variables
and z zero and the weight of the edge variables y. and the auxiliary variables y. is made 1. The
optimum to this WEIGHTED MAX ONES problem is MAX CUT(G) + m. Given an r-approximate
solution for the WEIGHTED MAX ONES({XOR4, XORY}) instance created above, we consider the
two possible solutions (as usual): (1) The solution induced by the assignment with 0 vertices on
one side and one vertices on the other & (2) A cut with m/K edges crossing the cut (notice
such a cut can be found based on Prop 3.7). The better of these solutions has max{(L)(m +
Max Cut(G)) —m, g} > WMAX Cur(G) > H%HMAX CuT(G) edges crossing the
cut. Thus an r-approximate solution to WEIGHTED MAX ONES({XOR,XNOR4}) yields a (1 +
K (r — 1))-approximate solution to MAX CUT(G). Thus MAX CuT(G) AP-reduces to WEIGHTED
Max ONES({XOR,XNOR4}) and hence the latter is APX-hard. O

Lemma 6.10 If F is affine but neither width-2 affine nor 1-valid, then F == XNOR3 or F =%
{XOR, XNORy4}.

Proof: Since F is affine but not of width-2, it can perfectly (and strictly) implement the function
XOR, or XNOR,, for some p > 3 (Lemma 4.18). Let f € F be an affine constraint that is not
1-valid. We consider two possible cases depending on whether F is C-closed or not. If g € F is
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not C-closed, then we find (by Lemma 4.7) that {f,¢} (and hence F) perfectly implements some
existential zero constraint. This case is covered in Claim 6.11 and we show that in this case F
perfectly implements XNOR3. In the other case, F is C-closed and hence (by Lemma 4.5) F
perfectly implements the constraint XOR. This case is covered in Claim 6.12 and we show that in
this case F perfectly implements either XNOR3 or XNOR4. This concludes the proof of Lemma 6.10
(modulo Claims 6.11 and 6.12). O

Claim 6.11 If{f} is an existential zero constraint and h is either the constraint XOR,, or XNOR,,
for some p >3, then {f,h} £, XNOR3.

Proof: Since f is an existential zero constraint, the family {f, h} can perfectly implement {f,h}|o
(using Lemma 6.4). In particular, { f, A} can implement the constraints z1®ze = b and z,Bxodzs =
b for some b € {0,1}. Notice finally that the constraints z; ® z2o ®y = b and y ® 3 = b form a
perfect implementation of the constraint z; & xzo ® x3 = 0. Thus {f,h} perfectly implements the
constraint XNOR3. O

Claim 6.12 If f € {XOR,,XNOR, | p > 3}, then {f,XOR} =% XNORj; or {f,XOR} ==
XNORy.

Proof: Since XOR perfectly implements XNOR it suffices to prove this using the constraints
{f,XOR,XNOR}.

W.l.o.g assume that f is the constraint XNOR, since else XOR,(z1,...,2p—1,y) and XOR(y, zp)
perfectly implement the constraint XNOR,(z1,...,zp).

Now if p is odd, then the constraints XNOR(z1,...,z,) and XNOR(z4,z5), XNOR(z¢,z7) and
so on up to XNOR(z,_1,xp) perfectly implement the constraint XNOR3(z1, z2, x3).

Now if p is even, then the constraints XNOR,(z1,...,z,) and XNOR(z5,2s), XNOR(z7,z5) and
so on up to XNOR(zp_1,x,) perfectly implement the constraint XNORy(z1, z2,z3, 4). O

Lemma 6.13 If F is affine but neither width-2 affine nor 1-valid, then MAX ONES(F) is APX-
hard.

Proof: By Lemma 6.6 we have WEIGHTED MAX ONES(F) is in APX and thus (by Lemma 3.11)
it suffices to show APX-hardness of WEIGHTED MAX ONES(F). This now follows from Lem-
mas 3.9, 6.9,and 6.10. O

6.3.2 The poly-APX-hard case

This part turns out to be long and the bulk of the work will be done in Lemmas 6.16-6.21. We first
describe the proof of the hardness result modulo the above lemmas. (Hopefully, the proof will also
provide some motivation for the rest of the lemmas.)

Lemma 6.14 If F C F' for some F' € {Fo, Focnr, Fwn} but F & F" for any F' € {F1, Fa,
Fwp}, then MAX ONES(F) is poly-APX-hard.

Proof: As usual, by Lemmas 6.2 and 3.11, it suffices to show hardness of the weighted version.
First we show in Lemma 6.15 that MAX ONES({NANDy}) is poly-APX-hard for every k > 2. Thus
our goal is to establish that any non 1-valid, non-affine, and non weakly positive constraint family
can implement some NAND,, constraint. We do so in three phases.
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The main complication here is that we don’t immediately have a non 0-valid constraint to work
with and thus we can’t immediately reduce MAx ONES(F U {T, F'}) to MAax ONES(F). So we
go after something weaker and try to show that F can perfectly implement F|y;. In Phase 3,
(Lemmas 6.20 and 6.21) we show that this suffices. Lemma 6.20 uses the fact that Flo; is not
weakly positive to implement either NAND, or XOR. In the former case we are done and in the
latter case, Lemma 6.21 uses the fact that F|; is not affine to implement NAND.

Thus our task reduces to that of showing that F can implement F|o;. Part of this is easy. In
Phase 1, we show that F implements every constraint in F|g. This is shown via Lemma 6.16 which
shows that any family which is either 0-valid or 2CNF or weakly negative but not 1-valid or affine
or weakly positive must have a non C-closed counstraint. This along with the non 1-valid constraint
allows it to implement every constraint in F|y (by Lemmas 4.7 and 6.4). The remaining task for
Phase 2 is to show that F|y can implement F|;. If F also has a non 0-valid constraint then we are
done since now we can implement all of F|p; (another application of Lemmas 4.7 and 6.4). Thus
all lemmas in Phase 2, focus on F|y for 0-valid constraint families F. If F|o is all 0-valid, then all
we can show is that F|o either implements NANDy, for some k£ or ORy; (Lemmas 6.17 and 6.18).
The former is good, but the latter seems insufficient. In fact we are unable to implement F|o; in
this case. We salvage the situation by reverting back to reductions. We AP-reduce the problem
WEIGHTED MAX ONES(F|o U {OR2;:1}) to WEIGHTED MAX ONES(Flo,1) (Lemma 6.19). This
suffices to establish the poly-AP X-hardness of WEIGHTED MAX ONES(F) since

WEIGHTED MAX ONES(Flp1) <ap WEIGHTED MAX ONES(F|ypU{ORz})
<ap WEIGHTED MAX ONES(F)

and the problem WEIGHTED MAX ONES(F|o,1) is poly-APX-hard. O
Lemma 6.15 MAX ONES({NANDy}) is poly-APX-hard for every k > 2.

Proof: We reduce from MAX CLIQUE, which is known to be poly-APX-hard. Given a graph
G, construct a MAX ONES({f}) instance consisting of a variable for every vertex in G and the
constraint f is applied to every subset of k vertices in G which does not induce a clique. It may
be verified that the optimum number of ones in any satisfying assignment to the instance created
in this manner is max{k — 1,w(G)}, where w(G) is the size of the largest clique in G. Given a
solution to the MAX ONES({f}) instance with [ > k ones, the set of vertices corresponding to the
variables set to one form a clique of size [. If [ < k, output any singleton vertex. Thus in all cases
we obtain a clique of size at least {/(k — 1) vertices. Thus given an r-approximate solution to the
Max ONES({NANDy}) problem, we can find a (k — 1)r approximate solution to MAX CLIQUE.
Thus MAX CLIQUE is A-reducible to MAX ONES({NAND}). 0

Phase 1: F implements F|o.

Lemma 6.16 If 7 C F' for some F € {Fo, Foonr, Fwn} but F € {F1, For, Fwp} then there
exists a constraint in F that is not C-closed constraint.

Proof: Notice that a C-closed 0-valid constraint is also 1-valid. Thus if F is 0-valid, then the non
1-valid constraint is not C-closed.

Next we claim that a C-closed weakly positive constraint f is also weakly negative. To do so,
consider the constraint f given by f(z) = f(Z). Notice that for a C-closed constraint f = f.
Suppose f(z) = A\; Cj(z) where the Cj’s are weakly positive clauses. Then f(x) can be described
as A\; Cj(z) (where Cj(z) = C;(z)). But in this representation f (and thus f) is seen to be a
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weakly negative constraint, thereby verifying our claim. Thus if F is weakly negative but not
weakly positive, the non weakly-positive constraint is the non C-closed constraint.

Finally we consider the case when f is a 2CNF formula. Again define f(z) = f(z) and f'(z) =
f(x)f(xz). Notice that f' = f if f is C-closed. Again consider the CNF representation of
f = N;Cj(x) where the Cj(z)’s are clauses of f of length 2. Then f'(z) can be expressed as
N\;(Cj(z) A Cj(z)). But C; A\ C; are affine constraints of width 2! Thus f’ and hence f is an affine
width-2 constraint. Thus if F is 2CNF but not width-2 affine, the non width-2 affine constraint is
the non C-closed constraint. O

Lemma 4.7 along with Lemma 6.4 suffice to prove that F implements F|o. We now move on to
Phase 2.

Phase 2: From F|y to Flo 1.

Recall that if F has a non 0-valid constraint, then by Lemmas 6.16, 4.7 and 6.4 it implements an
existential one constraint and thus F|o ;. Thus all lemmas in this Phase assume F is O-valid.

Lemma 6.17 If f is 0-valid and not weakly positive, then {f}|o either perfectly implements NANDy,
for some k > 2 or ORz1 or XNOR.

Proof: Let C = —z;\ -V —~z,Vy1 V-V y, be a maxterm in f with more than one negation i.e.
p > 2. Since f is not weakly positive, Lemma 4.20 shows that such a maxterm exists. Substituting
a 0 in place of variables y1,¥2,...,y4, and existentially quantifying over all variables not in C, we
get a constraint g such that —z1\/ —z2\/ ---V -z, is a maxterm in g. Consider an unsatisfying
assignment s for g with the smallest number of 1’s and let k denote the number of 1’s in s; we
know k£ > 0O since the original constraint is 0-valid. W.l.o.g. assume that s assigns value 1 to

the variables z1,x9,...,2; and 0 to the remaining variables. It is easy to see that by fixing the
variables zj41,Zky2,...,2p to 0, we get a constraint ¢’ = (—z1\V -z V-V —xg). If £ > 1, then
this perfectly implements the constraint NANDy(z1,...,zx) and we are done.

Otherwise k = 1, i.e. there exists an unsatisfying assignment s which assigns value 1 to exactly
one of the z;’s, say z1. Now consider a satisfying assignment s’ which assigns 1 to z; and has a
minimum number of 1’s among all assignments which assign 1 to z;. The existence of such an
assignment follows from C being a maxterm in g. For instance, the assignment 1710 is a satisfying
assignment which satisfies such a property. W.Lo.g. assume that s’ = 1°0P~%. Thus the constraint
g looks as follows:

Tl T2 Z3..% Tip1.-Tp ()
s; 0 0 00..0 00...0 1
s 10 00..0 00...0 0
s'=s3 1 1 11..1 00...0 1
s¢g 0 1 ... 00...0 ?
Existential quantification over the variables x3,z4,...,%; and fixing the variables z;11 through =z,

to 0 yields a constraint ¢’ which is either ORy 1(x2,z1) or XNOR(z1, z2). The lemma follows. O

Now we consider the case where we can implement the function XNOR and show that in this case
we can either perfectly implement NAND or ORy ;. In the former case we are done and for the
latter case we show in Lemma 6.19 that WEIGHTED MAX ONES(F|;) is AP-reducible to WEIGHTED
Max ONES(F U {ORg,1}).
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Lemma 6.18 If f is 0-valid but not affine then {f}|oU{XNORY} perfectly implements either NAND
or the constraint ORa 1.

Proof: Corollary 4.16 shows that if f is not affine then there exist two satisfying assignments
s1 and s9 such that s; @ s9 is not a satisfying assignment for f. Reorder the variables such that
Z(Sl) n Z(SZ) = {‘Tla s pr}7 Z(Sl) N 0(32) = {‘T;D+17 s 7$q}7 O(Sl) N Z(SQ) = {xq+17 cee JxT} and
O(s1) N O(s2) = {xr41,...,zk}. Using the fact that f is O-valid, we find that f looks as follows:

T1.Lp Tpgl-Lq LTggl-Lr Tppl-Tk  g(x)
00...0  00...0 00...0 00...0 1
S1 00...0  00...0 11...1 11...1 1
S92 00...0 11..1 00...0 11...1 1
s1®sy 00..0 11...1 11...1 00...0 0
Consider the collection of constraints:
L f(0,...,0,zpq1,. .., 2k).
2. XNOR(z,z;) for i € Z(s1) N O(s2).
3. XNOR(y, z;) for i € O(s1) N Z(s2).
4. XNOR(z,z;) for i € O(s1) N O(s2).
Existentially quantifying over the variables x4 1, ...,z we obtain an implementation of a constraint

h(z,y, z) such that h(000) = h(011) = h(101) = 1 and h(110) = 0. Furthermore, by restricting
more of the variables in (1) above to 0, we get a perfect implementation of any constraint in {h}|o.
Using Claim 6.22 again we get that {h}|y can implement either NAND or ORy 1, and thus we are
done. O

Finally we show how to use ORg; constraints.

Lemma 6.19 If F is O-valid then WEIGHTED MAX ONES(F|;) AP-reduces to WEIGHTED MAX
ONES(F U {ORg2,1}).

Proof: We show something stronger, namely, WEIGHTED MAX ONES(F U {T'}) AP-reduces to
WEIGHTED MAX ONES(F U {ORxy:}). This suffices since T' is an existential one constraint and
thus F U {T} can perfectly implement F|;.

Given an instance Z of WEIGHTED MAX ONES(F U {T'}) construct an instance Z' of WEIGHTED
MAX ONES(FU{ORy,1 }) as follows. The variable set of Z' is the same as that of Z. Every constraint
from F in Z is also included in Z’. The only remaining constraints are of the form T'(z;) for some
variables z;. We simulate this constraint in Z' with n — 1 constraints of the form ORy i (z;,z;)
(i-e., mz; \ x;) for every j € [n], j # i. Every non-zero solution to the resulting instance Z' is also
a solution to Z, since the solution must have x; = 1 or else have z; = 0 for every j # 4. Thus
the resulting instance of MAX ONES(F U {ORy;}) has the same objective function and the same
feasible space and is hence at least as hard as the original problem. O

This concludes Phase 2.
Phase 3: F|p,; implements NAND.
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Lemma 6.20 If f is not weakly positive, then {f}|o.1 perfectly implements either XOR or NAND.

Proof: Let C = (-2 V---V 2, V1 V- - Vy,) be a maxterm in f with more than one negation
i.e. p > 2. Substituting a 1 for variables z3,...,x,, a 0 for variables y1,...,y,, and existentially
quantifying over all variables not in C, we get a constraint f’ such that f'(11) = 0, f'(01) = f'(10) =
1 (These three properties follow from the definition of a maxterm). Depending on whether f(00)
is 0 or 1 we get the function XOR or NAND, respectively. O

Lemma 6.21 If g is a non-affine constraint, then {g, XOR}|o,1 £, NAND.

Proof: Again it suffices to consider {g, XOR,XNOR}|p,1. Let g be of arity k. By Lemma 4.15 we
find that there must exist assignments s1,s9 and s3 satisfying g such that s; @& so @ s3 does not
satisfy g. Partition the set [k] into up to eight equivalence classes Sy, p,b, for b1, b2, b3 € {0,1} such
that for any index i € Sy, p,p,, (55); = b; for every j € {1,2,3}. (Refer to Figure 1 below.)

Sooo Soor Soio So1r S0 Sion S0 S 9(x)

S1 0.0 0..0 0.0 0.0 1..1 1..1 1..1 1.1 1
52 0.0 0.0 1.1 1.1 0.0 0.0 1.1 1.1 1
S3 0.0 1.1 0.0 1..1 0.0 1..1 0.0 1.1 1
s1®sy®sg 0.0 1.1 1.1 0.0 1.1 0..0 0.0 1.1 O

Figure 1: Partition of inputs to g

W.lLo.g. assume that Spop = {1,...,p} and S111 = {¢+1,...,k}. Notice that the assignment of a
variable in Sy, p,p, under assignment s; @ so @ s3 is also fixed (to by @ by @ b3). Now consider the
collection of constraints

L g(0,...,0,zp41...,24,1,...,1).
2. XNOR(z,z;) for i € Spo1.
XNOR(y, z;) for i € Sp1p.
XNOR(z, ;) for i € Sp11.
XOR(z, ;) for i € S1gp.
XOR(y, x;) for i € Sip;1.

NS ok @

XOR(z, z;) for i € St1p.

By existentially quantifying over the variables xpy1,...,2, we perfectly implement a constraint
h(z,y, z) with the following properties: h(000) = h(011) = A(101) =1 and h(110) = 0. Further-
more, by restricting more variables in condition (1) above, we can actually implement any function
in the set {h}[p1. Claim 6.22 now shows that for any such function h, the set {h}|y perfectly
implements either ORy; or NAND. In the latter case we are done. In the former case, notice that
the constraints ORg 1(z, %) and XOR(z,y) perfectly implement the constraint NAND(z,y) so in
this case too we are done (modulo Claim 6.22). O

Claim 6.22 If h is ternary function such that h(000) = h(011) = h(101) =1 and h(110) = 0, then
{h}lo == NAND or {h}|p == ORg,.
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yz

Figure 2: Truth-table of the constraint h(z,y, 2)

Proof:

Figure 2 describes the truth table for the function h. The undetermined values of interest to us are
indicated in the table by A and B. The following analysis shows that for every possible value of A
and B, we can perfectly implement either NAND or ORg ;

A=0 = 3Jzh(x,y,2z)=-y\Vz
B=0 = 3Jyh(z,y,z)=—-z\z
A=1,B=1 = h(z,y,0) =-z\ ~y

Thus in each case we perfectly implement either the constraint NAND or ORg ;. O

6.3.3 Remaining cases

We now prove that if F is not strongly decidable, then deciding if there exists a non-zero solution
is NP-hard. This is shown in Lemma 6.23. The last of the hardness results, claiming that finding
a feasible solution is NP-hard if F is not O-valid or 1-valid or 2cnf or weakly positive or weakly
negative or linear, follows directly from Schaefer’s theorem (Theorem 2.10).

Lemma 6.23 If F € F', for any F' € {Fso,F1,Focnr, Fa, Fwp, Fwn}, then the problem of
finding solutions of non-zero value to a given instance of (unweighted) MAX ONES(F) is NP-hard.

Proof: Assume, for simplicity, that all constraints of F have arity k. Given a constraint f :
{0,1}* — {0,1} and an index 4 € [k], let f|, be the constraint mapping {0,1}*~! to {0,1} given
by
def
flizy, .o ze) = flzy,. w1, L igy, oo zp) A f(@1, .o 21,0, Tig 1, . . ., k).

Let F' be the set of constraints defined as follows:
FEFULfl, | feF ik}

We will show that deciding SAT(F') is NP-hard, and that the problem of deciding SAT(F’) reduces
to finding non-zero solutions to MAX ONES(F).

First observe that 7' € F", for any F" € {Fo, F1, Focnr, Fa, Fwp, Fwn }. In particular it is not
0-valid, since F is not strongly 0-valid. Hence, once again applying Schaefer’s result, we find that
deciding SAT(F') is NP-hard.

Given an instance of SAT(F’) on n variables x with m constraints C, with C1,...,C,y € F and
Covs1s--+,Cm € F'\ F, consider the instance of MAX ONES(F) defined on variable set

Wiye oo yWet15YLy---3YnysR1y---32n

with the following constraints:
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1. Let f be a non-1-valid constraint in F. We introduce the constraint f(wi,...,wy).

2. For every constraint C;(v;,,...,v;,), 1 <i <m/, we introduce two constraints C;(y;,, ..., Vi, )
and C’i(zil, . ,Zik).

3. For every constraint C;(v;,,...,v;,_,), m'+1 <i < m, we introduce 2(n + k + 1) constraints.
For simplicity of notation, let Cj(vi,,...,vi,_,) == g(1,vi,... 05 ) AN g(0,v5, ... 05, )
where g € F. The 2(n + k + 1) constraints are:

4 g(w]‘inl?"wyik,l)J for 1 S] < k+ 1.

® (2, Yirs-- -1 Yip_, ), for 1 <j <.

9(
o g(wj, 2,y 2i_,), for 1 <j<k+1.
® g(Yj, Ziys .12, ), for 1 <j <mn.

We now show that the instance of MAx ONES(F) created above has a non-zero satisfying assignment
if and ouly if the instance of SAT(F') has a satisfying assignment. Let s = s15...5; be a satisfying
assignment for the non 1-valid constraint f chosen above. First if vy,...,v, form a satisfying
assignment to the instance of SAT(F'), then we claim that the assignment w; = s; for 1 < j <
k, wgy1 = 1 and y; = z; = vj for 1 < 57 < n is a satisfying assignment to the instance of
Max ONES(F) which has at least one 1 (namely wg,1). Conversely, let some non-zero setting
Wy eon s Whtls YLy~ -y Yns 21, -« - , 2 Sabisty the instance of MAX ONES(F). W.l.o.g. assume that one
of the variable w1,...,wg41,y1,-..,yn is a 1. Then we claim that the setting v; = 2;, 1 <j < n
satisfies the instance of SAT(F'). It is easy to see that the constraints C;(v;,,...,v;.), 1 <i < m/,
are satisfied. Now consider a constraint C;(v;,,...,vi,_,) = 9(0,vi,, ..., v, ) ANg(L, 051,05 _,)-
Since at least one of the variables in the set wy,...,wy is a 0 and at least one of the variables in
the set wi,...,Wg41,Y1,--.,Yn is 1, we know that both g(0,2,,...,2,_,) and g(1,2;,...,2;_,)
are satisfied and hence Cj(vj,,...,v;,_,) = 1. Thus the reduced instance of MAX ONES(F) has a
non-zero satisfying assignment if and only if the instance of SAT(F') is satisfiable. O

7 Classification of MiN CSP

7.1 Preliminary results

We start with a simple equivalence between the complexity of the (WEIGHTED) MIN CSP problem
for a function family and the family of functions obtained by complementing the 0’s and 1’s in its
domain. Recall that for a function f, we defined f~ to be the function f~(x) = f(1 — x), and for
a function family F, we defined F~ ={f~ | f € F}.

Proposition 7.1 For every constraint family F, (WEIGHTED) MIN CSP(F) is AP-reducible to
(WEIGHTED) MIN CSP(F7).

Proof: The reduction substitutes every constraint f(x) from F with the constraint f~(x) from F .
A solution for the latter problem is converted into a solution for the former one by complementing
the value of each variable. The transformation preserves the cost of the solution. O

Proposition 7.2 If F is decidable then WEIGHTED MIN CSP(F) is in poly-APX and is AP-
reducible to MIN CSP (F).
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Proof: Given an instance Z of WEIGHTED MIN ONES(F) with constraints C1,...,Cy, sorted in
order of decreasing weight wy > --- > wy,. Let j be the largest index such that the constraints
C1,...,C; are simultaneously satisfiable. Notice that j is computable in polynomial time and an
assignment a satisfying C1,...,C} is computable in polynomial time. Then the solution a is an
m~approximate solution to Z, since every solution must fail to satisfy at least one of the constraints
C1,...,Cjy1 and thus have an objective of at least w;;1, while a achieves an objective of at most
Yizjr1wi < mw;jyr. Thus we conclude that WEIGHTED MIN CSP(F) is in poly-APX. The
second part of the proposition follows by Lemma 3.11. O

7.2 Containment Results (Algorithms) for MiN CSP

We now show the containment results described in Theorem 2.13. Most results described here are
simple containment results which follow easily from the notion of a “basis”. The more interesting
result here is a constant factor approximation algorithm for IHS- B which is presented in Lemma 7.3.

Recall that the classes contained in PO have already been dealt with in Section 5.1. We now move
on to APX-containment results.

Lemma 7.3 If F C Fius, then WEIGHTED MIN CSP(F) € APX.

Proof: By Propositions 3.4 and 7.1 it suffices to prove the lemma for the problem WEIGHTED
MiIN CSP(IHS-B), where IHS-B = {OR|k € [B]} U {ORgy,, F}. We will show that for every B,
WEIGHTED MIN CSP(IHS-B) is B + l-approximable.

Given an instance Z of WEIGHTED MIN CSP(IHS-B) on variables z1,...,x, with constraints
Cy,...,Cy with weights wy,...,w,,, we create a linear program on variables yi,...,y, (corre-
sponding to the Boolean variables 1, ...,z,) and variables z1, ..., z, (corresponding to the con-
straints C1,...,Cyp,). For every constraint C; in the instance Z we create a LP constraint using the
following transformation rules:

C; + z;,V---Vua;, for k< B — Zityy, -ty = 1
Cj Y H ing — zj + (1 - yil) +yi, 2 1
Cj i - zi+(l—yy) > 1

In addition we add the constraints 0 < z;,y; < 1 for every ¢,j. It may be verified that any integer
solution to the above LP corresponds to an assignment to the MiN CSP problem with the variable
zj set to 1 if the constraint C} is not satisfied. Thus the objective function for the LP is to minimize

Zj w;7j.

Given any feasible solution vector yi,...,yn, 21, .., 2m to the LP above, we show how to obtain a
0/1 vector 7, ..., Yn, 21, -, 2, that is also feasible such that 3=, w;z] < (B +1) 3, w;z;.

First we set y; = min{1, (B +1)y;} and 2} = min{1, (B +1)z;}. Observe that the vector y},...,yy,

Z1,- -+ 2 18 also feasible and gives a solution of value at most (B +1) >°; w;z;. We now show how

r7m
to get an integral solution whose value is at most 3°; w;z; < (B + 1) 32 w;z;. For this part we
first set yi' = 1 if y; = 1 and 2] = 1 if 2{ = 1. Now we remove every constraint in the LP that is
made redundant. Notice in particular that every constraint of type (1) is now redundant (either
2! or one of the y!’s has already been set to 1 and hence the constraint will be satisfied by any
assignment to the remaining variables). We now observe that, on the remaining variables, the LP

J i
constructed above reduces to the following
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Minimize > WjZ;

Subject to  y;, —yi, +2z; > 0
—yi, +z; =2 0

with the y!’s and z}’s forming a feasible solution to the above LP. Notice further that every z; occurs
in at most one constraint above. Thus the above LP represents s-t min cut problem, and therefore
has an optimal integral solution. We set zj’s and y;' to such an integral optimal solution. Notice

that the solution thus obtained is integral and satisfies >°; w;zj < 3 wjz; < (B +1) X wjz;. O
Lemma 7.4 For any family F C Fop, WEIGHTED MIN CSP(F) A-reduces to MIN CSP(XOR).

Proof: First we will argue that the family 7' = {XOR, T, F'} perfectly implements F. By Propo-
sition 3.4 it suffices to implement the basic width-2 affine functions: namely, the functions XOR,
XNOR, T and F. Every function except XNOR is already present in ' and by Proposition 3.3
XOR perfectly implements XNOR.

We conclude by observing that the family {XOR} is neither 0O-valid nor 1-valid and hence, by
Lemma 5.7, WEIGHTED MIN CSP(F’) A-reduces to WEIGHTED MIN CSP(XOR). Finally the
weights can be removed using Proposition 7.2. O

The following lemmas show reducibility to MIN 2CNF DELETION, NEAREST CODEWORD and MIN
HORN DELETION.

Lemma 7.5 For any family F C Fecnr, the family {OR,NAND} £, F and hence WEIGHTED
MiN CSP(F)<a MIN 2CNF DELETION.

Proof: Again it suffices to consider the basic constraints of F and this is some subset of
{OR'2,07 OR2,17 OR2,27 T7 F}

The family {OR,NAND} contains the first and the third function. Since it contains a non 0-
valid function, a non 1-valid function and a non C-closed function, it can also implement 7'
and F (by Lemma 4.6. This leaves the function ORy; which is implemented by the constraints
NAND(z, 25 yx) and OR(y, zpyx) (on the variables & and y). The A-reduction now follows from
Lemma 3.10. O

Lemma 7.6 For any family F C Fa, the family {XORs3, XNORs} perfectly implements every
function in F. and thus WEIGHTED MIN CSP(F) <5 NEAREST CODEWORD.

Proof: It suffices to show implementation of the basic affine constraints, namely, constraints of
the form XNOR, and XOR, for every p,q > 1. We focus on the former type as the imple-
mentation of the latter is analogous. First, we observe that the constraint XNOR(xz1,x2) is per-
fectly implemented by the constraints {XNORs(z1,z2, 21), XNOR3 (21, 22, 22), XNORs(z1, 22, 23),
XNORg3(z1, 22,23)} Next, the constraint F(z;) can be perfectly implemented by {XNOR(z1, 21),
XNOR(z1, z2), XNOR(21, 2z3), XNOR3(21, 22, 23) } Finally, the constraint XNOR,(z1,...,z,) for
any p > 3 can be implemented as follows. We introduce the following set of constraints using
the auxiliary variables z1, 22, ..., z,—2 and the set of constraints:

{XNORg(Il, 9, 2’1), XNORg(Zl, 3, 2’2), XNORg(ZQ, T4, 2’3), . ,XNORg(Zp,Q, .’Epfl, .’Ep)}
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Lemma 7.7 For any family F C Fywp, we have {OR3,1,T, F'} £s F and thus WEIGHTED MIN
CSP(F) <a MIN HORN DELETION.

Proof: As usual, it suffices to perfectly implement every function in the basis {ORy | £ > 1} U
{ORg,1 | k > 1}. The constraint OR(xz,y) is implemented by the constraints OR3(a,z,y) and
T'(a). ORg,1(z,y) is implemented by OR3,1(z,y,a) and F(a). The implementation of OR3(z,y, z)
is OR(z,a) and OR3(a,y,z) (the constraint OR(z,a), in turn, may be implemented with the
already shown method). Thus every k-ary constraint, for £ < 3 can be perfectly implemented by
the family {OR3 1,7, F'}). For k > 4, we use the textbook reduction from SAT to 3SAT (see e.g.
[19, Page 49]) and we observe that when applied to k-ary weakly positive constraints it yields a
perfect implementation using only 3-ary weakly positive constraints. O

To conclude this section we describe the trivial approximation algorithms for NEAREST CODEWORD
and MIN HORN DELETION. They follow easily from Proposition 7.2 and the fact that both families
are decidable.

Corollary 7.8 (to Proposition 7.2) MIN HORN DELETION and NEAREST CODEWORD are in
poly-APX.

7.3 Hardness Results (Reductions) for Min CSP

Lemma 7.9 (APX-hardness) If F € F', for F' € {Fo,F1,Fom}, and then MIN CSP(F) is
APX-hard.

Proof: The proof essentially follows from Lemma 5.8 in combination with Proposition 3.7. We
show that for every F MAXx CSP(F) AP-reduces to MIN CSP(F). Let Z be an instance of MAX
CSP(F) on n variables and m constraints. Let x’ be a solution satisfying m/k constraints that
can be found in polynomial time (by Proposition 3.7). Let x” be an r-approximate solution to
the same instance Z viewed as an instance of MIN CSP(F). If opT is the optimum solution
to the maximization problem Z, then x” satisfies at least m — r(m — opPT) = roPT — (r — 1)m
constraints. Thus the better of the two solutions is an r’-approximate solution to the instance Z of
Max CSP(F), where

< OPT
To= max{m/k,ropPT — (r — 1)m}
< ((r—1)k+1)optT
~— (r—=1)k(m/k) +ropT— (r—1)m
I+ (r=1k

< 1+ (r—1)k

Thus MAXx CSP(F) AP-reduces to MIN CSP(F). The lemma follows from the APX-hardness of
MAX CSP(F) (Lemma 5.8). 0

Lemma 7.10 (MiN UNCuT-hardness) If F ¢ F', for F e {.7'-0,‘?1,.7:21\4,.7:[1{3}, and F C Foa
then MIN CSP(F) is MIN UNCUT-hard.

Proof: Recall that MIN UNCuUT-hardness requires that MIN CSP(XOR) be A-reducible to MIN
CSP(F).
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Let f € F. Counsider (all) the minimally dependent sets of f. By Lemma 4.22 all such sets are of
cardinality at most 2. For a minimally dependent set {7, j} let

def
fij(Tixj) = 3T1, 00 i1, Tig 1y oo T 1, Tijgdy - oo, Tg Sb f@1, 000, T).

By Lemma 4.17 all the f;;’s are affine and thus must be one of the functions T'(x;), F(x;)
XOR(zj,2;) or XNOR(z4, ;). Furthermore f can be expressed as the conjunction of f; ;’s over all
the minimally dependent sets. It follows that there exist 4, j such that f; j(z;, z;) = XOR(xz;, z).
(Otherwise f would be a conjunction of 7', F' and XNOR functions, all of which are in Figs, and
thus f would also be in Fiyg.) Thus we conclude that f implements XOR and by Lemma 3.10 we
conclude that MIN CSP(XOR) is A-reducible to MIN CSP(F) as desired. 0

For the MIN 2CNF DELETION-hardness proof, we need the following three simple lemmas.

Lemma 7.11 If f is a 2CNF function which is not width-2 affine, then f SN ORgy; for some
1 €{0,1,2}.

Proof: For i,j € [k], let

def
fiyj(.’L‘i,{L‘j) = 3371,...,:L‘i_l,:L‘i+1,...,xj_1,$j+1,...,$k S.t. f(:L‘l,...,:L‘k).

Recall that f can be expressed as the conjunction of f; ;’s over all its maxterms and by Lemma 4.21,
all the maxterms of f’s have at most 2 literals in them. Thus f(z1,...,z,) can be expressed as
/\i,je[k} fij(zi,z;). It follows that some f; ; must be one of the functions ORg9, OR21 or ORg
(all other functions on 2 variables are affine). Thus existentially quantifying over all variables other
than z; and z;, f perfectly implements ORgy; for some [ € {0,1,2}. O

Lemma 7.12 If f € Foonr is not in IHS-B, then f == XOR.

Proof: Once again we use the fact that f can be expressed as \; je fij(zi,z;), where f; ; is the
function obtained from f by existentially quantifying over all variables other than z; and x;. It
follows that one of the f; ;’s must be NAND or XOR, since all the other functions on two variables
are in IHS-B+. In the latter case we are done, else we use the fact that f is not in IHS-B— to
conclude that f perfectly implements OR or XOR. In the latter case again we are done else we use
the fact that f perfectly implements both the functions NAND and OR, and that NAND(z,y) and
OR(z,y) perfectly implement XOR(z,y), to conclude that in this case too, the function f perfectly
implements XOR. O

Lemma 7.13 If f is the function ORy, for some | € {0,1,2} then {f,XOR} == {OR,NAND}.

Proof: The lemma follows from the fact that the function XOR essentially allows us to negate
literals. For example, given the function ORs 1 (z,y) and XOR, the applications ORs 1 (2, zaux) and
XOR(zaux,y) perfectly and strictly implement the function NAND(z,y). Other implementations
are obtained similarly. O

Lemma 7.14 (MiN 2CNF DELETION-hardness) If F € F', for F' € {Fo, F1, Foum, Fius, Foa }s
and F C Foonr then MIN CSP(F) is MIN 2CNF DELETION-hard.

Proof: By Lemmas 7.11 and 7.12, F implements one of the functions ORy; for [ € {0,1,2} and
the function XOR. By Lemma 7.13 this suffices to implement the family {NAND, OR}. Thus by
Lemma 3.10 we conclude that MiN CSP({OR,NAND}) A-reduces to MiN CSP(F). O
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Lemma 7.15 If F C Fp but F € F' for any F' € {Fo, F1, Foum, Fius, Faa }, then MIN CSP(F)
is NEAREST CODEWORD-hard.

Proof: By Lemma 4.18 we know that in this case F perfectly implements the constraint z; & --- @
xp = b for some p > 3 and some b € {0,1}. Thus the family F U {7, F'} implements the functions
r@y®z=0,2dydz = 1. Thus NEAREST CODEWORD =MIN CSP({z®y®z =0,20ydz = 1} is
A-reducible to MIN CSP(FU{F,T}). Since F is neither 0-valid nor 1-valid, we can use Lemma 5.7
to conclude that MIN CSP(F) is NEAREST CODEWORD-hard. 0

The next lemma describes the best known hardness of approximation for the NEAREST CODEWORD
problem. The result relies on an assumption stronger than NP # P.

Lemma 7.16 ([2]) For every e > 0, NEAREST CODEWORD is hard to approzimate to within a
factor of Q(Zloglﬁn), unless NP has deterministic algorithms running in time nlog”n,

Proof: The required hardness of the nearest codeword problem is shown by Arora et al. [2]. The
nearest codeword problem, as defined in Arora et al., works with the following problem: Given a
m X n matrix A and a m-dimensional vector b, find an n-dimensional vector  which minimizes
the Hamming distance between Az and b. Thus this problem can be expressed as a MIN CSP
problem with m affine constraints over n-variables. The only technical point to be noted is that
these constraints have unbounded arity. In order to get rid of such long counstraints, we replace a
constraint of the form z1 @ --- ® z; = 0 into [ — 2 constraints z1 Do D21 =0, 21 B 23D 20 =0,
etc. on auxiliary variables zi,..., z_3. (The same implementation was used in Lemma 7.6.) This
increases the number of constraints by a factor of at most n, but does not change the objective
function. Thus if M represents the number of constraints in the new instance of the problem, then
the approximation hardness which is 2log’ " “m can be expressed as 23108' " M which is still growing
faster than, say, 2108'™* M Gince the result of [2] holds for every positive €, we still get the desired
result claimed above. O

It remains to see the MIN HORN DELETION-hard case. We will have to draw some non-trivial
consequences from the fact that a family is not IHS-B.

Lemma 7.17 Assume F € Fius and either F C Fwp or F C Fwn. Then F contains a function
that is not C-closed.

Proof: Let f be a C-closed function in Fywp (Fwn). We claim that all of f’s maxterms must be
of the form T'(x;), F'(x;) or ORy1(x;,x;). If not, then since f is C-closed, the maxterm involving
the complementary literals is also a maxterm of f, but the complementary maxterm is not weakly
positive (and by Lemma 4.20 every maxterm of f must be weakly positive). But if all of f’s
maxterms are of the form T'(z;), F(x;) or ORy1(x;, %), then f is in IHS-B. The lemma follows
from the fact that F € Fips. O

Lemma 7.18 If f is a weakly positive function not expressible as IHS-B+, then {f,T,F'} SN
OR3,1. If f is a weakly negative function not expressible as IHS-B-, then {f,T, F'} £ ORg3 2.

Proof: Let f be a weakly positive function. By Lemma 4.20 all maxterms of f are weakly positive.
Since f is not IHS-B+, f must have a maxterm of the form (-z1\ z2V -V z,), for some p > 3.
We first show that {f, F'} can perfectly implement the function XNOR. To get the former, consider
the function

def —
fl(wl,xQ) = Ela;p_|_1,...,xk s.t. f(fI)l,xQ,Op 2,:L‘p+1,...,.’1}k).
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The function f; satisfies the properties fi(10) = 0, f1(00) = f1(11) = 1. Thus f; is either the
function XNOR or ORy;. Notice that the constraints f(z1,...,zx) and F(xz;), ¢ € {3,...,p}
perfectly implement f;. Thus {f, F'} perfectly implement either the function XNOR or ORy ;.

In the former case, we have the claim and in the latter case we use the fact that the constraints
ORg,1(z,y) and ORy 1 (y, ) perfectly implement XNOR(z,y).

Next, we show how the family {f,7T, F,XNOR} (and hence {f,T,F}) can perfectly implement
ORg2,1. To do so, we consider the function

def _
fg(.’L‘l,wQ,xg) :e Ela;p_|_1,...,$k s.t. f(.’L‘l,QTQ,{L‘g,Op 3,:L‘p+1,...,:L‘k).

Again {f,F} implement fo perfectly. By the definition of a maxterm, we find that fy satisfies
the following properties: f2(100) = 0 and f2(000) = f2(110) = f2(101) = 1. Figure 3 gives the
truth table for f,, where the unknown values are denoted by A, B, C and D. If C' = 0 then
X2 X3
¥*\_00 01 11 10

0O/l1| A/ B|D

10| 1| ¢!

Figure 3: Truth-table of the constraint f;

restricting 1 = 1 gives the constraint XOR(x2, x3). But notice that XOR is not a weakly positive
function and by Lemma 4.19 every function obtained by setting some of the variables in a weakly
positive function to constants and existentially quantifying over some other subset of variables is a
weakly positive function. Thus C = 1. If D = 1, we implement the function ORg;(z1,z2) by the
constraints fo(x1, 2, 23) and F(z3). Else we have D = 0, and the constraints fs(z1,z2,23) and
XNOR(z1,z3) implement the constraint ORg (22, z1).

Finally we conclude by observing that the constraints fo(z,z!,2%), ORg (2%, y) and ORg; (2%, 2),
perfectly implement the constraint OR3 1 (z,v, z).

This completes the proof for the first part. The proof if f is weakly negative is similar. O

Lemma 7.19 (The MiN HOrN DELETION-hard Case) If F € F', for any F' € {Fo, F1,Fom,
fIHs,ng,fQCNF}, and either F C Fwp or F C fWN; then WEIGHTED MIN CSP(]:') 18 MIN
HORN DELETION-hard.

Proof: From Lemma 7.18 we have that either MiN CSP({OR3 1,7, F'} or MIN CSP({OR3,T, F'}
is A-reducible to MIN CSP(F). Furthermore, since F is not 0-valid or 1-valid we have that
MIN CSP(F U {T,F}) is A-reducible to MIN CSP(F). The lemma follows by an application
of Proposition 7.1 which shows that the problems MIN CSP({OR3,,T,F}) A-reduces to MIN
CSP({ORg,Q,T, F}) a

To show the hardness of MIN HORN DELETION we define a variant of the “label cover” problem.
The original definition from [2] used a different objective function. Our variant is similar to one
used by Amaldi and Kann [1] under the name Total Label Cover.

Definition 7.20 (Total Label Cover))
INSTANCE: An instance is described by sets R, Q and A and by p functions (given by their tables)
Qi,---,Qp R — Q and a function Acc: R x (A)P — {0,1}.
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FEASIBLE SOLUTIONS: A solution is a collection of p functions Ay,..., A, : Q — 24, The so-
lution is feasible if for every R € R, there exists a1 € A1(Q1(R)),...,ap € Ap(Qp(R)) such that
Acc(R,aq,...,ap) = 1.

OBJECTIVE: The objective is to minimize Y51 3, 14i(q)]-

In the appendix, we show how results from interactive proofs imply the hardness of approximating
. . 1—e .

MIN LABEL-COVER to within a factor of 2!°6" " We now use this result to show that hardness

of MIN HORN DELETION.

Lemma 7.21 For every ¢ > 0, MIN HORN DELETION is NP-hard to approximate to within a
l1—e
factor of 2108 " n,

Proof: Let p be such that MIN LABEL-COVER,, is NP-hard to approximate to within a factor of
1—e

2l """ (By Lemma A.3 such a p exists.) We now reduce MIN LABEL-COVER, to MIN HORN
DELETION.

Let (Q1,...,Qp,Acc) be an instance of MIN LABEL-COVER,,, where Q; : R — Q and Acc :
R x (A)? — {0,1}. For any R € R, we define Acc(R) = {(a1,...,ap) : V(R,a1,...,a,) = 1}.

We now describe the reduction. For any R € R, a1,...,a, € A, we have a variable vpq, . q,
whose intended meaning is the value of ACC(R, ay,...,a,). Moreover, for every i € [p], Q € Q, and
a € A; we have a variable x; g 4, with the intended meaning being that its value is 1 if and only
if a € A4;(Q). For any z; g, we have the weight-one constraint —z;,,. The following constraints
(each with weight (p x |Q| x |A])) enforce the variables to have their intended meaning. Due to
their weight, it is never convenient to contradict them.

VReER: \/(al,...,ap)eAcc(R) UR,a1,...,ap
VR € R7 a/17 R 7ap € A77’ € [p] : szala'"aaP = xl:Ql(R)ﬂ'z

The constraints of the first kind can be perfectly implemented with OR3 and OR3 ; (see Lemma 7.7).
It can be checked that this is an AP-reduction from MIN LABEL-COVER, to MIN HORN DELETION
and thus the lemma follows. O

8 MiN ONES Classification

8.1 Preliminaries: MIN ONES vs. MIN CSP

We start with the following easy relation between MIN CSP and MIN ONES problems. Recall that
a family F is decidable if membership in SAT(F) is decidable in polynomial time.

Proposition 8.1 For any decidable constraint family F, WEIGHTED MIN ONES(F) AP-reduces
to WEIGHTED MIN CSP(F U{F}).

Proof: Let Z be an instance of WEIGHTED MIN ONES(F) over variables x1, ..., z, with weights
Wy,. .., Wy, Let wpax be the largest weight. We construct an instance Z' of WEIGHTED MIN
CSP(F U{F}) by leaving the constraints of Z (each with weight nwmay), and adding a constraint
F(z;) of weight w; for any ¢ = 1,...,n. Notice that whenever Z is feasible, the optimum value for
7 equals the optimum value for Z'. Given a r-approximate solution to x to Z’, we check to see if 7
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is feasible and if so find any feasible solution x’ and output solution (from among x and x') that
achieves a lower objective. It is clear that the solution is at least an r-approximate solution if Z is
feasible. O

Reducing a MIN CSP problem to a MIN ONES problem is slightly less general.

Proposition 8.2 For any function f, let f' and f" denote the functions f'(x,y) = OR(f(x),v)
and f"(x,y) = XOR(f(x),y) respectively. If constraint families F and F' are such that for every
feF, florf"isinF', then WEIGHTED MIN CSP(F) AP-reduces to WEIGHTED MIN ONES(F').

Proof: Given an instance Z of WEIGHTED MIN CSP(F) we create an instance Z' of WEIGHTED
MIN ONES(F') as follows: For every constraint C; we introduce an auxiliary variable y;. The
variable takes the same weight as the constraint C; in Z. The original variables are retained with
weight zero. If the constraint Cj(x)\/ y; is a constraint of F' we apply that constraint, else we
apply the constraint Cj(x) ® y = 1. Given an assignment to the variables of Z, notice that by
setting y; = —C}, we get a feasible solution to Z' with the same objective value; conversely, a
feasible solution to Z' when projected onto the variables x gives a solution with the same value to
the objective function of Z. This shows that the optimum value to Z' equals that of Z and that an
r-approximate solution to Z’ projects to give an r-approximate solution to Z. O

Finally the following easy proposition is invoked at a few places.

Proposition 8.3 If F=f, then F —f~.

8.2 Containment Results for MIN ONES

Lemma 8.4 (PO ccontainment) If F C F' for some F' € {Fo, Fwn,Faoa}, then WEIGHTED
MIN ONES(F) is solvable exactly in polynomial time.

Proof: Follows from Lemma 6.5 and from the observation that for any family F, solving WEIGHTED
MIN ONES(F) to optimality reduces to solving WEIGHTED MAX ONES(F ) to optimality. O

Lemma 8.5 If F C F' for F' € {Facnr, Fins}, then WEIGHTED MIN ONES(F) is in APX.

Proof: For the case F C Focnr, a 2-approximate algorithm is given by Hochbaum et al. [25].

Consider now the case F C Figs. From Proposition 3.4 it is sufficient to consider only basic
IHS- B constraints. Since IHS-B— constraints are weakly negative, we will restrict to basic IHS-B+
constraints. We use linear-programming relaxations and deterministic rounding. Let k be the
maximum arity of a function in F, we will give a k-approximate algorithm. Let ¢ = {C4,...,C),}
be an instance of WEIGHTED MIN ONES(F) over variable set X = {z1,...,z,} with weights
wi,...,wy. The following is an integer linear programming formulation of finding the minimum
weight satisfying assignment for ¢.

Minimize >, w;y;

Subject to
yil+---+yih21 V(a;“V\/a;zh)eng
Yiy — Yi, >0 V(zi, V -ziy) € ¢ (SCB)
yi =0 V-z; € ¢
yi =1 Va; € ¢
y; € {0,1} Vie{l,...,n}
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Consider now the linear programming relaxation obtained by relaxing the y; € {0,1} constrains
into 0 < y; < 1. We first find an optimum solution y* for the relaxation, and then we define a 0/1
solution by setting y; = 0 if y7 < 1/k, and y; = 1 if y7 > 1/k. It is easy to see that this rounding
increases the cost of the solution at most k& times and that the obtained solution is feasible for
(SCB). O

Lemma 8.6 For any F C Fan, WEIGHTED MIN ONES(F) is A-reducible to NEAREST CODEWORD.

Proof: From Lemmas 7.6 and 3.9 we have that WEIGHTED MIN ONES(F) is A-reducible to
WEIGHTED MIN ONES({XNOR3,XOR3}). From Proposition 8.1, we have that WEIGHTED MIN
ONES(F) A-reduces to WEIGHTED MIN CSP({XOR3, XNORg, F'}). Notice further that the family
{XNOR3,XOR3} can implement F' (by Lemma 4.6). Thus we have that we have that WEIGHTED

MIN ONES(F) A-reduces to WEIGHTED MIN CSP({XOR3,XNOR3, }) = NEAREST CODEWORD.
O

Lemma 8.7 For any F C Fwp, WEIGHTED MIN ONES(F) AP-reduces to MIN HORN DELETION.
Proof: Follows from the following sequence of assertions:
(1) {ORs,,T, F} perfectly implements F (Lemma 7.7).
(2) WEIGHTED MIN ONES(F) AP-reduces to WEIGHTED MIN ONES({OR3 1, T, F'}) (Lemma 3.9).

(3) WEIGHTED MIN ONES({OR31,T, F'}) AP-reduces to WEIGHTED MIN CSP({OR3,T, F})
= MIN HORN DELETION (Proposition 8.1).

O
Proposition 8.8 If F is decidable then MIN ONES(F) is in poly-APX.

Proof: The proposition follows immediately from the fact that in this case it is easy to determine
if the input instance is feasible and if so, if the optimum value is zero. If so we output the 0 as the
solution, else we output any feasible solution. Since the objective is at least 1 and the solution has
value at most n, this is an n-approximate solution. O

8.3 Hardness Results for MIN ONES

We start by considering the hardest problems first. The case when JF is not decidable is immediate.
We move to the case where F may be 1-valid, but not in any other of Schaefer’s easy classes.

Lemma 8.9 If F € F' for any F' € {Fo, Facnr, Fa, Fwp, Fwn }, then WEIGHTED MIN ONES(F)
is hard to approzimate to within any factor, and MIN ONES(F) is poly-APX-hard.

Proof: We first show how to handle the weighted case. The hardness for the unweighted case
will follow easily. Consider a function f € F which is not weakly positive. For such an f, there
exists assignments a and b such that f(a) = 1 and f(b) = 0 and a is zero in every coordinate
where b is zero. (Such a input pair exists for every non-monotone function f and every monotone
function is also weakly positive.) Now let f’ be the constraint obtained from f by restricting it to
inputs where b is one, and setting all other inputs to zero. Then f' is a satisfiable function which
is not 1-valid. We can now apply Schaefer’s theorem [42] to conclude that SAT(F U {f’}) is hard to
decide. We now reduce an instance of deciding SAT(F U {f'}) to approximating WEIGHTED MIN
CSP(F). Given an instance Z of SAT(F U {f'}) we create an instance which has some auxiliary
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variables Wy, ..., Wy which are all supposed to be zero. This in enforced by giving them very large
weights. We now replace every occurrence of the constraint f’ in Z by the constraint f on the
corresponding variables with the W;’s in place which were set to zero in f to obtain f’. It is clear
that if a “small” weight solution exists to the resulting WEIGHTED MIN CSP problem, then 7 is
satisfiable, else it is not. Thus we conclude it is NP-hard to approximate WEIGHTED MIN CSP to
within any bounded factors.

For the unweighted case, it suffices to observe that by using polynomially bounded weights above,
we get a poly-APX hardness. Further one can get rid of weights entirely by replicating variables.
O

We may now restrict our attention to function families F that are 2CNF or affine or weakly positive
or weakly negative or 0-valid. In particular, by the containment results shown in the previous
section, in all such cases the problem WEIGHTED MIN ONES(F) is in poly-APX. We now give a
weight-removing lemma which allow us to focus on showing the hardness of the weighted problems.

Lemma 8.10 If F C F' for some F' € {Focnr,Fa,Fwp, Fwn,Fo}, then WEIGHTED MIN
ONES(F) AP-reduces to MIN ONES(F).

Proof: By Lemma 3.11 it suffices to verify that WEIGHTED MIN ONES(F) is in poly-APX
in all cases. If F is weakly negative or 0-valid, then this follows from Lemma 8.4. If F is
2CNF then this follows from Lemma 8.5. If F is affine or weakly positive, then it A-reduces
to NEAREST CODEWORD or MINHORNDELETION respectively which are in poly-APX by Corol-
lary 7.8. O

Before dealing with the remaining cases, we prove one more lemma that is useful in dealing with
MIN ONES problems.

Lemma 8.11 For every constraint family F such that F U {F} is decidable, WEIGHTED MIN
ONES(F U{F'}) AP-reduces to WEIGHTED MIN ONES(F).

Proof: Given an instance Z of WEIGHTED MIN ONES(F U {F'}) on n variables z,...,z, with
weights wy, ..., w, we create an instance Z' of WEIGHTED MIN ONES(F), on the variables z1, ..., z,
using all the constraints of Z that are from F; and for every variable variable z; such that F(x;) is
a counstraint of Z, we increase the weight of the variable x; to nwpyax where wpax is the maximum
of the weights w1,...,w,. As in Lemma 8.1 we observe that if Z is feasible, then the optima for Z
and Z' are equal and given an r-approximate solution to Z' we can find an r-approximate solution
to Z. Furthermore, since F U {F'} is decidable, we can decide whether or not Z is feasible. O

We now deal with the affine problems.

Lemma 8.12 If F is affine but not width-2 affine or 0-valid then MIN ONES(XOR3) is AP-
reducible to WEIGHTED MIN ONES(F).

Proof: Notice that since F is affine, so is . Furthermore, 7 is neither width-2 affine nor
1-valid. Thus by Lemma 6.10 F~ perfectly implements either the family {XNOR3} or the family
{XOR, XNORy4}. Thus, by applying Proposition 8.3, we get that F implements either XORg or the
family {XOR, XNOR4}. In the former case, we are done (by Lemma 3.9). In the latter case, notice
that the constraints XNORy(z1, z9, z3,25) and XOR(z4,z5) perfectly implement the constraint
XORy(z1, 2, 23,25). Thus we conclude that WEIGHTED MIN ONES(XOR4) is AP-reducible to
WEIGHTED MIN ONES(F). Finally we use Lemma 8.11 to conclude that the family WEIGHTED
MIN ONES(F)({XOR}|p) is AP-reducible to WEIGHTED MIN ONES(F). The lemma follows from
the fact that XOR3 € {XOR4}|o. O
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Lemma 8.13 If F is affine but not width-2 affine or 0-valid then, for every e > 0, MIN ONES(F)
is NEAREST CODEWORD-hard and hard to approzimate to within a factor of Q(2!°8°").

Proof: Follows from the following sequence of reductions:

NEAREST CODEWORD
=  WEIGHTED MIN CSP({XOR3,XNOR3})
<ap WEIGHTED MIN ONES({XOR4, XNOR4}) (using Proposition 8.2)
<ap WEIGHTED MIN ONES({XOR3,XOR}) (see below)
<ap WEIGHTED MIN ONES(XOR3) (using Lemma 8.11)
<ap WEIGHTED MIN ONES(F) (using Lemmas 8.12 and 3.9)
<ap MIN ONES(F) (using Lemma 8.10.)

The second reduction above follows by combining Lemma 3.9 with the observation that the family
{XOR3,XOR} perfectly implement the functions XOR4 and XNORy as shown next. The con-
straints XOR3(u,v,w) and XORs3(w, z,y) perfectly implement the constraint XNORy(u, v, z,y);
the constraints XOR4(u, v, w,z) and XOR(w,y) perfectly implement XOR4(u,v,z,y). The hard-
ness of approximation of NEAREST CODEWORDLemma 7.16. O

Lemma 8.14 If F is weakly positive and not IHS-B (nor 0-valid) then MIN ONES(F) is MIN
HORN DELETION-hard, and hence hard to approximate within glog'~*n for any € > 0.

Proof: Follows from the following sequence of reductions:

MIN HORN DELETION
=  WEIGHTED MIN CSP({OR3,,T, F'}
<ap WEIGHTED MIN ONES({OR4,1,0OR2,0R21}) (Using Proposition 8.2.)
<ap WEIGHTED MIN ONES({OR3 1,7, F'}) (Using Lemmas 7.7 and 3.9.)
<ap WEIGHTED MIN ONES(F U{T, F'}) (Using Lemmas 7.18 and 3.9.)
<ap WEIGHTED MIN ONES(F U{F'}) (Using Lemma 4.6 to perfectly implement 7'.)
<ap WEIGHTED MIN ONES(F) (Using Lemma 8.11.)
<ap MIN ONES(F) (Using Lemma 8.10.)

The hardness of approximation follows from Lemma 7.21. O
Lemma 8.15 MIN ONES(OR) is APX-hard.

Proof: We reduce VERTEX COVER to MIN ONES(OR). Given a graph G on n vertices, we construct
an instance of MIN ONES(OR) on n variables x1,...,z,. For every edge between vertex ¢ and j of
G, we create a constraint OR(xz;, ;). We notice that there is a one-to-one correspondence between
an assignment to the variables and vertex covers in G (with variables assigned 1 corresponding
to vertices in the cover) and the minimum vertex cover minimizes the sum of the variables. The
lemma follows from the fact that VERTEX COVER is APX-hard [39, 3]. O

Lemma 8.16 (APX-hardness) If F € F' for any F' € {Fo, Fwn, Foa}, then MIN ONES(F) is
APX-hard.
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Proof: We mimic the proof of Lemma 6.14. We assume that F is not affine — the case where F
is affine is shown to be NEAREST CODEWORD-hard in Lemma 8.13. By Lemma 8.10 it suffices to
show that WEIGHTED MIN ONES(F) is APX-hard; and by Lemma 8.11 it suffices to show that
WEIGHTED MIN ONES(F U {F'}) is APX-hard. Since F U {F} is not 0-valid or 1-valid or C-closed
it implements every function in F U {T, F'} and thus every function in F|p;. We now shift focus
on to the family (Flo1)”. Furthermore (F|o,1)~ is neither weakly positive nor affine and thus by
Lemmas 6.20 and 6.21 it implements NAND. Using Proposition 8.3 we get that F(; implements
OR. Using Lemma 8.15 we get that WEIGHTED MIN ONES(OR) is APX-hard. Thus we conclude
that WEIGHTED MIN ONES(F) is APX-hard. O
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A Hardness of Total Label Cover

Definition A.1 L € MIP [p,r,q,a] if there exists a polynomial time bounded probabilistic oracle
machine V. (verifier) such that on input z € {0,1}", the verifier picks a random string R € {0,1}7(")
and generates p queries Q1 = Q1(z, R),...,Qp = Qp(z, R) € {0, 134" and sends query Q; to prover
II; and receives from prover 11; an answer A; = A;i(Q;) € {0, 1}a(”) and then computes a verdict
Aco(z, R, Ay, ..., Ap) € {0,1} with the following properties:

Completeness: = € L = JA(-),...,A,() such that Er[Acc(z, R, Ay,...,Ap)] > c(n).
Soundness: ¢ & L = VA(-),...,Ap(:), Eg[Acc(z,R,Ay,...,A,)] <s(n).
We say V' is uniform if for every x and i, there exists d,;, s.t. for every query @Q; € {0, 1}‘1(n),

{R € {0,1}"™|Q;(R) = Q;}| = dy;. We say L is in UNIFORM-MIP [p,, q,a] if there exists a
uniform verifier V. which places L in MIP4[p,r,q,a].

We use a recent result of Raz and Safra [41] (see also [5] for an alternate proof) which provides a
strong UNIFORM-MIP containment result for NP.

Lemma A.2 ([41, 5]) For every € > 0, there exist constants p,c1,co and c3 such that

NP C UNIFORM-MIP | ,_ ;1< [p, ¢1 logn, ¢z log n, c3 log n].

Remark:

(1) The result shown by [41, 5] actually has smaller answer sizes, but this turns out to be irrelevant
to our application below, so we don’t mention their stronger result.

(2) The uniformity property is not mentioned explicitly in the above papers. However it can be
verified from their proofs that this property does hold for the verifier constructed there.
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The following reduction is essentially from [36, 7, 2].

Lemma A.3 For every € > 0, there exists a p = p. such that Total Label Cover, is NP-hard to

approximate to within a factor of glog"~“n

Proof: We use Lemma A.2. Let L be an NP-complete language and for € > 0, let p, ¢y, c2,c3 be
such that L € UNIFORM—MIP1 2710g175/2n[p, c1 logn, cologn, czlogn] and let V' be the verifier that
shows this containment. Given an instance z € {0,1}" of L, we create an instance of Total Label
Cover,, as follows: Set Q;(R) to be the query generated by V' to prover II; on input « and random
string R. For every R,ai,...,a, ACC(R,a1,...,ap) is 1 if V accepts the answers a,...,a, on

random string R.

Let @ = {0,1}¢2'°¢" denote the set of all possible queries and let R denote the space of all possible
random strings (i.e., R = {0,1}167)) If 2 € L, it is clear that there exists a feasible solution
Ai,..., A, such that for every query ¢ € Q, and for every ¢ € {1,...,p}, it is the case that
|Ai(q)] = 1. Thus the value of the optimum solution is at most p - |Q)|.

Now we claim for a given z, if the mapped instance of Total Label Cover has a solution of size Kp|Q|
then there exist provers II, ..., IL, such that V accepts with probability at least K~/7/(p+1)P+!.

To see this let 1I;(¢) be a random element of A;(q). If n;, denotes the cardinality of A;(g), then
the probability that V accepts the provers response is given by

1
R|

> I Ynigun-

ReR 1

Define R; to be {R € Rln;q,(r) = (p + 1)K}. By Markov’s inequality and the uniformity of the
protocol |R;|/|R| < 1/(p +1).
Let Rg =R —Ri—Rg —--- —Rp. Then |Ro|/|R| > 1/(p + 1).

We go back to bounding the probability above:

1 1
] > Hvmow = R > I
RER 1t RERy 1t
1
> R > I /nigur
RERy 1t
1
> R > (1/((p+1)K)P)
RERo
> K7'P/(p+ 1)t

It follows that if K = K(n) is less than 2\°6" ‘" then for sufficiently large n, K=1/7/(p + 1)P*1 is
1—e/2

greater than 21°8 . Thus a K-approximation algorithm for Total Label Cover, can be used to

decide L. Thus Total Label Cover, is NP-hard to approximate to within a factor of glog’™“n
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B Schematic Representations of the Classification Theorems

B.1 The Max CSP Classification
F

1l

0-valid or 1-valid or Yes
2-monotone?

Y

In PO (Lemmas 5.1 and 5.2)

No

APX-complete
(Proposition 5.5 and
Lemma 5.8)
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B.2 The MaAX ONES Classification
F

1l

1-valid or weakly positive or

Yes

width-2 affine?

No

Yes

Y

In PO (Lemma 6.5)

Affine?

No

Strongly 0-valid or weakly

Yes

Y

APX-complete (Lemmas 6.6 and
6.13)

negative or 2CNF?

Yes

Y

poly-APX-complete (Proposition 6.7
and Lemma 6.14)

Feasibility is NP-hard [42]
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Y

Not approximable (Lemma 6.23)




B.3 The MIN CSP Classification
F

2

In PO (Lemmas 5.1 and 5.2)

APX-complete (Lemmas 7.3 and 7.9)

MiN UNCuT-complete (Lemmas 7.4
and 7.10)

Min 2CNF DELETION-complete
(Lemmas 7.5 and 7.14)

NEAREST CODEWORD-complete
(Lemmas 7.6 and 7.15)

0-valid or 1-valid or Yes s
2-monotone?
No
Y
IHS-B? A
No
Y
Width-2 affine? e
No
Y
2CNF? A
No
Y
Affine? -
No
Horn? Yes >
No

Not approximable [42]
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MIN HORN DELETION-complete
(Lemmas 7.7 and 7.19)




B.4 The MIN ONES Classification
F

2

in PO (Lemma 8.4)

APX-complete (Lemmas 8.5 and
8.16)

NEAREST CODEWORD-complete
(Lemmas 8.6 and 8.12)

MIN HORN DELETION-complete
(Lemmas 8.7 and 8.14)

0-valid or weakly negative or Yes
width-2 affine?
No
Y
2CNF or THS? =
No
Y
Affine? C
No
Weakly positive? Yes
No
Y
1-valid? e
No

Feasibility is NP-hard [42]
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poly-APX-complete (Proposition 8.8
and Lemma 8.9)




