
The Approximability of Constraint SatisfactionProblems�Sanjeev Khannay Madhu Sudanz Luca Trevisanx David P. Williamson{October 21, 2000AbstractWe study optimization problems that may be expressed as \Boolean constraint satisfactionproblems". An instance of a Boolean constraint satisfaction problem is given by m constraintsapplied to n Boolean variables. Di�erent computational problems arise from constraint satis-faction problems depending on the nature of the \underlying" constraints as well as on the goalof the optimization task. Here we consider four possible goals: Max CSP (Min CSP) is theclass of problems where the goal is to �nd an assignment maximizing the number of satis�edconstraints (minimizing the number of unsatis�ed constraints). Max Ones (Min Ones) is theclass of optimization problems where the goal is to �nd an assignment satisfying all constraintswith maximum (minimum) number of variables set to 1. Each class consists of in�nitely manyproblems and a problem within a class is speci�ed by a �nite collection of �nite Boolean functionsthat describe the possible constraints that may be used.Tight bounds on the approximability of every problem in Max CSP were obtained byCreignou [11]. In this work we determine tight bounds on the \approximability" (i.e., the ra-tio to within which each problem may be approximated in polynomial time) of every problemin Max Ones, Min CSP and Min Ones. Combined with the result of Creignou, this com-pletely classi�es all optimization problems derived from Boolean constraint satisfaction. Ourresults capture a diverse collection of optimization problems such as MAX 3-SAT, Max Cut,Max Clique, Min Cut, Nearest Codeword etc. Our results unify recent results on the(in)approximability of these optimization problems and yield a compact presentation of mostknown results. Moreover, these results provide a formal basis to many statements on the be-havior of natural optimization problems, that have so far only been observed empirically.
�Preliminary versions of parts of this paper appeared in Proceedings of the Twenty-Ninth Annual ACM Symposiumon Theory of Computing, pages 11{20, El Paso, Texas, 4-6 May 1997; and Proceedings, Twelfth Annual IEEEConference on Computational Complexity, pages 282{296, Ulm, Germany, 24-27 June 1997. IEEE Computer SocietyPress.ysanjeev@cis.upenn.edu. Dept. of CIS, University of Pennsylvania, Philadelphia, PA 19104. Part of this workwas done when this author was a graduate student at Stanford University, and another part was done when thisauthor was at Bell Laboratories.zmadhu@lcs.mit.edu. Laboratory for Computer Science, MIT, 545 Technology Square, Cambridge, MA 02139.Part of this work was done when this author was at the IBM Thomas J. Watson Research Center.xluca@eecs.berkeley.edu. Computer Science Division, University of California at Berkeley, Berkeley, CA 94720.Work done at the University of Rome \La Sapienza".{dpw@almaden.ibm.com. IBM Almaden Research Center, K53/B1, 650 Harry Road, San Jose, CA 95120.1

2

1 IntroductionThe approximability of an optimization problem is the best possible performance ratio that isachieved by a polynomial-time approximation algorithm for the problem. The approximability isstudied as a function of the input size and is always a function bounded from below by 1. Researchin the nineties has led to dramatic progress in our understanding of the approximability of manycentral optimization problems. The results cover a large number of optimization problems, derivingtight bounds on the approximability of some, while deriving \asymptotically" tight bounds on manymore. 1In this paper we study optimization problems derived from \Boolean constraint satisfaction prob-lems" and present a complete classi�cation of these problems based on their approximability. Ourwork is motivated by an attempt to unify this recent progress on the (in)approximability of combi-natorial optimization problems. In the case of positive results, i.e., bounding the approximabilityfrom above, a few paradigms have been used repeatedly and these serve to unify the results nicely.In contrast, there is a lack of similar uni�cation among negative or inapproximability results. Inap-proximability results are established by approximation preserving reductions from hard problems,and such reductions tend to exploit every feature of the problem whose hardness is being shown,rather than isolating the \minimal" features that would su�ce to obtain the hardness result. As aresult inapproximability results are typically isolated, and are not immediately suited for uni�ca-tion.The need for a uni�ed study is however quite essential at this stage. The progress in the under-standing of optimization problems has shown large amounts of diversity in their approximability.Despite this diversity, natural optimization problems do seem to exhibit some noticeable trends intheir behavior. However in the absence of a terse description of known results it is hard to extractthe trends; leave alone, trying to provide them with a formal basis. Some such trends are describedbelow:� There exist optimization problems that are solvable exactly, that admit polynomial timeapproximation schemes or PTAS (i.e., for every constant � > 1, there exists a polynomialtime �-approximation algorithm), that admit constant factor approximation algorithms, log-arithmic factor approximation algorithms and polynomial factor approximation algorithms.But this list appears to be nearly exhaustive, raising the question: \Are there \natural"optimization problems with intermediate approximability?" 2� A number of minimization problems have an approximability of logarithmic factors. Howeverso far no natural maximization problem has been shown to have a similar approximability,raising the question: \Are there any \natural" maximization problems which are approx-imable to within polylogarithmic factors, but no better?"� Papadimitriou and Yannakakis [39] de�ne a class of optimization problems calledMAX SNP.This class has played a central role in many of the recent inapproximability results, and yet1We say that the approximability of an optimization is known asymptotically, if we can determine a functionf : Z ! Z and constants c1; c2 such that the approximability is between 1 + f(n) and 1 + c1f(nc2). This choice isbased on the common choice of an approximation preserving reduction. See De�nition 2.7.2There are problems such as the minimum feedback arc set for which the best known approximation fac-tor is O(log n log log n) [16] and the asymmetric p-center problem where the best known approximation factor isO(log� n) [38]. However, no matching inapproximability results are known for such problems.3

even now the class does not appear to be fully understood. The class contains a numberof NP-hard problems, and for all such known problems it turns out to be the case that theapproximability is bounded away from 1! This raises the natural question: \Are there anyNP-hard problems in MAX SNP that admit polynomial time approximation schemes?"In order to study such questions, or even to place them under a formal setting, one needs to �rstspecify the optimization problems in some uniform framework. Furthermore, one has to be carefulto ensure that the task of determining whether the optimization problem studied is easy or hard(to, say, compute exactly) is decidable. Unfortunately, barriers such as Rice's theorem (which saysthis question may not in general be decidable) or Ladner's theorem (which says problems may notbe just easy or hard [35]) force us to severely restrict the class of problems which can be studied insuch a manner.Schaefer [42] isolates one class of decision problems which can actually be classi�ed completely.He obtains this classi�cation by restricting his attention to \Boolean constraint satisfaction prob-lems". A problem in this class is speci�ed by a �nite set F of Boolean functions on �nitely manyvariables, referred to as the constraints. (These functions are speci�ed by, say, a truth table.)A function f : f0; 1gk ! f0; 1g, when applied to k variables x1; : : : ; xk represents the constraintf(x1; : : : ; xk) = 1. An instance of a constraint satisfaction problem speci�ed by F consists of m\constraint applications" on n Boolean variables where each constraint application is the appli-cation of one of the constraints from F to some ordered subset of the n variables. The languageSat(F) consists of all instances which have an assignment satisfying all m constraints. Schaeferdescribes six classes of function families, such that if F is a subset of one of these classes, then thedecision problem is in P, else he shows that the decision problem is NP-hard.Our Setup: In this paper we consider four di�erent optimization versions of Boolean constraintsatisfaction problems. In each case the problem is speci�ed by a family F , and the instance by mconstraints from F applied to n Boolean variables. The goals for the four versions vary as follows:In the problem Max CSP(F) the goal is to �nd an assignment that maximizes the number ofsatis�ed constraints. Analogously in the problem Min CSP(F) the goal is to �nd an assignmentthat minimizes the number of unsatis�ed constraints. Notice that while the problems are equivalentw.r.t. exact computation, their approximability may be (and often is) very di�erent. In the problemMax Ones(F) (Min Ones(F)) the goal is to �nd an assignment satisfying all constraints, whilemaximizing (minimizing) the number of variables set to 1. We also consider the weighted version ofall the above problems. In the case of Weighted Max CSP(F) (Weighted Min CSP(F)) theinstance includes a non-negative weight for every constraint and the goal is to maximize (minimize)the sum of the weights of the satis�ed (unsatis�ed) constraints. In the case of Weighted MaxOnes(F) (WeightedMin Ones(F)) the instance includes a non-negative weight for every variableand the goal is to �nd an assignment satisfying all constraint maximizing (minimizing) the weightof the variables set to 1. The collection of problems fMaxCSP(F) j F �niteg yields the classMaxCSP, and similarly we get the classes (Weighted) Min CSP, Max Ones, Min Ones.Together these classes capture a host of interesting optimization problems. Max CSP is a subsetof MAX SNP and forms a combinatorial core of the problems in MAX SNP. It also includes anumber of well-studied MAX SNP-complete problems, including MAX 3-SAT, MAX 2-SAT, andMax Cut. Max Ones shows more varied behavior among maximization problems and includesMax Clique and a problem equivalent toMax Cut. Min CSP andMin Ones are closely relatedto each other capturing very similar problems. The list of problems expressible as one of these4

includes: The s-tMin Cut problem,Vertex Cover, Hitting Setwith bounded size sets, Integerprograms with two variables per inequality [25],Min UnCut [20],Min 2CNF Deletion [33], andNearest Codeword [2]. The ability to study all these di�erent problems in a uniform frameworkand extract the features that make the problems easier/harder than the others shows the advantageof studying optimization problems under the constraint satisfaction framework.We provide a complete characterization of the asymptotic approximability of every optimizationproblem in the classes mentioned above. For the classMax CSP such a classi�cation was obtainedby Creignou [11] who shows that every problem in the class is either solvable to optimality inpolynomial time, or has a constant approximability bounded away from 1. For the remainingclasses we provide complete characterizations. The detailed statement of our results, comprising of22 cases, appear in Theorems 2.11-2.14. (This includes a technical strengthening of the results ofCreignou [11].) In short the results show that everyMax Ones problem is either solvable optimallyin P, or has constant factor approximability, or polynomial approximability or it is hard to �ndfeasible solutions. For the minimization problems, the results show that the approximability of everyproblem lies in one of at most 7 levels. However it does not pin down the approximability of everyproblem| but rather highlights a number of open problems in the area of minimization that deservefurther attention. In particular, it exposes a class of problems for which Min UnCut is complete,a class for which Min 2CNF Deletion is complete and a class for which Nearest Codewordis complete. The approximability of these problems is not yet resolved.Our results do indeed validate some of the observations about trends exhibited by optimizationproblems. We �nd that when restricted to constraint satisfaction problems; the following can beformally established. The approximability of optimization problems does come from a small numberof levels; maximization problems do not have a log-approximable representative while minimizationproblems may have such representatives (e.g. Min UnCut). NP-hardMax CSP problems are alsoMAX SNP-hard. We also �nd that weights do not play any signi�cant role in the approximabilityof combinatorial optimization problems, a thesis in the work of Crescenzi et al. [15]3.Finally, we conclude with some thoughts on directions for further work. We stress that while con-straint satisfaction problems provide a good collection of core problems to work with, they are by nomeans an exhaustive or even near-exhaustive collection of optimization problems. Our frameworklacks such phenomena as polynomial time approximation schemes (PTAS); it does not capture sev-eral important optimization problems such as TSP and numerous scheduling, sequencing and graphpartitioning problems. One possible reason for the non-existence of PTAS is that in our problemsthe input instances have no restrictions in the manner in which constraints may be imposed on theinput variables. Signi�cant insight may be gleaned by restricting the problem instances. A widelyprescribed condition is that the incidence graph on the variables and the constraints should form aplanar graph. This restriction has been studied by Khanna and Motwani [28] and they show that itleads to polynomial time approximation schemes for a general class of constraint satisfaction prob-lems. Another input restriction of interest could be that variables are allowed to participate only ina bounded number of constraints. We are unaware of any work on this front. An important exten-sion of our work would be to consider constraint families which contain constraints of unboundedarity (such as those included in the class Min F+�1 studied by Kolaitis and Thakur [34]). Suchan extension would allow us to capture problems such as Set Cover. Other directions includeworking with larger domain sizes (rather than Boolean domains for the variables), and working3Our de�nition of an unweighted problem is more loose than that of Crescenzi et al. In their de�nition theydisallow instances with repeated constraints, while we do allow them. We believe that it may be possible to removethis discrepancy from our work by a careful analysis of all proofs. We do not carry out this exercise here.5

over spaces where the solution space is the set of all permutations of [n] rather than f0; 1gn.Related Work: The works of Schaefer [42] and Creignou [11] have already been mentioned above.We reproduce some of the results of Creignou in Theorem 2.11, with some technical strengthen-ings. This strengthening is described in Section 2.5. Another point of di�erence with the result ofCreignou is that our techniques allow us to directly work with the approximability of optimizationproblems, while in her case the results formally establish NP-hardness and the hardness of approx-imation can in turn be derived from them. A description of these techniques appear in Section 2.6.Among other works focusing on classes showing dichotomy is that of Feder and Vardi [17] who con-sider the \largest" possible class of natural problems in NP that may exhibit a dichotomy. Theymotivate constraint satisfaction problems over larger domains and highlight a number of centralopen questions that lie on the path to the resolution of the complexity of deciding them. Creignouand Hermann [12] show a dichotomy result analogous to Schaefer's for counting versions of con-straint satisfaction problems. In the area of approximability, the works of Lund and Yannakakis [37]and Zuckerman [45] provide two instances where large classes of problems are shown to be hardto approximate simultaneously | to the best of our knowledge these are the only cases where theresults provide hardness for many problems simultaneously. Finally we mention a few results thatare directly related to the optimization problems considered here. Trevisan et al. [43] provide an al-gorithm for �nding optimal implementations (or "gadgets" in their terminology) reducing betweenMax CSP problems. Karlo� and Zwick [27] describe generic methods for �nding \semide�niterelaxations" of Max CSP problems - and use these to provide approximation algorithms for theseproblems. These results further highlight the appeal of the \constraint satisfaction" framework forstudying optimization problems.2 De�nitions and Results2.1 Constraints, Constraint Applications and Constraint FamiliesWe start by formally de�ning constraints and constraint satisfaction problems. Schaefer's work [42]proposes the study of such problems as a generalization of 3-satis�ability (3-SAT). We will use thesame example to illustrate the de�nitions below.A constraint is a function f : f0; 1gk ! f0; 1g. A constraint f is satis�ed by an input s 2 f0; 1gk iff(s) = 1. A constraint family F is a �nite collection of constraints ff1; : : : ; flg. For example, con-straints of interest for 3-SAT are described by the constraint familyF3SAT = fORk;j : 1 � k � 3; 0 �j � kg, where ORk;j : f0; 1gk ! f0; 1g denotes the constraint :x1W � � �W:xj Wxj+1W � � �W xk. Aconstraint application, of a constraint f to n Boolean variables, is a pair hf; (i1; : : : ; ik)i, wherethe indices ij 2 [n] select k of the n Boolean variables to whom the the constraint is applied.(Here and throughout the paper we use the notation [n] to denote the set f1; : : : ; ng.) For exampleto generate the clause (x5W:x3Wx2) we could use the constraint application hOR3;1; (3; 5; 2)i orhOR3;1; (3; 2; 5)i. Note that the applications allow the constraint to be applied to di�erent orderedsets of variables but not literals. This distinction is an important one, and is the reason that we needall the constraints OR3;0;OR3;1 etc. to describe 3-SAT. In a constraint application hf; (i1; : : : ; ik)i,we require that ij 6= ij0 for j 6= j0, i.e., the variables are not allowed to be replicated within aconstraint application. This is why we need both the functions OR2;0 as well as OR3;0 in 3-SAT.6

Constraints and constraint families are the ingredients that specify an optimization problem. Thusit is necessary that their description be �nite. (Notice that the description of F3SAT is �nite.)Constraint applications are used to specify instances of optimization problems (as well as instancesof Schaefer's generalized satis�ability problems) and the fact that their description lengths growwith the instance size is crucially exploited here. (Notice that the description size of a constraintapplication used to describe a 3-SAT clause will be
(log n).) While this distinction betweenconstraints and constraint applications is important, we will often blur this distinction in the restof this paper. In particular we may often let the constraint application C = hf; (i1; : : : ; ik)i referjust to the constraint f . In particular, we will often use the expression \C 2 F" when we mean\f 2 F , where f is the �rst component of C". We now describe Schaefer's class of satis�abilityproblems and the optimization problems considered in this paper.De�nition 2.1 (Sat(F))Instance: A collection of m constraint applications of the form fhfj ; (i1(j); : : : ; ikj (j))igmj=1, onBoolean variables x1; x2; :::; xn where fj 2 F and kj is the arity of fj.Objective: Decide if there exists a Boolean assignment to the xi's which satis�es all the con-straints.For example, the problem Sat(F3SAT) is the classical 3-SAT problem.De�nition 2.2 (Max CSP(F) (Min CSP(F)))Instance: A collection of m constraint applications of the form fhfj ; (i1(j); : : : ; ikj (j))igmj=1, onBoolean variables x1; x2; :::; xn where fj 2 F and kj is the arity of fj.Objective: Find a Boolean assignment to xi's so as to maximize (minimize) the number ofsatis�ed (unsatis�ed) constraints.In the weighted problem Weighted Max CSP(F) (Weighted Min CSP(F)) the input instanceincludes m non-negative weights w1: : : : ; wm and the objective is to �nd an assignment which max-imizes (minimizes) the sum of the weights of the satis�ed (unsatis�ed) constraints.De�nition 2.3 (Max Ones(F) (Min Ones(F)))Instance: A collection of m constraint applications of the form fhfj ; (i1(j); : : : ; ikj (j))igmj=1, onBoolean variables x1; x2; :::; xn where fj 2 F and kj is the arity of fj.Objective: Find a Boolean assignment to xi's which satis�es all the constraints and maximizes(minimizes) the total number of variables assigned true.In the weighted problem Weighted Max Ones(F) (Weighted Min Ones(F)) the input instanceincludes n non-negative weights w1: : : : ; wn and the objective is to �nd an assignment which satis�esall constraints and maximizes (minimizes) the sum of the weights of variables assigned true.The class (Weighted) Max CSP is the set of all optimization problems (Weighted) MaxCSP(F) for every constraint family F . The classes (Weighted) Max Ones, Min CSP, MinOnes are de�ned similarly.The optimization problemMax 3Sat is easily seen to be equivalent toMaxCSP(F3SAT). This andthe other problems Max Ones(F3SAT), Min CSP(F3SAT) and Min Ones(F3SAT) are consideredin the rest of this paper. More interesting examples of Max Ones, Min CSP and Min Onesproblems are described in Section 2.3. We start with some preliminaries on approximability thatwe need to state our results. 7

2.2 Approximability, Reductions and CompletenessA combinatorial optimization problem is de�ned over a set of instances (admissible input data); a�nite set sol(x) of feasible solutions is associated to any instance. An objective function attributesan integer value to any solution. The goal of an optimization problem is, given an instance x, �nda solution y 2 sol(x) of optimum value. The optimum value is the largest one for maximizationproblems and the smallest one for minimization problems. A combinatorial optimization problemis said to be an NPO problem if instances and solutions can be recognized in polynomial time,solutions are polynomial-bounded in input size, and the objective function can be computed inpolynomial time (see e.g. [10]).De�nition 2.4 (Performance Ratio) A solution s to an instance I of an NPO problem A isr-approximate if it has a value V satisfying:max� Vopt(I) ; opt(I)V � � r:An approximation algorithm for an NPO problem A has performance ratio R(n) if, given anyinstance I of A with jIj = n, it outputs an R(n)-approximate solution.We say that a NPO problem is approximable to within a factor R(n) if it has a polynomial-timeapproximation algorithm with performance ratio R(n).De�nition 2.5 (Approximation Classes) An NPO problem A is in the class PO if it is solvableto optimality in polynomial time. A is in the class APX (resp. log-APX/ poly-APX) if thereexists a polynomial-time algorithm for A whose performance ratio is bounded by a constant (resp.logarithmic/polynomial factor in the size of the input).Completeness in approximation classes can be de�ned using appropriate approximation preservingreducibilities. In this paper, we use two notions of reducibility: A-reducibility and AP-reducibility.We discuss the di�erence between the two and the need for having two di�erent notions after thede�nitions.De�nition 2.6 (A-reducibility [14]) An NPO problem A is said to be A-reducible to an NPOproblem B, denoted A�AB, if two polynomial time computable functions F and G and a constant� exist such that:(1) For any instance I of A, F (I) is an instance of B.(2) For any instance I of A and any feasible solution S 0 for F (I), G(I;S 0) is a feasible solutionfor I.(3) For any instance I of A and any r � 1, if S 0 is a r-approximate solution for F (I) thenG(I;S 0) is an (�r)-approximate solution for I.De�nition 2.7 (AP-reducibility [13]) For a constant � > 0 and two NPO problems A andB, we say that A is �-AP-reducible to B, denoted A�APB, if two polynomial-time computablefunctions F and G exist such that the following holds:(1) For any instance I of A, F (I) is an instance of B.(2) For any instance I of A, and any feasible solution S 0 for F (I), G(I;S 0) is a feasible solutionfor I. 8

(3) For any instance I of A and any r � 1, if S 0 is an r-approximate solution for F (I), thenG(I;S 0) is an (1+ (r� 1)�+ o(1))-approximate solution for I, where the o()-notation is withrespect to jIj.We say that A is AP-reducible to B if a constant � > 0 exists such that A is �-AP-reducible to B.Remark:1. Notice that Conditions (3) of both reductions only preserve the quality of an approximatesolution in absolute terms (to within the speci�ed limits) and not as functions of the instancesize. For example, an A-reduction from � to �0 which blows up instance size by quadraticfactor and an O(n1=3) approximation algorithm for �0 combine to give only an O(n2=3) ap-proximation algorithm for �.2. The di�erence between the two reductions is the level of approximability that is preservedby them. (Condition (3) in the de�nitions.) A-reductions preserve constant factor approx-imability or higher, i.e., if � is A-reducible to �0 and �0 is approximable to within a factorof r(n), then � is approximable to within �r(nc) for some constants �; c. This property suf-�ces to preserve membership in APX (log-APX, poly-APX), i.e., if � is in APX (log-APX,poly-APX) then �0 is also inAPX (resp. log-APX, poly-APX). However it does not preservemembership in PO or PTAS, as can be observed by setting r = 1.3. AP-reductions reductions are more sensitive than A-reductions. Thus if � is AP-reducible to�, then an r-approximate solution is mapped to an h(r) approximate solution where h(r)! 1as r! 1. Thus AP-reductions preserve membership in PTAS as well. However they need notpreserve membership in PO (due to the o(1)-term in their preservation of approximability).4. Condition (3) of the de�nition of AP-reductions is strictly stronger than the correspondingcondition in the de�nition of A-reductions. Thus, every AP-reduction is also an A-reduction.Unfortunately, neither one of these reductions on their own su�ce for our purposes. Weneed AP-reductions to show APX-hardness of problems, but we need the added
exibility ofA-reductions for other hardness results.5. The original de�nitions of AP-reducibility and A-reducibility of [14] and [13] were more gen-eral. Under the original de�nitions, the A-reducibility does not preserve membership inlog-APX, and it is not clear whether every AP-reduction is also an A-reduction. The re-stricted versions de�ned here are more suitable for our purposes. In particular, it is true thatthe Vertex Cover problem is APX-complete under our de�nition of AP-reducibility.De�nition 2.8 (APX, log-APX, and poly-APX-completeness) An NPO problem � is APX-hard if every APX problem is AP-reducible to �. An NPO problem � is log-APX-hard (poly-APX-hard) if every log-APX (poly-APX) problem is A-reducible to �. A problem � is APX(log-APX,poly-APX)-complete if it is in APX (resp. log-APX, poly-APX) and it is APX(resp. log-APX,poly-APX)-hard.The class APX contains the class MAX SNP as de�ned by Papadimitriou and Yannakakis [39].The containment is strict in a syntactic sense (e.g. MAX SNP does not contain any minimizationproblems); however, when one takes the closure of APX under AP-reductions, one obtains the classMAX SNP [29]. The notion of reductions used here is also less stringent than the notion of reduc-tion used in [39]. Thus APX, APX-hardness, and APX-completeness are (mild) generalizationsof the notions of MAX SNP, MAX SNP-hardness, and MAX SNP-completeness.9

Most problems we consider are known/shown to be in PO, or else are APX-complete or poly-APX-complete. However in some cases, we will not be able to establish the exact approximability of agiven problem. However, we will nevertheless be able to compile all problems into a �nite numberof equivalence classes, with some equivalence classes being de�ned as \problems equivalent to �"for some problem � of unknown approximability. The following de�nition captures this concept.De�nition 2.9 (�-completeness) For NPO problems � and �0, �0 is said to be �-complete if��A�0 and �0�A�.2.3 Problems captured by Max CSP, Max Ones, Min CSP and Min OnesWe �rst specify our notation for commonly used functions.0 and 1 are the functions which are always satis�ed and never satis�ed respectively. Togetherthese are the trivial functions. We will assume that all our function families do not have anytrivial functions.T and F are unary functions given by T (x) = x and F (x) = :x.For a positive integer i and non-negative integer j � i, ORi;j is the function on i variablesgiven by ORi;j(x1; : : : xi) = :x1W � � �W:xj Wxj+1W � � �W xi. ORi = ORi;0; NANDi = ORi;i;OR = OR2; NAND = NAND2.Similarly, ANDi;j is given by ANDi;j(x1; : : : xi) = :x1V � � �V:xj V xj+1V � � �Vxi. ANDi =ANDi;0; NORi = ANDi;i; AND = AND2; NOR = NOR2.The function XORi is given by XOR(x1; : : : ; xi) = x1 � � � � � xi. XOR = XOR2.The function XNORi is given by XNOR(x1; : : : ; xi) = :(x1 � � � � � xi). XNOR = XNOR2.Now we enumerate some interesting maximization and minimization problems which are \captured"by (i.e., are equivalent to some problem in)Max CSP,Max Ones,Min CSP andMin Ones. Thefollowing list is interesting for several reasons. First, it highlights the importance of these classesas ones that contain interesting optimization problems, and shows the diversity of the problemscaptured by these classes. Furthermore, each of these problems turn out to be \complete" problemsfor the partitions they belong to. Some are even necessary for a full statement of our results. Last,for several of the minimization problems listed below, their approximability is not yet fully resolved.We feel that these problems are somehow representative of the lack of our understanding of theapproximability of minimization problems. We start with the maximization problems.For any positive integer k,Max kSat =Max CSP(fORi;jji 2 [k]; 0 � j � ig). Max kSat is awell-studied problem and known to beMAX SNP-complete [39], for k � 2. EveryMAX SNP-complete problem is in APX (i.e., approximable to within a constant factor in polynomialtime) [39]. Also for MAX SNP-complete problem there exists a constant � greater than 1,such that the problem is problem is not �-approximable unless NP = P [3].For any positive integer k, Max EkSat = Max CSP(fORk;jj0 � j � kg). The problemMaxEkSat is a variant of Max kSat restricted to have clauses of length exactly k.Max Cut = Max CSP(fXORg). Max Cut is also MAX SNP-complete [39] and the bestknown approximation algorithm for this problem, due to [22], achieves a performance ratio of1:14 � 1=:878 10

Max Clique = Max Ones(NAND). Max Clique is known to be approximable to withina factor of O(n= log2 n) in an n-vertex graph [9] and is known to be hard to approximate towithin a factor of
(n1��) for any � > 0 unless NP = RP [18, 23].We now go on to the minimization problems.The well known minimum s-t cut problem in directed graphs is equivalent to Weighted MinCSP(F) for F = fOR2;1; T; Fg. This is shown in Section 5.1. This problem is well-known tobe solvable exactly in polynomial time.The Hitting Set problem restricted to instances in which all sets are of size at most B, canbe captured as Min Ones(F) for F = fORkjk � Bg. Also, of interest to our paper is aslight generalization of this problem which we call the Implicative Hitting Set-B Problem(Min IHS-B) which is Min CSP(fORk : k � Bg [fOR2;1; Fg). The Min Ones version ofthis problem will be of interest to us as well. The Hitting Set-B problem is well-known tobe approximable to within a factor of B. We show that Min IHS-B is approximable to withina factor of B + 1.Min UnCut = Min CSP(fXORg). This problem has been studied previously by Klein etal. [32] and Garg et al. [20]. The problem is known to be MAX SNP-hard and hence notapproximable to within some constant factor greater than 1. On the other hand, the problemis known to be approximable to within a factor of O(logn) [20].Min 2CNF Deletion = Min CSP(fOR;NANDg). This problem has been studied by Kleinet al. [33]. They show that the problem is MAX SNP-hard and that it is approximable towithin a factor of O(logn log logn).Nearest Codeword = Min CSP(fXOR3;XNOR3g). This is a classical problem for whichhardness of approximation results have been shown by Arora et al. [2]. The Min Ones versionof this problem is essentially identical to this problem. For both problems, the hardness resultof Arora et al. [2] shows that approximating this problem to within a factor of
(2log1�� n) ishard for every � > 0, unless NP � QP. No non-trivial approximation guarantees are knownfor this problem (the trivial bound being a factor of m, which is easily achieved since decidingif all equations are satis�able amounts to solving a linear system).Lastly we also mention one more problem which is required to present our main theorem.Min Horn Deletion = Min CSP(fOR3;1; T; Fg). The currently known bounds on theapproximability of this problem are similar to those of the Nearest Codeword, i.e., it is inpoly-APX and hard to approximate to within a factor of 2
(log1�� n) (see Lemma 7.21).2.4 Properties of function familiesWe start with the six properties de�ned by Schaefer:A constraint f is 0-valid (resp. 1-valid) if f(0; : : : ; 0) = 1 (resp. f(1; : : : ; 1) = 1).A constraint is weakly positive (resp. weakly negative) if it can be expressed as a CNF-formulahaving at most one negated variable (resp. at most one unnegated variable4) in each clause.4Such clauses are usually called Horn clauses. 11

A constraint is a�ne if it can be expressed as a conjunction of linear equalities over Z2.A constraint is 2cnf if it is expressible as a 2CNF-formula.The above de�nitions extend to constraint families naturally. For instance, a constraint family Fis 0-valid if every constraint f 2 F is 0-valid. The above de�nitions are central to Schaefer's maintheorem, restated below.Theorem 2.10 (Schaefer's Theorem [42]) For any constraint family F , Sat(F) is in P if Fis 0-valid or 1-valid or weakly positive or weakly negative or a�ne or 2cnf; else deciding Sat(F) isNP-hard.We use the shorthand \F is (not) decidable" to say that deciding membership in Sat(F) is solvablein P (is NP-hard). Abusing our vocabulary slightly, we say Max Ones(F) (or Min Ones(F)) isnot decidable, to indicate that determining if a given instance of this problem has a feasible solutionis NP-hard.We need to de�ne some additional properties to describe the approximabilities of the optimizationproblems we consider:f if 2-monotone if f(x1; : : : ; xk) is expressible as (xi1 V � � �V xip)W(:xj1 V � � �V:xjq), for somep; q � 0, (p; q) 6= (0; 0) (i.e., f is expressible as a DNF-formula with at most two terms - onecontaining only positive literals and the other containing only negative literals).A constraint is width-2 a�ne if it is expressible as a conjunction of linear equations over Z2such that each equation has at most 2 variables.A constraint is strongly 0-valid if it is satis�ed by all assignments with at most one 1. (Notethat a strongly 0-valid constraint is also 0-valid.)A constraint f is IHS-B+ (for Implicative Hitting Set-Bounded+) if it is expressible as a CNFformula where the clauses are of one of the following types: x1W � � �Wxk for some positiveinteger k � B, or :x1W x2, or :x1. IHS-B� constraints and constraint families are de�nedanalogously (with every literal being replaced by its complement). A family is a IHS-B familyif the family is a IHS-B+ family or a IHS-B� family.We use the following shorthand for the above families: (1) F0 is the family of 0-valid constraints;(2) F1 is the family of 1-valid constraints; (3) FS0 is the family of strongly 0-valid constraints; (4)F2M is the family of 2-monotone constraints; (5) FIHS is the family of IHS-B constraints; (6) F2Ais the family of width-2 a�ne constraints; (7) F2CNF is the family of 2CNF constraints; (8) FA isthe family of a�ne constraints; (9) FWP is the family of weakly positive constraints; (10) FWN isthe family of weakly negative constraints.2.5 Main ResultsWe now present the main results of this paper. A pictorial representation is available in Appen-dices B.1, B.2, B.3 and B.4. All theorems are stated assuming that F has no trivial constraints, i.e.,constraints that are always satis�ed or never satis�ed. The �rst theorem is a minor strengtheningof Creignou's theorem [11] so as to cover problems such as Max EkSat. The remaining theoremscover Max Ones, Min CSP and Min Ones respectively.12

Theorem 2.11 (Max CSP classi�cation) For any constraint set F , the problem (Weighted)Max CSP(F) is always either in PO or is APX-complete. Furthermore, it is in PO if and only ifF is 0-valid or 1-valid or 2-monotone.Theorem 2.12 (Max Ones classi�cation) For any constraint set F , the problem (Weighted)Max Ones(F) is either in PO or is APX-complete or poly-APX-complete or decidable but notapproximable to within any factor or not decidable. Furthermore,(1) If F is 1-valid or weakly positive or a�ne with width 2, then (Weighted) Max Ones(F) isin PO.(2) Else if F is a�ne then (Weighted) Max Ones(F) is APX-complete.(3) Else if F is strongly 0-valid or weakly negative or 2CNF then (Weighted) Max Ones(F)is poly-APX-complete.(4) Else if F is 0-valid then Sat(F) is in P but �nding a solution of positive value is NP-hard.(5) Else �nding a feasible solution to (Weighted) Max Ones(F) is NP-hard.Theorem 2.13 (Min CSP classi�cation) For any constraint set F , the problem (Weighted)Min CSP(F) is in PO or is APX-complete or Min UnCut-complete or Min 2CNF Deletion-complete or Nearest Codeword-complete orMin Horn Deletion-complete or or even decidingif the optimum is zero is NP-hard. Furthermore,(1) If F is 0-valid or 1-valid or 2-monotone, then (Weighted) Min CSP(F) is in PO.(2) Else if F is IHS-B then (Weighted) Min CSP(F) is APX-complete.(3) Else if F is width-2 a�ne then (Weighted) Min CSP(F) is Min UnCut-complete.(4) Else if F is 2CNF then (Weighted) Min CSP(F) is Min 2CNF Deletion-complete.(5) Else if F is a�ne then (Weighted) Min CSP(F) is Nearest Codeword-complete.(6) Else if F is weakly positive or weakly negative then (Weighted) Min CSP(F) is Min HornDeletion-complete.(7) Else deciding if the optimum value of an instance of (Weighted) Min CSP(F) is zero isNP-complete.Theorem 2.14 (Min Ones classi�cation) For any constraint set F , the problem (Weighted)Min Ones(F) is either in PO or APX-complete or Nearest Codeword-complete or Min HornDeletion-complete or poly-APX-complete or inapproximable to within any factor or not decidable.Furthermore,(1) If F is 0-valid or weakly negative or width-2 a�ne, then (Weighted) Min Ones(F) is inPO.(2) Else if F is 2CNF or IHS-B then (Weighted) Min Ones(F) is APX-complete.(3) Else if F is a�ne then Min Ones(F) is Nearest Codeword-complete.(4) Else if F is weakly positive then (Weighted) Min Ones(F) is Min Horn Deletion-complete. 13

(5) Else if F is 1-valid then Min Ones(F) is poly-APX-complete and Weighted Min Ones(F)is decidable but hard to approximate to within any factor.(6) Else �nding any feasible solution to (Weighted) Min Ones(F) is NP-hard.2.6 TechniquesTwo simple ideas play an important role in this paper. First is the notion of an implementationwhich shows how to use the constraints of a family F to enforce constraints of a di�erent family F 0,thereby laying the groundwork of a reduction among problems. The notion of an implementationis inspired by the notion of gadgets formalized by Bellare et al. [8] who in our language de�neimplementations for speci�c pairs of function families (F ;F 0). In this work we unify their de�nition,so as to make it work for arbitrary pairs of function families. This de�nition of implementation also�nds applications in the work of Trevisan et al. [43] who, in our language, show uniform methodsfor searching for e�cient implementations for pairs of function families (F ;F 0).A second simple idea we exploit here is that of working with weighted versions of optimizationproblems. Even though our primary concerns were only the approximability of the unweightedversions of problems, many of our results use as intermediate steps the weighted versions of theseproblems. The weights allow us to manipulate problems more locally. However, simple and well-known ideas eventually allow us to get rid of the weights and thereby yielding hardness of theunweighted problem as well. As a side-e�ect we also show that the unweighted and weightedproblems are equally hard to approximate in all the relevant optimization problems. This extendsto minimization problems the results of Crescenzi et al. [15].The de�nitions of implementations and weighted problems follows in Section 3. Section 4 showssome technical results showing how we exploit the fact that we have functions which don't exhibitsome property. The results of this section play a crucial role in all the hardness results. This sets usup for the proofs of our main theorems. In Section 5 we show the containment results and hardnessresults for Max CSP. Similarly Sections 6, 7, and 8 deal with the classes Max Ones, Min CSP,and Min Ones, respectively.3 ImplementationsWe now describe the main technique used in this paper to obtain hardness of approximation results.Suppose we want to show that for some constraint set F , the problemMax CSP(F) is APX-hard.We will start with a problem that is known to be APX-hard, such as Max Cut, which turnsout to be Max CSP(fXORg). We will then wish to reduce this problem to Max CSP(F). Themain technique we use to do this is to \implement" the constraint XOR using constraints from theconstraint set F . We show how to formalize this notion next and then show how this translates toapproximation preserving reductions.De�nition 3.1 (Implementation) A collection of constraint applications C1; : : : ; Cm over a setof variables x = fx1; : : : ; xpg called primary variables and y = fy1; : : : ; yqg called auxiliary vari-ables, is an �-implementation of a constraint f(x) for a positive integer � if the following conditionsare satis�ed:(1) For any assignment to x and y at most � constraints from C1; : : : ; Cm are satis�ed.14

(2) For any x such that f(x) = 1, there exists y such that exactly � constraints are satis�ed.(3) For any x;y such that f(x) = 0, at most (�� 1) constraints are satis�ed.De�nition 3.2 (Strict/Perfect Implementations) An �-implementation is a strict �-imple-mentation if for every x such that f(x) = 0, there exists y such that exactly (�� 1) constraints aresatis�ed. An �-implementation (not necessarily strict) is a perfect implementation, if � = m.We say that a constraint set F (strictly / perfectly) implements a constraint f if there exists a(strict / perfect) �-implementation of f using constraints of F for some � < 1. We use thenotation F=)�f to denote that F �-implements f , and F=)f to denote that F implements f .Similarly we use the notation F s=p=) f to denote that F implements f strictly/perfectly. The abovenotation is also extended to allow the target to be a family of functions. For instance, F=)F 0denotes that F implements every function in F 0.Remark: The de�nition of [8] de�ned (non-strict and non-perfect) implementations for speci�cchoices of f and F . For each choice they provided a separate de�nition. We unify their de�nitionsinto a single one. Furthermore as we will show later, the use of strictness and/or perfectness greatlyenhance the power of implementations. These aspects are formalized for the �rst time here.A constraint f 1-implements itself strictly and perfectly (ffg s=p=)1 f). Some more examples ofstrict and/or perfect implementations are given below.Proposition 3.3 fXORg s=p=)2 XNOR.Proof: The constraints XOR(x; zAux) and XOR(y; zAux) perfectly and strictly implement theconstraint XNOR(x; y). 2Proposition 3.4 If f(x) = f1(x)V � � �V fk(x), then ff1; : : : ; fkg p=)k f .Proof: The collection ff1(x); : : : ; fk(x)g is a perfect (but not necessarily strict) k-implementationof f(x). 2The following lemma shows that the implementations of constraints compose together, if they arestrict or perfect.Lemma 3.5 If Fa s=) F b and Fb s=) Fc, then Fa s=) F c. An analogous result holds for perfectimplementations also.Proof: It su�ces to consider the case when F c consists of a single function f . Furthermore, weobserve that it su�ces to prove the following simpler assertion (to prove the lemma): If F s=) gand F [fgg s=) f then F s=) f . To see that this su�ces, let F b = fg1; : : : ; glg. De�ne F0 = Fa,F i = Fa [fg1; : : : ; gig. Note that by hypothesis we have F l s=) f and F i s=) gi+1 and F l s=) f .The assertion above says that if F i+1 s=) f , then F i s=) f . Thus by induction F0 s=) f .We now prove the assertion: If F s=) g and F [fgg s=) f then F s=) f . Let C1; : : : ; Cm1 beconstraint applications from F [fgg on variables x;y giving an �1-implementation of f(x) withx being the primary variables. Let C 01; : : : ; C 0m2 be constraint applications from F on variable setx0; z0 yielding an �2-implementation of g(x0). Further let the �rst � constraints of C1; : : : ; Cm1 beapplications of the constraints g.We create a collection of m1 + �(m2 � 1) constraints from F on a set of variables x;y; z01; : : : ; z0�,where x and y are the original variables, and z01; : : : ; z0� are new sets of disjoint auxiliary variables.(I.e., the vectors z0i and z0j do not share any variables, if i 6= j.)15

The m1 + �(m2 � 1) constraints introduced are as follows. We include the constraint applicationsC�+1; : : : ; Cm1 on variables x;y and for every constraint application Cj , for j 2 f1; : : : ; �g, onvariables vj (which is a subset of variables from x;y) we place the constraints C 01;j ; : : : ; C 0m2;j onvariable set vj ; z0j with z0j being the auxiliary variables.We now show that this collection of constraints satis�es properties (1)-(3) from De�nition 3.1 with� = �1+�(�2�1). Additionally we show that perfectness and/or strictness is preserved. We startwith properties (1) and (3).Consider any assignment to x satisfying f . Then any assignment to y satis�es at most �1 constraintsfrom the set C1; : : : ; Cm1 . Let
 of these be from the set C1; : : : ; C�. Now for every j 2 f1; : : : ; �gany assignment to z0j satis�es at most �2 of the constraints C 01;j; : : : ; C 0m2;j. Furthermore if theconstraint Cj was not satis�ed by the assignment to x;y, then at most �2 � 1 constraints aresatis�ed. Thus the total number of constraints satis�ed by any assignment is at most
�2 + (� �
)(�2�1)+(�1�
) = �1+�(�2�1). This yields property (1). Property (3) is achieved similarly.We now show that if the �1- and �2-implementations are perfect we get property (2) with perfect-ness. In this case for any assignment to x satisfying f , there exists an assignment to y satisfyingC1; : : : ; Cm1 . Furthermore for every j 2 f1; : : : ; �g, there exists an assignments to z0j satisfying allthe constraints C 01;j ; : : : ; C 0m2;j. Thus there exists an assignment to x;y; z01; : : : ; z0� satisfying allm1 + �(m2 � 1) constraints. This yields property (2) with perfectness.Finally we consider the case when the �1- and �2-implementations are strict (but not necessarilyperfect) and show that in this case also the collection of constraints above satis�es Property (2)with strictness. Given an assignment to x satisfying f there exists an assignment to y satisfying�1 constraints from C1; : : : ; Cm1 . Say this assignment satis�ed
 clauses from the set C1; : : : ; C�and �1 �
 constraints from the set C�+1; : : : ; Cm1 . Then for every j 2 f1; : : : ; �g such that theclauses Cj is satis�ed by this assignment to x;y, there exists an assignment to z0j satisfying �2clauses from the set C 01;j ; : : : ; C 0m2;j. Furthermore, for the remaining values of j 2 f1; : : : ; �g thereexists an assignment to the variables z0j satisfying �2 � 1 of the constraints C 01;j ; : : : ; C 0m2 ;j (herewe are using the strictness of the �2 implementations). This setting to y; z01; : : : ; z0� satis�es
�2 + (� �
)(�2 � 1) +�1�
 = �1+ �(�2 � 1) of the m constraints. This yields Property (2). Asimilar analysis can be used to show the strictness. 2Next we show a simple monotonicity property of implementations.Lemma 3.6 For integers �; �0 with � � �0, if F=)�f then F=)�0f . Furthermore, strictnessand perfectness are preserved under this transformation.Proof: Let constraint applications C1; : : : ; Cm from F on x;y form an �-implementation of f(x).Let g be any constraint from F and let k be the arity of g. Let Cm+1; : : : ; Cm+�0�� be �0 � �applications of the constraint g on new variables z = fz1; : : : ; zkg. Then the collection of con-straints C1; : : : ; Cm+�0�� on variable set x;y; z form an �0-implementation of f . Furthermore thetransformation preserves strictness and perfectness. 23.1 Reduction from strict implementationsHere we show how strict implementations are useful in establishing AP-reducibility among MaxCSP problems. But �rst we need a simple statement about the approximability of Max CSPproblems. 16

Proposition 3.7 ([39]) For every constraint family F there exists a constant k such that givenany instance I ofWeighted Max CSP(F) with constraints of total weight W a solution satisfyingconstraints of weight W=k can be found in polynomial time.Proof: The proposition follows from the proof of Theorem 1 in [39] which shows the above for everyMAX SNP problem. (Note, in particular, that a random assignment satis�es a constant fractionof Weighted Max CSP(F) instance; and such an assignment can be found deterministically byusing the method of conditional probabilities.) 2Lemma 3.8 If F 0 s=) F then Max CSP(F) �AP Max CSP(F 0).Proof: The reduction uses Proposition 3.7 above. Let � a constant such that given an instanceI of Max CSP(F) with m constraints an assignment satisfying m� constraints can be found inpolynomial time.Recall that we need to show polynomial time computable functions F and G such that F maps aninstance I of Max CSP(F) to an instance of Max CSP(F 0), and G maps a solution to F (I) backto a solution of I.Given an instance I on n variables and m constraints, the mapping F simply replaces everyconstraint in I (which belongs to F) with a strict �-implementation using constraints of F 0, forsome constant �. (Notice that by Lemma 3.6 some such � does exist.) The mapping retainsthe original n variables of I as primary variables and uses m independent copies of the auxiliaryvariables; one independent copy for every constraint in I.Let hx;yi be a r-approximate solution to the instance F (I), where x denotes the original variablesof I and y denote the auxiliary variables introduced by F . The mapping G uses two possiblesolutions and takes the better of the two: The �rst solution is x; and the second solution x0 is thesolution which satis�es at least m=� of the constraints in I. G outputs the solution which satis�esmore constraints.We now show that a r-approximate solution leads to an r0-approximate solution where r0 � 1+
(r�1) for some constant
. Let opt denote the value of the optimum to I. Then the optimum of F (I)is exactly opt+m(�� 1). This computation uses the fact that for every satis�ed constraint in theoptimal assignment to I, we can satisfy � constraints of its implementation by choosing the auxiliaryvariables appropriately (from Properties (1) and (2) of De�nition 3.1); and for every unsatis�edconstraint exactly �� 1 constraints of its implementation can be satis�ed (from Property (3) andstrictness of the implementation). Thus the solution hx;yi satis�es at least 1r (opt + m(� � 1))constraints of F (I). Thus x satis�es at least 1r (opt+m(�� 1))�m(�� 1) constraints in I. (Herewe use Properties (1) and (3) of De�nition 3.1 to see that there must be at least 1r (opt+m(� �1))�m(�� 1) constraints of I in whose implementations exactly � constraints must be satis�ed.)Thus the solution output by G satis�es at leastmaxf1r (opt+m(�� 1))�m(�� 1); m� gconstraints. Using the fact that maxfa; bg � �a + (1 � �)b for any � 2 [0; 1] and using � =rr+�(��1)(r�1) , we lower bound the above expression byoptr + �(� � 1)(r � 1) :17

Thus r0 � optopt=(r + �(�� 1)(r � 1)) = r + �(�� 1)(r � 1) = 1 + (�(� � 1) + 1)(r � 1):Thus we �nd that G maps r-approximate solutions of F (I) to (1+
(r� 1))-approximate solutionsto I for
 = �(�� 1) + 1 <1 as required. 23.2 Reductions from perfect implementationsWe now show how to use perfect implementations to get reductions. Speci�cally we obtain reduc-tions among Weighted Max Ones, Weighted Min Ones and Min CSP problems.Lemma 3.9 If F 0 p=) F then Weighted Max Ones(F) (Weighted Min Ones(F)) is AP-reducible to Weighted Max Ones(F 0) (resp. Weighted Min Ones(F 0)).Proof: Again we need to show polynomial time computable functions F andG such that F maps aninstance I ofWeighted Max Ones(F) (Weighted Min Ones(F)) to an instance ofWeightedMax Ones(F 0) (Weighted Min Ones(F)), and G maps a solution to F (I) back to a solution ofI.Given an instance I on n variables and m constraints, the mapping F simply replaces everyconstraint in I (which belongs to F) with a perfect �-implementation using constraints of F 0,for some constant �. (Notice that by Lemma 3.6 some such � does exist.) The mapping retainsthe original n variables of I as primary variables and uses m independent copies of the auxiliaryvariables; one independent copy for every constraint in I. Further, F (I) retains the weight ofthe primary variables from I and associates a weight of zero to all the newly created auxiliaryvariables. Given a solution to F (I), the mapping G is simply the projection of the solution backto the primary variables. It is clear that every feasible solution to I can be extended into a feasiblesolution to F (I) such that opt(I) = opt(F (I)). Furthermore, the mapping G maps feasiblesolutions to F (I) into feasible solutions to I with the same obective. (This is where the perfectnessof the implementations is being used.) Thus the optimum of F (I) equals the value of the optimumof I and given an r-approximate solution to F (I), the mapping G yields an r-approximate solutionto I. 2Lemma 3.10 If F 0 p=) F then Min CSP(F) �A Min CSP(F 0).Proof: Let � be large enough so that any constraint from F has a perfect �-implementation usingconstraints from F 0. Let I be an instance of Min CSP(F) and let I 0 be the instance of MinCSP(F 0) obtained by replacing each constraint of I with the respective �-implementation. Onceagain each implementation uses the original set of variables for its primary variables and uses itsown independent copy of the auxiliary variables. Note that the optimum of I 0 may be as high as�o if o is the optimum of I (since the implementations are not strict). It is easy to check thatany assigment for I 0 of cost V yields an assigment for I whose cost is between V=� and V . Inparticular, if the solution is an r-approximate solution to I 0 then, V � o�r and thus it induces asolution that is at least an (�r)-approximate solution to I. (Note that if the implementations werestrict, we would have obtained an AP-reduction by the above.) 218

3.3 Weighted vs. unweighted problemsLemma 3.9 crucially depends on its ability to work with weighted problems to obtain reductions.The following lemma shows that in most cases showing hardness for weighted problems is su�cient.Speci�cally it shows that as long as a problem is weakly approximable, its weighted and unweightedversions are equivalent. The result uses a similar result from Crescenzi et al. [15] who prove thatfor a certain class of problems in poly-APX that they term \nice", weighted problems AP-reduceto problems with polynomially-bounded integral weights. (We include a sketch of their proof,specialized to our case for the sake of completeness.) Using this result we scale all weights downto small integers and then simulate the small integral weights by replication of clauses and/orvariables. (We note that the little-oh slackness in the de�nition of AP-reduction is exploited in thisstep.)Lemma 3.11 For every family F , ifWeighted Max Ones(F) is in poly-APX, thenWeightedMax Ones(F) AP-reduces to Max Ones(F). Analogous results hold for Min CSP(F), MaxCSP(F) and Min Ones(F).Proof: Fix a family F . We �rst reduce Weighted Max Ones(F) to Weighted Max Ones(F)restricted to instances with polynomially bounded positive integer weights, provided WeightedMax Ones(F) is in poly-APX. This step uses a scaling idea as in [15, Theorem 4]. Essentiallythe same proof also works for the cases of Weighted Max CSP(F), Weighted Min CSP(F)or Weighted Min Ones(F). Given an instance I = (x;C;w) of Weighted Max Ones(F),we will de�ne a new vector of weights w0 and use this to de�ne a new instance I 0 = (x;C;w0) ofWeighted Max Ones(F) with polynomially bounded weights. Let A be a p(n)-approximationalgorithm forWeighted Max Ones(F); and let t be the value of the solution returned by A on I.We let N = n2(p(n))2+np(n), and let w00i = jwi�Nt k+1, and �nally let w0i = minfw00i ; N � p(n)+ 1g.It is clear that the weights w0i are polynomially bounded. Further note that if w0i < w00i then nofeasible solution to I (or I 0) can have xi set to 1, since any such solution would have value at leastwi > t � p(n), contradicting the assumption that A is a p(n)-approximation algorithm. Thus, inparticular, we have opt(I 0) � (N=t) � opt(I). Given an r-approximate solution s0 to I 0 we returnthe better of the solutions s0 and the solution returned A as the solution to I. It is clear thatif r � p(n), then the returned solution is still an r-approximate solution. Below we see that anr-approximate solution to I 0, with r � p(n), is also a (r+ 1=n)-approximate solution to I of valueat least (t=N) � (opt(I 0)=r)� n) � opt(I)=r � (nt=N)� opt(I)=r � (n � opt(I)=N)� opt(I)(1r � 1nr2 + r)= opt(I)=(r + 1=n):This concludes the �rst step of the reduction. In the next step we give an AP-reduction from theclass of problems with polynomially bounded weights to the unweighted case.We start with the case of Weighted Max CSP(F) �rst. Given an instance of Weighted MaxCSP(F) on variables x1; : : : ; xn, constraints C1; : : : ; Cm and polynomially bounded integer weightsw1; : : : ; wm; we reduce it to the unweighted case by replication of constraints. Thus the reducedinstance has variables x1; : : : ; xn and constraint ffCji gwij=1gmi=1 where constraint Cji = Ci. It is clear19

that the reduced instance is essentially the same as the instance we started with. Similarly wereduce Weighted Min CSP(F) to Min CSP(F).Given an instance I of Weighted Max Ones(F) on variables x1; : : : ; xn, constraints C1; : : : ; Cmand weights w1; : : : ; wn; we create an instance I 0 ofMax Ones(F) on variables ffyji gwij=1gni=1. For every constraint Cj of I of the form f(xi1 ; : : : ; xik),and for every j 2 f1; : : : ; kg and nj 2 f1; : : : ; wijg we impose the constraints f(yn1i1 ; : : : ; ynkik). Wenow claim that the reduced instance is essentially equivalent to the instance we started with. Tosee this, notice that given any feasible solution y to the instance I 0, we may convert it to anotherfeasible solution y0 in which, for every i, all the variables f(y0)ji jj = 1; : : : ; wig have the sameassignment, by setting (y0)ji to 1 if any of the variables yj0i , j0 = 1; : : : ; wi is set to 1. Noticethat this preserves feasibility; and only increases the contribution to the objective function. Theassignment y0 now induces an assignment to x with the same value of the objective function. Thusthe reduced instance is essentially equivalent to the original one. This concludes the reduction fromWeighted Max Ones(F) to Max Ones(F). The reduction from Weighted Min Ones(F) toMin Ones(F) is similar. 24 Characterizations: New and OldIn this section we characterize some of the properties of functions that we study. Most of theproperties are de�ned so as to describe how a function behaves if it exhibits the property. For thehardness results however we need to see how to exploit the fact that a function does not satisfysome given property. For this we would like to see some simple witness to the fact that the functiondoes not have a given property. As an example consider the a�neness property. If a function isa�ne, it is easy to see how to use this property. What will be important to us is whether thereexists a simple witness to the fact that a function f is not a�ne. Schaefer [42] provides such acharacterization: If a function is not a�ne, then there exist assignments s1, s2 and s3 that satisfy fsuch that s1� s2� s3 does not satisfy f . This is exploited by Schaefer in his classi�cation theorem(and by us, in our classi�cations). In this section, we describe other such characterizations andthe implementations that are obtained from them. First we introduce some more de�nitions andnotations that we will be used in the rest of the paper.4.1 De�nitions and NotationsFor s 2 f0; 1gk , we let �s 2 f0; 1gk denote the bit-wise complement of s. For a constraint f of arityk, let f� be the constraint f�(s) = f(�s). For a constraint family F , let F� = ff� : f 2 Fg.For s1; s2 2 f0; 1gk , s1 � s2 denotes the bitwise exclusive-or of the assignments s1 and s2. Fors 2 f0; 1gk , Z(s) denotes the subset of indices i 2 [k] where s is zero and O(s) denotes the subsetof indices where s in one.For a constraint f of arity k, S � [k] and b 2 f0; 1g, f j(S;b) is the constraint of arity k0 =k � jSj de�ned as follows: For variables xi1 ; : : : ; xik0 , where fi1; : : : ; ik0g = [k] � S, we de�nef j(S;b)(xi1 ; : : : ; xik0) = f(x1; : : : ; xk) where xi = b for i 2 S. We will sometimes use the notationf j(i;b) to denote the function f j(fig;b). For a constraint family F , the family Fj0 is the familyff jS;0jf 2 F ; S � [arity(f)]g. The family Fj1 is de�ned analogously. The family Fj0;1 is the family(Fj0)j1 (or equivalently the family (Fj1)j0). 20

De�nition 4.1 (C-closed) A constraint f is C-closed (complementation-closed) if for every as-signment s, f(s) = f(�s).De�nition 4.2 (Existential zero/existential one) A constraint f is an existential zero con-straint if f(0) = 1 and f(1) = 0. A constraint f is an existential one constraint if f(0) = 0 andf(1) = 1.The terminology above is motivated by the fact that an existential zero constraint applicationf(x1; : : : ; xk) forces at least one of the variables to be zero (while an all zero assignment de�nitelysatis�es the application).Every constraint f can be expressed as the conjunction of disjuncts. This representation of afunction is referred to as the conjunctive normal form (CNF) representation of f . Alternately, afunction can also be represented as a disjunction of conjuncts and this representation is called thedisjunctive normal form (DNF) representation.A partial setting to the variables of f that �xes the value of f to 1 is called a term of f . Apartial setting that �xes f to 0 is called a clause of f . We refer to the terms and clauses in afunctional form: I.e., we say OR3;1(x1; x2; x3) = x1Wx2W:x3 is a clause of f(x1; : : : ; xp) if settingx1 = x2 = 0 and x3 = 1 �xes f to being 0. Similarly we use the ANDi;j to denote the terms.Notice that a DNF (CNF) representation of f can be obtained by expressing as the conjunction(disjunction) of its terms (clauses).De�nition 4.3 (Minterm/Maxterm) A partial setting to a subset of the variables of f is aminterm if it is a term of f and no restriction of the setting to any strict subset of the variables�xes the value of f . Analogously a clause of f is a maxterm if it is a minimal setting to the variablesof f so as to �x its value to 0.As in the case of terms and clauses, we represent minterms and maxterms functionally, i.e., usingORi;j and ANDi;j.De�nition 4.4 (Basis) A constraint family F 0 is a basis for a constraint family F if any con-straint of F can be expressed as a conjunction of constraints drawn from F 0.Thus, for example, the basis for a�ne constraints is the set fXORpjp � 1g [fXNORpjp � 1g. Thebasis for width-2 a�ne constraints is the set F = fXOR;XNOR; T; Fg, and the basis for 2CNFconstraints is the set F = fOR2;0;OR2;1;OR2;2; T; Fg. The de�nition of a basis is motivated bythe fact that if F 0 is a basis for F , then F 0 can perfectly implement every function in F (seeProposition 3.4).4.2 0-validity and 1-validityThe characterization of 0-valid and 1-valid functions is obvious. We now show what can be imple-mented with functions that are not 0-valid and not 1-valid.Lemma 4.5 Let f be a non-trivial constraint which is C-closed and is not 0-valid (or equivalentlynot 1-valid)5. Then ffg s=p=) XOR.5Notice that C-closedness implies that f is 0-valid if and only if it is 1-valid.21

Proof: Let k denote the arity of f and let k0 and k1 respectively denote the maximum numberof 0's and 1's in any satisfying assignment for f ; clearly k0 = k1. Now let Sx = fx1; : : : ; x3kg andSy = fy1; : : : ; y3kg be two disjoint sets of 3k variables each. In the �rst phase of the proof, we placea large number of constraints on the variables of Sx and Sy that ends up implementing, perfectlybut not necessarily strictly, the constraints XOR(xi; yj), for every i and j. In the second phasewe will introduce two new variables x and y and augment the constraints so as to implement theconstraint XOR(x; y) perfectly and strictly.We start by placing the constraint f on a large collection of inputs as follows: For every satisfyingassignment s, we place �3ki �� 3kk�i� constraints on the variable set Sx [Sy such that every i-variablesubset of Sx appears in place of 0's in s and every (k � i) variable subset of Sy appears in place of1's in the assignment s, where i denotes the number of 0's in s. Let this collection of constraints bedenoted by I. We will �rst show that I gives a perfect (but possibly non-strict) implementationof the constraint XOR(xi; yj).Clearly, any solution which assigns identical values to all variables in Sx and the complementaryvalue to all variables in Sy, satis�es all the constraints in I. We will show the converse, i.e., everyassignment satisfying all the above constraints assigns identical values to all variables in Sx andthe complementary value to every variable in Sy.Fix any assignment satisfying all the constraints and let Z and O respectively denote the setof variables set to zero and one respectively. We claim that any solution which satis�es all theconstraints must satisfy either Z = Sx and O = Sy or Z = Sy and O = Sx.Note �rst that at least one of the conditions jSx \Zj � k or jSx \Oj � k must hold. Consider thecase where jSx \ Zj � k. In this case, we will show that Sx = Z and Sy = O. (A similar argumentfor the other case will show Sx = O and Sy = Z.)� First we claim that jSy \ Zj < k and thus jSy \ Oj > 2k. Assume for contradiction thatjSy \ Zj � k. Then there exists a constraint application in I with all its input variablescoming from the sets Sx \Z and Sy \Z. By de�nition of Z all these variables are set to zeroand hence this constraint application is unsatis�ed (by the 0-validity of f).� Next we claim that every variable of Sx is set to 0: Assume otherwise and, w.l.o.g., let x1be set to 1. Let s be an assignment with minimal number of 0's. Assume w.l.o.g. thats = 0k01k�k0 . W.l.o.g., let y1; : : : ; y2k be set to one. (We know 2k such variables exist sincejSy \ Oj > 2k.) By our choice of constraint applications, f(x1; : : : ; xk0 ; y1; : : : ; yk�k0) is oneof the constraint applications. But at most k0� 1 variables of this constraint are set to 0 andthus this application can not be satis�ed.� Finally, similar to the above step, we can show that every variable in Sy is set to 1.Thus we have shown that if jSx \Zj � k, then Sx = Z and Sy = O. The other case is similar, andthis concludes the �rst phase.We next augment the collection of constraints above as follows. Consider a least Hamming weightsatisfying assignment s for f . Without loss of generality, we assume that s = 10k�k1�11k1 . Weadd the constraints f(x; x1; : : : ; xk�k1�1; y1; : : : ; yk1) and f(y; x1; : : : ; xk�k1�1; y1; : : : ; yk1). We nowargue that the resulting collection of constraints yields a perfect and strict implementation of theconstraint XOR(x; y). 22

Clearly s0 = 0k�k11k1 is not a satisfying assignment (since it has smaller Hamming weight than s).Since f is C-closed, we have the following situation : f()s0 0 k�k1�1z }| {00:::0 k1z }| {11:::1 0s 1 00:::0 11:::1 1�s 0 11:::1 00:::0 1�s0 1 11:::1 00:::0 0If x = 1, then to satisfy the �rst of the two constraints (in addition to all the earlier constraints)above, we must have Z = Sx, O = Sy and thus must have y = 0. Similarly if x = 0 then we musthave O = Sx, Z = Sy and y = 1. Thus the given constraints do form a perfect implementation ofXOR(x; y). Finally if x = y, then the setting O = Sx and Z = Sy satis�es all constraints exceptone (which is one of the last two additional constraints). Thus the implementation satis�es thestrictness property as well. 2Lemma 4.6 Let f0, f1 and g be non-trivial constraints, possibly identical, which are not 0-valid,not 1-valid, and not C-closed, respectively. Then ff0; f1; gg s=p=) fT; Fg.Proof: We will only describe the implementation of constraint T (�); the implementation for theconstraint F (�) is identical.Assume, for simplicity, that all the three functions f0, f1 and g are of arity k. We use an imple-mentation similar to the one used in the proof of Lemma 4.5. To implement T (x), we use a set of6k auxiliary variables Sx = fx1; : : : ; x3kg and Sy = fy1; : : : ; y3kg. For each h 2 ff0; f1; gg, for eachsatisfying assignment s of h, if j is the number of 0's in s we place the �3kj �� 3kk�j� constraints h withall possible subsets of Sx appearing in the indices in Z(s) and all possible subsets of Sy appearing inO(s). Finally we introduce one constraint involving the primary variable x. Let s be the satisfyingassignment of minimum Hamming weight which satis�es f0. Notice that s must include at leastone 1. Assume, without loss of generality that s = 10k�k1�11k1 . Then we introduce the constraintapplication f0(x; x1; : : : ; xk�k1�1; y1; : : : ; yk1).It is clear that by setting all variables in Sx to 0 and all variables in Sy to 1 we get an assignmentthat satis�es all constraints except possibly the last constraint (which involves x). Furthermore thelast constraint is satis�ed if and only if x = 1. Thus, to prove the lemma, it su�ces to show thatany solution which satis�es all the constraints above must set x to 1, all variables in Sx to 0 andall variables in Sy to 1.Fix an assignment satisfying all the constraints. Let O be the set of variables in Sx [Sy set to oneand Z be the set of variables set to zero. We need to show that Sx \O = ; and we do so in stages.� First, we consider the possibility jSx \Oj � k. We consider two cases.{ Case: jSy \ Zj � k: Consider a satisfying assignment s such that g(�s) = 0. Such anassignment must exist since g is not C-closed. Note that the constraint applicationsinclude at least one where g is applied to variables where the positions corresponding toO(s) come from Sy \Z and positions corresponding to Z(s) come from Sx\O. But thisconstraint is not satis�ed by the assignment (since g(�s) = 0).23

{ Case: jSy \Oj > 2k: Let s1 be a satisfying assignment for f1. Note that the applicationof the constraint f1 with the positions corresponding to O(s) coming from Sy\O and thepositions corresponding to Z(s) coming from Sx \ O is one of the constraints imposedabove, and is not satis�ed (since f1 is not 1-valid).Thus in either case, we �nd a constraint that is not satis�ed and thus this possibility (jSx\Oj �k) can not occur. Thus we conclude jSx \Oj < k.� From the above, we have jSx \ Zj > 2k. If jSy \ Zj � k, then we can �nd an applicationof the constraint f0 to the variables in the set Z, that will not be satis�ed. Thus we havejSy \ Zj < k and thus jSy \ Oj > 2k. This can now be used to conclude that Sy \ Z = � asfollows. Consider a satisfying assignment with smallest number of ones. The number of onesin such an assignment is positive since f0 is not 0-valid. If we consider all the constraintscorresponding to this assignment with inputs from Sy and Sx \ Z only, it is easy to see thatthere will be at least one unsatis�ed constraint if Sy \Z 6= �. Hence each variable in Sy is setto one in this case. Finally, using the constraints on the constraint f1 which is not 1-valid, itis easy to conclude that in fact Z = Sx.Having concluded that Sx = Z and Sy = O, it is easy to see that the constraint f0(x; x1; : : : ; xk�k1�1;y1; : : : ; yk1) is satis�ed only if x = 1. Thus the set of constraints imposed above yields a strict andperfect implementation of T (�). The constraint F (�) can be implemented in an analogous manner.2For the CSP classes, it su�ces to consider the case when F is neither 0-valid nor 1-valid. For theMax Ones and Min Ones classes we also need to consider the case when F only fails to haveone of these two properties. So keeping these classes in mind we prove the following lemma, whichshows how to obtain a weak version of T and F in these cases.Lemma 4.7 If F is not C-closed and not 1-valid, then F s=p=) f for some existential zero constraintf0. Analogously, if F is not C-closed and not 0-valid, then F s=p=) f1 for some existential oneconstraint f1.Proof: We only prove the �rst part of the lemma. The second part is similar.The proof reduces to two simple sub-cases. Let f 2 F be a constraint that is not 1-valid. If f is0-valid, then we are done since f is an existential zero constraint. If f is not 0-valid, then F has anon-C-closed function, a non 0-valid function and a non-1-valid function, and hence by Lemma 4.6,F perfectly and strictly implements F which is an existential zero function. 24.3 2-monotone functionsDe�nition 4.8 (0=1-term) A set V � f1; : : : ; kg is a 0-term (1-term) for a k-ary constraint f ifevery assignment s with Z(s) � V (resp. O(s) � V) is a satisfying assignment for f .The choice of the name re
ects the fact that a 0-term is a term consisting of all negated variables(or variables set to 0) and a 1-term consists of all positive variables.Lemma 4.9 A constraint f is a 2-monotone constraint if and only if all the following conditionsare satis�ed: 24

(a) for every satisfying assignment s of f either Z(s) is a 0-term or O(s) is a 1-term.(b) if V1 and V2 are 1-terms for f , then V1 \ V2 is a 1-term, and(c) if V1 and V2 are 0-terms for f , then V1 \ V2 is also a 0-term.Proof: Recall that a 2-monotone constraint is one that can be expressed as a disjunction of twoterms. Every satisfying assignment must satisfy one of the two terms and this gives Property (a).Properties (b) and (c) are obtained from the fact that the constraint has at most one term with allpositive literals and at most one term with all negative literals.Conversely consider a constraint f which satis�es properties (a)-(c). Let s1; : : : ; sl be the satisfyingassignments of f such that Z(si) is a 0-term, for i 2 f1; : : : ; lg. Let t1: : : : ; tk be the satisfyingassignments of f such that O(tj) is a 1-term, for j 2 f1; : : : ; kg. Then Z = \iZ(si) is a 0-term andO = \jO(tj) is a 1-term for f respectively (using (b) and (c)) and together they cover all satisfyingassignments of f . Thus f(x) = (^i2Z:xi) _ (^j2Oxj), which is 2-monotone. 2We now use the characterization above to prove, in Lemma 4.11, that if a function f is not 2-monotone, then the family ff; T; Fg implements the function XOR. We �rst prove a simple lemmawhich shows implementations of XOR by some speci�c constraint families. This will be used inLemma 4.11.Lemma 4.10 1. fAND2;1g s=) XOR.2. For every p � 2, we have ffp; T; Fg s=p=) XOR, where fp(x1; : : : ; xp) = ORp(x1; : : : ; xp)VNANDp(x1; : : : ; xp).3. For every p � 2, we have fNANDp; T; Fg s=) XOR.Proof: For Part (1) we observe that the constraints fAND2;1(x1; x2);AND2;1(x2; x1)g provide astrict (but not perfect) 1-implementation of XOR(x1; x2).For Part (2) notice that the claim is trivial if p = 2, since the function f2 = XOR. For p � 3,the constraints ffp(x1; : : : ; xp); T (x3); : : : ; T (xp)g perfectly and strictly implement NAND(x1; x2).Similarly the constraints ffp(x1; : : : ; xp); F (x3); : : : ; F (xp)g perfectly and strictly implement theconstraint OR(x1; x2). Finally the constraints OR(x1; x2) and NAND(x1; x2) perfectly and strictlyimplement the constraint XOR(x1; x2). Part (2) follows from the fact that perfect and strictimplementations compose (Lemma 3.5).Finally for Part (3), we �rst use the constraints fNANDp(x1; : : : ; xp); F (x3); : : : ; F (xp)g to im-plement, strictly and perfectly, the constraint NAND(x1; x2). Now we may use fNAND(x1; x2);NAND(x1:x2); T (x1); T (x2)g to obtain a 3-implementation of the constraint XOR(x1; x2). (Notethat in the case the implementation is not perfect.) 2Lemma 4.11 Let f be a constraint which is not 2-monotone. Then ff; T; Fg s=) XOR.Proof: The proof is divided into three cases, which depend on which of the 3 conditions de�ning2-monotonicity is violated by f . We �rst state and prove the claims.Claim 4.12 If f is a function violating property (a) of Lemma 4.9, then ff; T; Fg s=) XOR.Proof: There exists some assignment s satisfying f , and two assignments s0 and s1 such thatZ(s) � Z(s0) and O(s) � O(s1), such that f(s0) = f(s1) = 0. Rephrasing slightly, we know thatthere exists a triple (s0; s; s1) with the following properties:f(s0) = f(s1) = 0; f(s) = 1; Z(s0)�Z(s)�Z(s1) (1)25

Note that the condition Z(s0)�Z(s)�Z(s1) implies that O(s0) � O(s) � O(s1). We call property(1) the \sandwich property". Of all triples satisfying the sandwich property, pick one that minimizesjZ(s0) \O(s1)j.Without loss of generality, assume that Z(s0)\O(s1) = f1; : : : ; pg, Z(s0)\Z(s1) = fp+1; : : : ; qg,and O(s0)\O(s1) = fq+1; : : : ; kg. (Notice that the sandwich property implies that O(s0)\Z(s1) =;.) Let f1 be the constraint given by f1(x1; : : : ; xp) = f(x1; : : : ; xp; 0; : : : ; 0; 1; : : : ; 1). Notice thatthe constraint applications f(x1 : : : xk) and T (xi) for every i 2 O(s0) \ O(s1) and F (xi) for everyi 2 Z(s0) \ Z(s1) implement the function f1. Thus it su�ces to show that ff1; T; Fg implementsXOR.Below we examine some properties of the constraint f1. We will use the characters t; t0; ti; t0i todenote assignments to f1, while we use the characters s; s0; si; s0i to denote assignments to f . Notethat:1. f1(0) = f1(1) = 0.2. f1 has a satisfying assignment. Thus p (the arity of f1) is at least 2.3. If f1(t1) = 0 for some t 6= 1, then for every assignment t such that Z(t)�Z(t1), it is thecase that f1(t1) = 0: This follows from the minimality of jZ(s0) \ O(s1)j above. If not thenconsider the assignments s00 = s0, s0 = t0q�p1k�q, and s01 = t10q�p1k�q. The triple (s00; s0; s01)also satis�es the sandwich property and has a smaller value of jZ(s00) \O(s01)j.)4. If f1(t0) = 0 for some t0 6= 0, then for every assignment t such that O(t)�O(t0), it is the casethat f1(t) = 0. (Again from the minimality of jZ(s0) \O(s1)j.)These properties of f1 now allow us to identify f1 almost completely. We show that either (a) p = 2and f1(x1x2) is either AND2;1(x1; x2) or AND2;1(x2; x1); or (b) f is satis�ed by every assignmentother than the all zeroes assignment and the all ones assignment. In either case ff1; T; Fg strictlyimplements XOR by Lemma 4.10, Parts (1) and (2). (Note that Part (1) of Lemma 4.10 only yieldsa strict (but not perfect) implementation.) Thus proving that either (a) or (b) holds concludes theproof of the claim.Suppose (b) is not the case. I.e., f1 is left unsatis�ed by some assignment t and t 6= 0 and t 6= 1.Then we will show that the only assignment that can satisfy f1 is �t. But this implies that t, �t, 0and 1 are the only possible assignments to f1, implying p must be 2 thereby yielding that (a) istrue. Thus it su�ces to show that if f1(t) = 0, and t0 6= �t, then f1(t0) = 0. Since t0 is not thebitwise complement of t, there must exist some input variable which shares the same assignmentin t and t0. W.l.o.g. assume this is the variable x1. Consider the case that this variable takes onthe value 0 in the assignment t. Then we claim that the assignment f1(01 : : : 1) = 0. This is truesince O(01 : : : 1)�O(t). Now notice that f(t0) = 0 since Z(t0)�Z(01 : : : 1). (In case the �rst variabletakes on the value 1 in the assignment t, is symmetric.) Thus we conclude that either (a) or (b)always holds and this concludes the proof of the claim. 2Claim 4.13 Suppose f violates property (b) of Lemma 4.9. Then ff; T; Fg s=p=) XOR.Proof: Let V1 and V2 be two 1-terms such that V1 \ V2 is not a 1-term. I.e., There exists anassignment s s.t. O(s)�V1 \ V2 and f(s) = 0. Among all such assignments let s be the one with26

the maximum number of 1's. The situation looks as shown below:V1z }| {s V1nO(s)z }| {00:::0| {z }p 11:::1| {z }q V2z }| {V1\V2z }| {11:::1| {z }r 11:::1| {z }t V2nO(s)z }| {00:::0| {z }u 00:::0| {z }v 11:::1| {z }wIn other words s = 0p1q+r+t0u+v1w and f(s) = 0. Furthermore, every assignment of the form1p+q+r�t+u+v+w satis�es f and every assignment of the form �p+q1r+t+u�v+w satis�es f (where the�s above can be replaced by any of 0=1 independently). In particular this implies that p; u � 1.Consider the function f1 on p+u � 2 variables obtained from f by restricting the variables in O(s)to 1 and restricting the variables in Z(s)� (V1 [V2) to 0. Notice that the constraint applicationsf(x1 : : : xk), T (xi) for i 2 O(s) and F (xi) for i 2 Z(s) � (V1 [V2) strictly implement f1. Thus itsu�ces to show that ff1; T; Fg implements XOR. We do so by observing that f1(x1 : : : xp+u) is thefunction NANDp+u. Notice that f1(0) = 0. Furthermore if f1(t) = 0 for any other assignment t thenit contradicts the maximality of the number of 1's in s. The claim now follows from Lemma 4.10,Part (3), which shows that the family fNANDp+u; T; Fg implements XOR, provided p+ u � 2. 2Claim 4.14 Suppose f violates property (c) of Lemma 4.9. Then ff; T; Fg s=p=) XOR.Proof: Similar to proof of the claim above. 2The lemma now follows from the fact any constraint f2 that is not 2-monotone must violate one ofthe properties (a), (b) or (c) from Lemma 4.9. 24.4 A�ne functionsLemma 4.15 ([42]) f is an a�ne function if and only if for every three satisfying assignmentss1; s2 and s3 to f , s1 � s2 � s3 is also a satisfying assignment.We �rst prove a simple consequence of the above which gives a slightly simpler su�cient conditionfor a function to be a�ne.Corollary 4.16 If f is not a�ne, then there exist two satisfying assignments s1 and s2 for f suchthat s1 � s2 does not satisfy f .Proof: Assume otherwise. Then for any three satisfying assignments s1; s2 and s3, we have thatf(s1 � s2) = 1 and hence f((s1 � s2)� s3) = 1, thus yielding that f is a�ne. 2Lemma 4.17 If f is an a�ne constraint then any function obtained by restricting some of thevariables of f to constants and existentially quantifying over some other set of variables is alsoa�ne.Proof: We use Lemma 4.15 above. Let f1 be a function derived from f as above. Consider anythree assignments s01, s02 and s03 which satisfy f1. Let s1 s2 and s3 be the respective extensions whichsatisfy f . Then the assignment s1 � s2 � s3 extends s01 � s02 � s03 and satis�es f . Thus s01 � s02 � s03satis�es f1. Thus (using Lemma 4.15) again, we �nd that f1 is a�ne. 2Lemma 4.18 If f is an a�ne function which is not of width-2 then ffg s=p=) XORp or ffg s=p=)XNORp, for some p � 3. 27

Proof: Let k be the arity of f . De�ne a dependent set of variables to be a set of variables S �f1; : : : ; kg such that not every assignment to the variables in S extends to a satisfying assignmentof f . A dependent set S is minimally dependent set if no strict subset S0 � S is a dependent set.Notice that f can be expressed as the conjunction of constraints on its minimally dependent sets.Thus if f is not of width-2 then it must have a minimally dependent set S of cardinality at least 3.Assume S = f1; : : : ; pg, where p � 3. Consider the functionf1(x1 : : : xp) = 9xp+1; : : : ; xk s.t. f(x1; : : : xk):f1 is a�ne (by Lemma 4.17), is not satis�ed by every assignment and has at least 2p�1 satisfyingassignments. Thus f1 has exactly 2p�1 assignments (since the number of satisfying assignmentsmust be a power of 2). Thus f1 is described by exactly one linear constraint and by the minimalityof S this must be the constraint XOR(x1 : : : xp) or the constraint XNOR(x1 : : : xp). 24.5 Horn Clauses, 2CNF and IHSLemma 4.19 If f is a weakly positive (weakly negative / IHS-B+/ IHS-B-/ 2CNF) constraintthen any function obtained by restricting some of the variables of f to constants and existentiallyquantifying over some other set of variables is also weakly positive (resp. weakly negative / IHS-B+/IHS-B-/ 2CNF).Proof: It is easy to see that f remains weakly positive (weakly negative / IHS-B+/ IHS-B-/2CNF) when some variable is restricted to a constant. Hence it su�ces to consider the case wheresome variable y is quanti�ed existentially. (Combinations of the possibilities can then be handledby a simple induction.) Thus consider the function f1(x1; : : : ; xk) def= 9y s.t. f(x1; : : : ; xk; y). Letf(x1; : : : ; xk; y) = 0@ m̂j=1Cj(�x)1A^0@ m0̂j0=1(C0j0(�x)_ y)1A^0@ m1̂j1=1(C1j1(�x)_:y)1Abe a conjunctive normal form expression for f which shows it is weakly positive (weakly negative/ IHS-B+/ IHS-B-/ 2CNF), where the clauses Cj, C0j0 and C1j1 involve literals on the variablesx1; : : : ; xk.We �rst show a simple transformation which creates a conjunctive normal form expression for f1.Later we show that f1 inherits the appropriate properties of f .De�ne m0 �m1 clauses C01j0j1(�x) def= C0j0(�x)WC1j1(�x). Next, we note that f1(�x) can be expressed asfollows: f1(�x) = f1(�x; 0)_ f1(�x; 1)= 0@(ĵ Cj(�x))^(ĵ0 C0j0(�x))1A_0@(ĵ Cj(�x))^(ĵ1 C1j1(�x))1A= (ĵ Cj(�x))^0@(ĵ0 C0j0(�x))_(ĵ1 C1j1(�x))1A= (ĵ Cj(�x))^0@ ĵ0 ĵ1 C01j0j1(�x)1A (2)28

To conclude we need to verify that the right hand side of (2) satis�es the same properties as f .Furthermore we only have to consider clauses of the form C01j0j1(�x) since all other clauses are directlyfrom the expression for f . We verify this below:� If f is weakly positive, then the clause C0j0 involves at most one negated variable, and theclause C1j1 involves no negated variable (since the clause participating in f is (C1j1(�x)W:y)which has a negated y involved in it). Thus the clause de�ning C01j0j1 also has at most onenegated variable.)� Similarly if f is weakly negative, then the clauses C01j0j1 has at most one positive literal.� If f is 2CNF, then the clauses C0j0 and C1j1 are of length 1 and hence the clause C01j0j1 is oflength at most 2.� If f is IHS-B+ then the clause C0j0 either has only one literal which is negated or has onlypositive literals. Furthermore C1j1 has at most one positive literal. Thus C01j0j1 either hasonly positive literals or has at most two literals one of which is negated. Hence C01j0j1 is alsoIHS-B+.� Similarly if f in IHS-B� then the clause C01j0j1 is also IHS-B�.This concludes the proof of the lemma. 2Lemma 4.20 f is a weakly positive (weakly negative) constraint if and only if all its maxterms areweakly positive (weakly negative).Proof: We prove the lemma for the weakly positive case. The other case is similar. For the easydirection, recall that a function can be expressed as the conjunction of all its maxterms. If allmaxterms are weakly positive then this gives a weakly positive representation of f .For the other direction, assume for contradiction that f be a weakly positive constraint that hasC = :x1W � � �W:xpWxp+1W � � �Wxq as a maxterm, for some p � 2. Let the arity of f be k.Consider the functionf1(x1x2) def= 9xq+1; : : : ; xk s.t. f(x1x21p�20q�pxq+1 : : : xk):Since C is an admissible clause in a CNF representation of f , we have that if we set x1; : : : ; xp to1 and setting xp+1; : : : ; xq to 0 then no assignment to xq+1; : : : ; xk satis�es f . Thus we �nd thatf1(11) = 0. By the fact that clause is a maxterm we have that both the assignments x1 : : : xq =01p�10q�p and x1 : : : xq = 101p�20q�p can be extended to satisfying assignments of f . Thus we �ndthat f1(10) = f1(01) = 1. Thus f1 is either the function NOR or XOR. It can be veri�ed easily thatneither of these is 2-monotone. (Every basic weakly positive function on 2 variables is unsatis�edon at least one of the two assignments 01 or 10.) But this is in contradiction to Lemma 4.19 thatshowed that every function obtained by restricting some variables of f to constants and existentiallyquantifying over some others should yield a weakly positive function. 2Lemma 4.21 f is a 2CNF constraint if and only if all its maxterms are 2CNF.Proof: The \if" part is obvious. For the other direction we use Lemma 4.19. Assume for contradic-tion that f has a maxterm of the form x1Wx2Wx3W � � �WxpW:xp+1W � � �W:xq. (For simplicity29

we assume p � 3. Other cases where one or more of the variables x1; : : : ; x3 are negated can behandled similarly.) Consider the functionf1(x1x2x3) def= 9xq+1; : : : ; xk s.t. f(x1; x2; x3; 0p�3; 1q�p; xq+1; : : : ; xk):Then since x1Wx2Wx3 : : : is a maxterm of f , we have that f1(000) = 0 and f1(100) = f1(010) =f1(001) = 1. We claim that f1 can not be a 2CNF function. If not, then to make f1(000) = 0, atleast one of the clauses x1, x2, x3, x1Wx2, x2Wx3 or x3Wx1, should be a clause of f1 in any 2CNFrepresentation. But all these clauses are left unsatis�ed by at least one of the assignments 100, 010or 001. This validates our claim that f1 is not a 2CNF constraint. But f1 was obtained from f bysetting some variables to a constant and existentially quantifying over others and by Lemma 4.19f1 must also be a 2CNF function. This yields the desired contradiction. 2Lemma 4.22 An a�ne function f is a width-2 a�ne function if and only if all its minimallydependent sets are of cardinality at most 2.Proof: We use the fact that F2A � F2CNF \ FA. Suppose f 2 F2A has a minimally dependentset of size p � 3 and say the set is x1; : : : ; xp. Then by existential quanti�cation over the variablesxp+1; : : : ; xk and by setting the variables x4; : : : ; xp to 0, we obtain the function f1(x1; x2; x3)which is an a�ne function (by Lemma 4.17) with x1; x2; x3 as a minimally dependent set. Thusthis function is either XOR3 or XNOR3. But now notice that neither of these functions is a 2CNFfunction. But since f is a 2CNF function Lemma 4.19 implies that f1 must also be a 2CNF function.This yields the required contradiction. 25 Classi�cation of Max CSPThe main results of this section are in Sections 5.1 and 5.2. These results were originally obtainedby Creignou [11]. Her focus however is on the the complexity of �nding optimal solutions to theoptimization problems. The proofs for hardness of approximation are left to the reader to verify.We give full proofs using the notions of implementations. Our proof is also stronger since it doesnot assume replication of variables as a basic primitive. This allows us to talk about problems suchas Max EkSat. In Section 5.3 we extend Schaefer's results to establish the hardness of satis�ableMax CSP problems. Similar results, again with replication of variables being allowed, were �rstshown by Hunt et al. [26].5.1 Containment results for Max CSPWe start with the polynomial time solvable cases.Proposition 5.1 Weighted Max CSP(F) (Weighted Min CSP(F)) is in PO if F is 0-valid(1-valid).Proof: Set each variable to zero (resp. one); this satis�es all the constraints. 2Before proving the containment in PO of Max CSP(F) for 2-monotone function families, we showthat the correspondingWeighted Min CSP(F) is in PO. The containment for Weighted MaxCSP(F) will follow easily. 30

Lemma 5.2 Weighted Min CSP(F) is in PO if F is 2-monotone.Proof: This problem reduces to the problem of �nding s-t min-cut in directed weighted graphs.2-monotone constraints have the following possible forms :(a) ANDp(xi1 ; : : : ; xip),(b) NORq(xj1 ; : : : ; xjq), and(c) ANDp(xi1 ; : : : ; xip)WNORq(xj1 ; : : : ; xjq).Construct a directed graph G with two special nodes F and T and a vertex vi corresponding toeach variable xi in the input instance. Let 1 denote an integer larger than the total weight of allconstraints.Now we proceed as follows for each of the above classes of constraints :� For a constraint C of weight w of the form (a), create a new node eC and add an edge fromeach vil , l 2 [p], to eC of capacity 1 and an edge from eC to T of capacity w.� For a constraint C of weight w of the form (b), create a new node eC and add an edge fromeC to each vjl , l 2 [q], of capacity 1, and an edge from F to eC of capacity w.� Finally, for a constraint C of weight w of the form (c), we create two nodes eC and eC . Forevery l 2 [p], we add an edge from vil to eC of capacity 1, and for every l 2 [q], we add anedge from eC to vjl of capacity 1, and �nally an edge from eC to eC of capacity w. (Note inthis case there are no edges connecting F or T to any of the vertices.)Notice that each vertex of type eC or eC can be associated with a term: eC with a term on positiveliterals and ec with a term on negated literals. We use this association to show that the value ofthe min F-T cut in this directed graph equals the weight of the minimum number of unsatis�edconstraints in the given Weighted Min CSP(F) instance.Given an assignment which fails to satisfy constraints of weight W , we associate a cut as follows:Vertex vi is placed on the F side of the cut if and only if it is set to 0. A vertex eC is placed on theT side if and only if the term associated with it is satis�ed. A vertex eC is placed on the F sideif and only if the term associated with it is satis�ed. It can be veri�ed that such an assignmenthas no directed edges of capacity 1 going from the F side of the cut to the T side of the cut.Furthermore for every constraint C of weight w, the associated edge of capacity w crosses the cutif and only if the constraint is not satis�ed. Thus the capacity of this cut is exactly W and thuswe �nd that the min F-T cut value is at most W .In the other direction, we show that given a F-T cut in this graph of cut capacity W < 1, thereexists an assignment which fails to satisfy constraints of weight at most W . Such an assignmentis simply to assign xi = 0 i� vi is on the F side of the cut. Note that for any constraint C, theassociated vertices eC and ec (whichever exist) may be placed on the T and F sides of the cut(respectively) only if the associated term is satis�ed (else there will be an edge of capacity 1crossing the cut). Thus, if a constraint C of capacity w is not satis�ed by this assignment, then theedge of capacity w corresponding to C must cross the cut. Summing up we �nd that the assignmentfails to satisfy constraints of total weight at most W .31

Putting both directions together, we �nd that the min F-T cut in this graph has capacity exactlyequal to the optimum of the Weighted Min CSPfXORg instance, and thus the latter problemcan be solved exactly in polynomial time. 2For the sake of completeness we also prove the converse direction to the above lemma. We showthat the s-t min-cut problem can be phrased as a Min CSP(F) problem for a 2-monotone familyF .Lemma 5.3 The s-t min-cut problem is in Weighted Min CSP(fOR2;1; T; Fg).Proof: Given an instance G = (V;E) of the s-t min-cut problem, we construct an instance ofWeighted Min CSP(F) on variables x1; x2; : : : ; xn where xi corresponds to the vertex i 2 V �fs; tg:� For each edge e = (s; i) with weight we, we create the constraint F (xi) with weight we.� For each edge e = (i; t) with weight we, we create the constraint T (xi) with weight we.� For each edge e = (i; j) with weight we and such that i; j 62 fs; tg, we create the constraintOR2;1(xj ; xi) with weight we.Given a solution to this instance of Weighted Min CSP(F), we construct an s-t cut by placingthe vertices corresponding to the false variables on the s-side of the cut and the remaining on thet-side of the cut. It is easy to verify that an edge e contributes to the cut i� its correspondingconstraint is unsatis�ed. Hence the optimal Min CSP(F) solution and the optimal s-t min-cutsolution coincide. 2Going back to our main objective, we obtain as a simple corollary to Lemma 5.2 the following:Corollary 5.4 For every F � F2M, Weighted Max CSP(F)2 PO.Proof: Follows from the fact that given an instance I of Weighted Max CSP(F), the optimumsolution to I viewed as an instance ofWeighted Min CSP(F) is also an optimum solution to theWeighted Max CSP(F) version. 2Finally we prove a simple containment result for all of Max CSP(F) which follows as an easyconsequence of Proposition 3.7.Proposition 5.5 For every F , Weighted Max CSP(F) is in APX.Proof: Follows from Proposition 3.7 and the fact that the total weight of all constraints is anupper bound on the optimal solution. 25.2 Negative results for Max CSPIn this section we prove that if F 6� F0;F1;F2M then Max CSP(F) is APX-hard. We start witha simple observation which establishes Max CSP(XOR) as our starting point.Lemma 5.6 Max CSP(XOR) is APX-hard. 32

Proof: We observe that Max CSP(XOR) captures the MAX CUT problem shown to be APX-hard by [39, 3]. Given a graph G = (V;E) with n vertices and m edges, create an instance IG ofMax CSP(fXORg) with one variable xu for every vertex u 2 V and with constraints XOR(xu; xv)corresponding to every edge fu; vg 2 E. It is easily seen there is a one-to-one correspondencebetween (ordered) cuts in G and the assignments to the variables of IG which maintains the valuesof the objective functions (i.e., the cut value and the number of satis�ed constraints). 2We start with the following lemma which shows how to use the functions which are not 0-valid or1-valid.Lemma 5.7 If F 6� F0;F1 then Max CSP(F [fT; Fg) is AP-reducible to Max CSP(F) andMin CSP(F [fT; Fg) is A-reducible to Min CSP(F).Proof: Let f0 be the function from F that is not 0-valid and let f1 be the function that is not1-valid. If some function g in F is is not C-closed, then, by Lemma 4.6 F perfectly and strictlyimplements T and F . Hence, by Lemmas 3.8 and 3.10, Max CSP(F [fT; Fg) is AP-reducible toMax CSP(F) and Min CSP(F [fT; Fg) is A-reducible to Min CSP(F).Otherwise, every function of F is C-closed and hence by Lemma 4.5, F perfectly and strictlyimplements the XOR function and hence, by Proposition 3.3, the XNOR function. Thus it su�cesto show that Max CSP(F [fT; Fg) is AP-reducible to Max CSP(F [fXOR;XNORg) (and MinCSP(F [fT; Fg) is A-reducible to Min CSP(F [fXOR;XNORg)) for C-closed families F . Herewe use an idea from [8] described next.Given an instance I of Max CSP(F [fT; Fg) on variables x1; : : : ; xn and constraints C1; : : : ; Cm,we de�ne an instance I 0 ofMax CSP(F [fXOR;XNORg) (Min CSP(F [fXOR;XNORg)) whosevariables are x1; : : : ; xn and additionally one new auxiliary variable xF . Each constraint of the formF (xi) (resp. T (xi)) in I is replaced by a constraint XNOR(xi; xF) (resp. XOR(xi; xF)). All theother constraints are not changed. Thus I 0 also has m constraints. Given a solution a1; : : : ; an; aFfor I 0 that satis�es m0 of these constraints, notice that the assignment :a1; : : : ;:an;:aF alsosatis�es the same collection of constraints (since every function in F is C-closed). In one of thesecases the assignment to xF is false and then we notice that a constraint of I is satis�ed if and onlyif the corresponding constraint in I 0 is satis�ed. Thus every solution to I 0 can be mapped to asolution to I with the same contribution to the objective function. 2The required lemma now follows as a simple combination of Lemmas 4.9 and 5.7.Lemma 5.8 If F 6� F0;F1;F2M, then Max CSP(F) is APX-hard.Proof: By Lemma 4.11 F [fT; Fg strictly implements the XOR function. ThusMax CSP(XOR)AP-reduces toMax CSP(F [fT; Fg) which in turn (by Lemma 5.7) AP-reduces toMax CSP(F).Thus Max CSP(F) is APX-hard. 25.3 Hardness at Gap Location 1Schaefer's dichotomy theorem can be extended to show that in the cases where Sat(F) in NP-hard to decide, it is actually hard to distinguish satis�able instances from instances which are notsatis�able in a constant fraction of the constraints. This is termed hardness at gap location 1 byPetrank [40] who highlights the utility of such hardness results in other reductions. The essentialobservation needed is that perfect implementations preserve hardness gaps located at 1 and thatSchaefer's proof is based on perfect implementations.33

However Schaefer's proof of NP-hardness in his dichotomy theorem relies on the ability to replicatevariables within a constraint application. Speci�cally, the following lemma can be abstracted fromhis paper.Lemma 5.9 ([42]) If F is not 0-valid or 1-valid or a�ne or bijunctive or weakly positive or weaklynegative, then F [fXNORg p=) F3SAT.In this section, we show that a family F that is not decidable also perfectly implements the XNORconstraint and thus the lemma above can be strengthened. We start with the following lemma thatshows how to use functions that are not weakly negative.Lemma 5.10 If f is not weakly negative then ff; T; Fg p=) XOR or ff; T; Fg p=) OR. Similarly,if f is not weakly positive then ff; T; Fg p=) XOR or ff; T; Fg p=) NAND.Proof: We only prove the �rst part { the second part follows by symmetry. By Lemma 4.20 we�nd that f has a maxterm with at least two positive literals. W.l.o.g. the maxterm is of the formx1Wx2W � � � xpW:xp+1W � � �W:xq, with p � 2. We consider the function f 0 which is f existentiallyquanti�ed over all variables but x1; : : : ; xq. Further we set x3; : : : ; xp to 0 and xp+1; : : : ; xq to 1.Then the assignment x1 = x2 = 0 is a non-satisfying assignment. The assignments x1 = 0 6= x2and x1 6= 0 = x2 must be satisfying assignments by the de�nition of maxterm (and in particularby the minimality of the clause). The assignment x1 = x2 = 1 may go either way. Depending onthis we get either the function XOR or OR. 2Corollary 5.11 If f2 is not weakly positive and f3 is not weakly negative, then ff2; f3; T; Fg p=)XOR.Lemma 5.12 If F is not 0-valid or 1-valid or weakly positive or weakly negative, then F s=p=)fXOR;XNORg.Proof: If F is C-closed then, by Lemma 4.5, we immediately get a strict and perfect implementationof XOR. If it is not C-closed then, by Lemma 4.6, we get perfect and strict implementations of theconstraints T and F . Applying Corollary 5.11 now, we get a perfect and strict implementation ofXOR in this case also. Finally we use Proposition 3.3 to get a perfect and strict implementationof XNOR from the constraint XOR. 2Combining Lemma 5.9 and the above, we get the following corollary:Corollary 5.13 If F is not 0-valid or 1-valid or a�ne or bijunctive or weakly positive or weaklynegative, then F p=) F3SAT.Thus we get the following theorem.Theorem 5.14 For every constraint set F either SAT(F) is easy to decide, or there exists � =�F > 0 such that it is NP-hard to distinguish satis�able instances of SAT(F), from instances where1� � fraction of the constraints are not satis�able.6 Classi�cation of Max OnesAgain we will �rst prove the positive results and then show the negative results. But before we doeither, we will show a useful reduction between unweighted and weighted Max Ones(F) problemswhich holds for most interesting function families F .34

6.1 PreliminariesWe begin with a slightly stronger notion of the de�nition of polynomial-time solvability of Sat(F)(than that of [42]). We then show that given this stronger form of polynomial time decidabilitythe weighted and unweighted cases of Max Ones(F) are equivalent by showing that this strongerform of polynomial time decidability leads to a polynomial approximation algorithm. We concludeby showing that for the Max Ones problems which we hope to show to be APX-complete orpoly-APX-complete, the strong form of decidability does hold.De�nition 6.1 We say that a constraint family F is strongly decidable if, givenm constraints fromF on n variables x1; : : : ; xn and an index i 2 f1; : : : ; ng, there exists a polynomial time algorithm to�nd an assignment to x1; : : : ; xn satisfying all m constraints and additionally satisfying the propertyxi = 1 if one such exists.Lemma 6.2 For every strongly decidable constraint family F , Weighted Max Ones(F) is inpoly-APX.Proof: Consider an instance of Weighted Max Ones(F) with variables x1; : : : ; xn, constraintapplications C1; : : : ; Cm and weights w1; : : : ; wn. Assume w1 � w2 � � � � � wn. Let i be the largestindex such that there exists a feasible solution with xi = 1. Notice that i can be determined inpolynomial time due to the strong decidability of F . We also use the strong decidability to �nd anassignment with xi = 1. It is easily veri�ed that this yields an n-approximate solution. (Weight ofthis solution is at least wi, while weight of optimal is at most Pij=1wj � iwi � nwi.) 2Before concluding we show that most problems of interest to us will be able to use the equivalenceestablished above between weighted and unweighted problems.Lemma 6.3 If F � F 0 for any F 0 2 fF1;FS0;F2CNF;FA;FWP;FWNg, then F is strongly decid-able.Proof: Recall that for i 2 [k], f j(fig;1) is the constraint obtained from f by restricting the ith inputto 1. De�ne F� to be the constraint set:F� def= F [ff ji;1jf 2 F ; i 2 [k]g:First, observe that the problem of strong decidability of F reduces to the decision problem Sat(F�).Further, observe that if F � F 0 for F 0 2 fF1;F2CNF;FA;FWP;FWNg, then F� � F 0 as well. Lastly,if F� � FS0, then F� � F0. Thus in each case we end up with a problem from Sat(F) for a familyF which is polynomial time decidable in Schaefer's dichotomy. 2Lemma 6.4 If F p=) f0 for some existential zero constraint f0, then F p=) Fj0. Similarly, ifF p=) f1 for some existential one constraint f1, then F p=) Fj1.Proof: Let f 2 F . We show how to implement the constraint f(0; x1; : : : ; xk�1). The proof can beextended to other constraints in Fj0 by induction. Let f0 be an existential zero constraint imple-mentable by F and let K be the arity of f0. Then the constraints f(yi; x1; : : : ; xk�1), for i 2 [K],along with the constraint f0(y1; : : : ; yK) perfectly implement the constraint f(0; x1; : : : ; xk�1). (Ob-serve that since at least one of the yi's in the set y1; : : : ; yK is zero, the constraint f(0; x1; : : : ; xk�1)is being enforced. Furthermore, we can always set all of y1; : : : ; yK to zero, ensuring that any as-signment to x1; : : : ; xk�1 satisfying f(0; x1; : : : ; xk�1) does satisfy all the constraints listed above.)2 35

6.2 Containment resultsLemma 6.5 If F is 1-valid or weakly positive or width-2 a�ne, then Weighted Max Ones(F)is in PO.Proof: If F is 1-valid, then setting each variable to 1 satis�es all constraint applications with themaximum possible variable weight.If F is weakly positive, consider the CNF formulae for the fi 2 F such that each clause has at mostone negated variable. Clearly, clauses consisting of a single literal force the assignment of thesevariables. Setting these variables may create new clauses of a single literal; set these variables andcontinue the process until all clauses have at least two literals or until a contradiction is reached. Inthe latter case no feasible assignment is possible. In the former case, setting the remaining variablesto one satis�es all constraints, and there exists no feasible assignment with a greater weight of ones.In the case that F is a�ne with width 2, we reduce the problem of �nding a feasible solution to thatof checking whether a graph is bipartite, and then use the bipartition to �nd the optimal solution.Notice that each constraint corresponds to a conjunction of constraints of the form Xi = Xj orXi 6= Xj . Create a vertex Xj for each variable Xj and for each constraint Xi 6= Xj , add an edge(Xi;Xj). For each constraint Xi = Xj , identify the vertices Xi and Xj and associate the sum oftheir weights to the identi�ed vertex; if this creates a self-loop, then clearly no feasible assignmentis possible. Check whether the graph is bipartite; if not, then there is no feasible assignment. If itis bipartite, then for each connected component of the graph choose the larger weight side of thebipartition and set the corresponding variables to one. 2Lemma 6.6 If F is a�ne then Weighted Max Ones(F) is in APX.Remark: Our proof actually shows that Max Ones(F) has a 2-approximation algorithm. Com-bined with the fact that the AP-reduction of Lemma 3.11 does not lose much in the approximationfactor we essentially get the same factor for Weighted Max Ones(F) as well.Proof: By Lemmas 3.11, 6.2 and 6.3 it su�ces to consider the unweighted case. (Lemma 6.3 showsthat F is strongly-decidable; Lemma 6.2 uses this to show that Weighted Max Ones(F) is inpoly-APX; and Lemma 3.11 uses this to provide an AP-reduction fromWeighted Max Ones(F)to Max Ones(F).)Given an instance I of Max Ones(F), notice that �nding a solution which satis�es all constraintsis the problem of solving a linear system of equations over GF[2]. Say the linear system is given byAx = b, where A is an m� n matrix, and b is a m� 1 column vector, and the x is an n� 1 vector.Assume w.l.o.g. that the rows of A are independent. By simple row operations and reorderingof the variables, we can set up the linear system as [IjA0]x = b0. Thus if x0 represents the vectorhx1; : : : ; xmi and x00 represents the vector hxm+1; : : : ; xni then the set of feasible solutions to thegiven linear system are given byfhx0; x00ijx00 2 f0; 1gn�m; x0 = �A0x00 + b0g:Pick a random element of this set by picking x00 at random and setting x0 accordingly. Notice thatfor any i 2 fm+1; : : : ; ng xi = 1 w.p. 12 . Furthermore, for any i 2 [m], xi is either forced to 0 in allfeasible solutions, or xi is forced to 1 in all feasible solutions or xi = 1 w.p. 1=2. Thus, if S � [n]is the set of variables which are ever set to 1 in a feasible solution, then expected number of 1's ina random solution is at least jSj=2. But S is an upper bound on opt. Thus the expected value ofthe solution is at least opt=2 and hence the solution obtained is 2-approximate solution. 236

Proposition 6.7 If F � F 0 for some F 0 2 fF1;FS0;F2CNF;FA;FWP;FWNg, then WeightedMax Ones(F) 2 poly-APX.Proof: Follows immediately from Lemmas 6.2 and 6.3. 2Proposition 6.8 ([42]) If F � F0, then Sat(F) is in P.6.3 Hardness results6.3.1 APX-hard caseWe wish to show in this section that if F is an a�ne family but not width-2 a�ne, then MaxOnes(F) is APX-hard. By Lemmas 6.2 and 3.11 it su�ces to show this for Weighted MaxOnes(F). The basicAPX-hard problems we work with in this section are described in the following:Lemma 6.9 Weighted Max Ones(XNOR3) and Weighted Max Ones(fXOR;XNOR4g) areAPX-hard.Proof: We reduce the Max Cut problem to the Weighted Max Ones(XNOR3) problem asfollows. Given a graph G = (V;E) we create a variable xv for every vertex v 2 V and a variable yefor every edge e 2 E. The weight wv associated with the vertex variable xv is 0. The weight we ofan edge variable ye is 1. For every edge e between u and v we create the constraint ye�xu�xv = 0.It is clear that any 0=1 assignment to the xv's de�ne a cut and for an edge e = fu; vg, ye is one i�u and v are on opposite sides of the cut. Thus solutions to the Weighted Max Ones problemcorrespond to cuts in G with the objective function being the number of edges crossing the cut.This shows the APX-hardness of Weighted Max Ones(XNOR3).The reduction for Weighted Max Ones(fXOR;XNOR4g) is similar. Given a graph G = (V;E),we create the variables xv for every v 2 V , ye for every e 2 E and one global variable z (whichis supposed to be zero) and m def= jEj auxiliary variables y0e for every e 2 E.. For every edgee = fu; vg in G we impose the constraints ye � xu � xv � z = 0. In addition we throw in theconstraints z � y0e = 1 for every i 2 f1; : : : ;mg. Finally we make the weight of the vertex variablesand z zero and the weight of the edge variables ye and the auxiliary variables y0e is made 1. Theoptimum to this Weighted Max Ones problem is Max Cut(G) +m. Given an r-approximatesolution for the Weighted Max Ones(fXOR4;XORg) instance created above, we consider thetwo possible solutions (as usual): (1) The solution induced by the assignment with 0 vertices onone side and one vertices on the other & (2) A cut with m=K edges crossing the cut (noticesuch a cut can be found based on Prop 3.7). The better of these solutions has maxf(1r)(m +Max Cut(G))�m; mK g � 1r(K(1�1=r)+1)Max Cut(G) � 11+K(r�1)Max Cut(G) edges crossing thecut. Thus an r-approximate solution to Weighted Max Ones(fXOR;XNOR4g) yields a (1 +K(r � 1))-approximate solution to Max Cut(G). Thus Max Cut(G) AP-reduces to WeightedMax Ones(fXOR;XNOR4g) and hence the latter is APX-hard. 2Lemma 6.10 If F is a�ne but neither width-2 a�ne nor 1-valid, then F p=) XNOR3 or F p=)fXOR;XNOR4g.Proof: Since F is a�ne but not of width-2, it can perfectly (and strictly) implement the functionXORp or XNORp for some p � 3 (Lemma 4.18). Let f 2 F be an a�ne constraint that is not1-valid. We consider two possible cases depending on whether F is C-closed or not. If g 2 F is37

not C-closed, then we �nd (by Lemma 4.7) that ff; gg (and hence F) perfectly implements someexistential zero constraint. This case is covered in Claim 6.11 and we show that in this case Fperfectly implements XNOR3. In the other case, F is C-closed and hence (by Lemma 4.5) Fperfectly implements the constraint XOR. This case is covered in Claim 6.12 and we show that inthis case F perfectly implements either XNOR3 or XNOR4. This concludes the proof of Lemma 6.10(modulo Claims 6.11 and 6.12). 2Claim 6.11 If ffg is an existential zero constraint and h is either the constraint XORp or XNORpfor some p � 3, then ff; hg p=) XNOR3.Proof: Since f is an existential zero constraint, the family ff; hg can perfectly implement ff; hgj0(using Lemma 6.4). In particular, ff; hg can implement the constraints x1�x2 = b and x1�x2�x3 =b for some b 2 f0; 1g. Notice �nally that the constraints x1 � x2 � y = b and y � x3 = b form aperfect implementation of the constraint x1 � x2 � x3 = 0. Thus ff; hg perfectly implements theconstraint XNOR3. 2Claim 6.12 If f 2 fXORp;XNORp j p � 3g, then ff;XORg p=) XNOR3 or ff;XORg p=)XNOR4.Proof: Since XOR perfectly implements XNOR it su�ces to prove this using the constraintsff;XOR;XNORg.W.l.o.g assume that f is the constraint XNOR, since else XORp(x1; : : : ; xp�1; y) and XOR(y; xp)perfectly implement the constraint XNORp(x1; : : : ; xp).Now if p is odd, then the constraints XNORp(x1; : : : ; xp) and XNOR(x4; x5), XNOR(x6; x7) andso on up to XNOR(xp�1; xp) perfectly implement the constraint XNOR3(x1; x2; x3).Now if p is even, then the constraints XNORp(x1; : : : ; xp) and XNOR(x5; x6), XNOR(x7; x8) andso on up to XNOR(xp�1; xp) perfectly implement the constraint XNOR4(x1; x2; x3; x4). 2Lemma 6.13 If F is a�ne but neither width-2 a�ne nor 1-valid, then Max Ones(F) is APX-hard.Proof: By Lemma 6.6 we have Weighted Max Ones(F) is in APX and thus (by Lemma 3.11)it su�ces to show APX-hardness of Weighted Max Ones(F). This now follows from Lem-mas 3.9, 6.9,and 6.10. 26.3.2 The poly-APX-hard caseThis part turns out to be long and the bulk of the work will be done in Lemmas 6.16-6.21. We �rstdescribe the proof of the hardness result modulo the above lemmas. (Hopefully, the proof will alsoprovide some motivation for the rest of the lemmas.)Lemma 6.14 If F � F 0 for some F 0 2 fF0;F2CNF;FWNg but F 6� F 00 for any F 00 2 fF1;FA;FWPg, then Max Ones(F) is poly-APX-hard.Proof: As usual, by Lemmas 6.2 and 3.11, it su�ces to show hardness of the weighted version.First we show in Lemma 6.15 thatMax Ones(fNANDkg) is poly-APX-hard for every k � 2. Thusour goal is to establish that any non 1-valid, non-a�ne, and non weakly positive constraint familycan implement some NANDk constraint. We do so in three phases.38

The main complication here is that we don't immediately have a non 0-valid constraint to workwith and thus we can't immediately reduce Max Ones(F [fT; Fg) to Max Ones(F). So wego after something weaker and try to show that F can perfectly implement Fj0;1. In Phase 3,(Lemmas 6.20 and 6.21) we show that this su�ces. Lemma 6.20 uses the fact that Fj0;1 is notweakly positive to implement either NAND2 or XOR. In the former case we are done and in thelatter case, Lemma 6.21 uses the fact that Fj0;1 is not a�ne to implement NAND.Thus our task reduces to that of showing that F can implement Fj0;1. Part of this is easy. InPhase 1, we show that F implements every constraint in Fj0. This is shown via Lemma 6.16 whichshows that any family which is either 0-valid or 2CNF or weakly negative but not 1-valid or a�neor weakly positive must have a non C-closed constraint. This along with the non 1-valid constraintallows it to implement every constraint in Fj0 (by Lemmas 4.7 and 6.4). The remaining task forPhase 2 is to show that Fj0 can implement Fj1. If F also has a non 0-valid constraint then we aredone since now we can implement all of Fj0;1 (another application of Lemmas 4.7 and 6.4). Thusall lemmas in Phase 2, focus on Fj0 for 0-valid constraint families F . If Fj0 is all 0-valid, then allwe can show is that Fj0 either implements NANDk for some k or OR2;1 (Lemmas 6.17 and 6.18).The former is good, but the latter seems insu�cient. In fact we are unable to implement Fj0;1 inthis case. We salvage the situation by reverting back to reductions. We AP-reduce the problemWeighted Max Ones(Fj0 [fOR2;1g) to Weighted Max Ones(Fj0;1) (Lemma 6.19). Thissu�ces to establish the poly-APX-hardness of Weighted Max Ones(F) sinceWeighted Max Ones(Fj0;1) �AP Weighted Max Ones(Fj0 [fOR2;1g)�AP Weighted Max Ones(F)and the problem Weighted Max Ones(Fj0;1) is poly-APX-hard. 2Lemma 6.15 Max Ones(fNANDkg) is poly-APX-hard for every k � 2.Proof: We reduce from Max Clique, which is known to be poly-APX-hard. Given a graphG, construct a Max Ones(ffg) instance consisting of a variable for every vertex in G and theconstraint f is applied to every subset of k vertices in G which does not induce a clique. It maybe veri�ed that the optimum number of ones in any satisfying assignment to the instance createdin this manner is maxfk � 1; !(G)g, where !(G) is the size of the largest clique in G. Given asolution to the Max Ones(ffg) instance with l � k ones, the set of vertices corresponding to thevariables set to one form a clique of size l. If l < k, output any singleton vertex. Thus in all caseswe obtain a clique of size at least l=(k � 1) vertices. Thus given an r-approximate solution to theMax Ones(fNANDkg) problem, we can �nd a (k � 1)r approximate solution to Max Clique.Thus Max Clique is A-reducible to Max Ones(fNANDkg). 2Phase 1: F implements Fj0.Lemma 6.16 If F � F 0 for some F 0 2 fF0;F2CNF;FWNg but F 6� fF1;F2A;FWPg then thereexists a constraint in F that is not C-closed constraint.Proof: Notice that a C-closed 0-valid constraint is also 1-valid. Thus if F is 0-valid, then the non1-valid constraint is not C-closed.Next we claim that a C-closed weakly positive constraint f is also weakly negative. To do so,consider the constraint �f given by �f(x) = f(�x). Notice that for a C-closed constraint f = �f .Suppose f(x) = Vj Cj(x) where the Cj's are weakly positive clauses. Then �f(x) can be describedas Vj �Cj(x) (where �Cj(x) = Cj(�x)). But in this representation �f (and thus f) is seen to be a39

weakly negative constraint, thereby verifying our claim. Thus if F is weakly negative but notweakly positive, the non weakly-positive constraint is the non C-closed constraint.Finally we consider the case when f is a 2CNF formula. Again de�ne �f(x) = f(�x) and f 0(x) =f(x) �f(x). Notice that f 0 = f if f is C-closed. Again consider the CNF representation off = Vj Cj(x) where the Cj(x)'s are clauses of f of length 2. Then f 0(x) can be expressed asVj(Cj(x)V �Cj(x)). But Cj V �Cj are a�ne constraints of width 2! Thus f 0 and hence f is an a�newidth-2 constraint. Thus if F is 2CNF but not width-2 a�ne, the non width-2 a�ne constraint isthe non C-closed constraint. 2Lemma 4.7 along with Lemma 6.4 su�ce to prove that F implements Fj0. We now move on toPhase 2.Phase 2: From Fj0 to Fj0;1.Recall that if F has a non 0-valid constraint, then by Lemmas 6.16, 4.7 and 6.4 it implements anexistential one constraint and thus Fj0;1. Thus all lemmas in this Phase assume F is 0-valid.Lemma 6.17 If f is 0-valid and not weakly positive, then ffgj0 either perfectly implements NANDkfor some k � 2 or OR2;1 or XNOR.Proof: Let C = :x1W � � �W:xpW y1W � � �W yq be a maxterm in f with more than one negation i.e.p � 2. Since f is not weakly positive, Lemma 4.20 shows that such a maxterm exists. Substitutinga 0 in place of variables y1; y2; : : : ; yq, and existentially quantifying over all variables not in C, weget a constraint g such that :x1W:x2W � � �W:xp is a maxterm in g. Consider an unsatisfyingassignment s for g with the smallest number of 1's and let k denote the number of 1's in s; weknow k > 0 since the original constraint is 0-valid. W.l.o.g. assume that s assigns value 1 tothe variables x1; x2; : : : ; xk and 0 to the remaining variables. It is easy to see that by �xing thevariables xk+1; xk+2; : : : ; xp to 0, we get a constraint g0 = (:x1W:x2W � � �W:xk). If k > 1, thenthis perfectly implements the constraint NANDk(x1; : : : ; xk) and we are done.Otherwise k = 1, i.e. there exists an unsatisfying assignment s which assigns value 1 to exactlyone of the xi's, say x1. Now consider a satisfying assignment s0 which assigns 1 to x1 and has aminimum number of 1's among all assignments which assign 1 to x1. The existence of such anassignment follows from C being a maxterm in g. For instance, the assignment 1p�10 is a satisfyingassignment which satis�es such a property. W.l.o.g. assume that s0 = 1i0p�i. Thus the constraintg looks as follows: x1 x2 x3:::xi xi+1:::xp g()s1 0 0 00:::0 00:::0 1s2 1 0 00:::0 00:::0 0s0 = s3 1 1 11:::1 00:::0 1s4 0 1 ::: 00:::0 ?Existential quanti�cation over the variables x3; x4; : : : ; xi and �xing the variables xi+1 through xpto 0 yields a constraint g0 which is either OR2;1(x2; x1) or XNOR(x1; x2). The lemma follows. 2Now we consider the case where we can implement the function XNOR and show that in this casewe can either perfectly implement NAND or OR2;1. In the former case we are done and for thelatter case we show in Lemma 6.19 thatWeighted Max Ones(Fj1) is AP-reducible toWeightedMax Ones(F [fOR2;1g). 40

Lemma 6.18 If f is 0-valid but not a�ne then ffgj0[fXNORg perfectly implements either NANDor the constraint OR2;1.Proof: Corollary 4.16 shows that if f is not a�ne then there exist two satisfying assignmentss1 and s2 such that s1 � s2 is not a satisfying assignment for f . Reorder the variables such thatZ(s1) \ Z(s2) = fx1; : : : ; xpg, Z(s1) \O(s2) = fxp+1; : : : ; xqg, O(s1) \ Z(s2) = fxq+1; : : : ; xrg andO(s1) \O(s2) = fxr+1; : : : ; xkg. Using the fact that f is 0-valid, we �nd that f looks as follows:x1:::xp xp+1:::xq xq+1:::xr xr+1:::xk g(x)00:::0 00:::0 00:::0 00:::0 1s1 00:::0 00:::0 11:::1 11:::1 1s2 00:::0 11:::1 00:::0 11:::1 1s1 � s2 00:::0 11:::1 11:::1 00:::0 0Consider the collection of constraints:1. f(0; : : : ; 0; xp+1; : : : ; xk).2. XNOR(x; xi) for i 2 Z(s1) \O(s2).3. XNOR(y; xi) for i 2 O(s1) \ Z(s2).4. XNOR(z; xi) for i 2 O(s1) \O(s2).Existentially quantifying over the variables xp+1; : : : ; xk we obtain an implementation of a constrainth(x; y; z) such that h(000) = h(011) = h(101) = 1 and h(110) = 0. Furthermore, by restrictingmore of the variables in (1) above to 0, we get a perfect implementation of any constraint in fhgj0.Using Claim 6.22 again we get that fhgj0 can implement either NAND or OR2;1, and thus we aredone. 2Finally we show how to use OR2;1 constraints.Lemma 6.19 If F is 0-valid then Weighted Max Ones(Fj1) AP-reduces to Weighted MaxOnes(F [fOR2;1g).Proof: We show something stronger, namely, Weighted Max Ones(F [fTg) AP-reduces toWeighted Max Ones(F [fOR2;1g). This su�ces since T is an existential one constraint andthus F [fTg can perfectly implement Fj1.Given an instance I of Weighted Max Ones(F [fTg) construct an instance I 0 of WeightedMax Ones(F[fOR2;1g) as follows. The variable set of I 0 is the same as that of I. Every constraintfrom F in I is also included in I 0. The only remaining constraints are of the form T (xi) for somevariables xi. We simulate this constraint in I 0 with n � 1 constraints of the form OR2;1(xj ; xi)(i.e., :xj W xi) for every j 2 [n], j 6= i. Every non-zero solution to the resulting instance I 0 is alsoa solution to I, since the solution must have xi = 1 or else have xj = 0 for every j 6= i. Thusthe resulting instance of Max Ones(F [fOR2;1g) has the same objective function and the samefeasible space and is hence at least as hard as the original problem. 2This concludes Phase 2.Phase 3: Fj0;1 implements NAND. 41

Lemma 6.20 If f is not weakly positive, then ffgj0;1 perfectly implements either XOR or NAND.Proof: Let C = (:x1W � � �W:xpW y1W � � �W yq) be a maxterm in f with more than one negationi.e. p � 2. Substituting a 1 for variables x3; : : : ; xp, a 0 for variables y1; : : : ; yq, and existentiallyquantifying over all variables not in C, we get a constraint f 0 such that f 0(11) = 0, f 0(01) = f 0(10) =1 (These three properties follow from the de�nition of a maxterm). Depending on whether f 0(00)is 0 or 1 we get the function XOR or NAND, respectively. 2Lemma 6.21 If g is a non-a�ne constraint, then fg;XORgj0;1 p=) NAND.Proof: Again it su�ces to consider fg;XOR;XNORgj0;1. Let g be of arity k. By Lemma 4.15 we�nd that there must exist assignments s1; s2 and s3 satisfying g such that s1 � s2 � s3 does notsatisfy g. Partition the set [k] into up to eight equivalence classes Sb1b2b3 for b1; b2; b3 2 f0; 1g suchthat for any index i 2 Sb1b2b3 , (sj)i = bj for every j 2 f1; 2; 3g. (Refer to Figure 1 below.)S000 S001 S010 S011 S100 S101 S110 S111 g(x)s1 0:::0 0:::0 0:::0 0:::0 1:::1 1:::1 1:::1 1:::1 1s2 0:::0 0:::0 1:::1 1:::1 0:::0 0:::0 1:::1 1:::1 1s3 0:::0 1:::1 0:::0 1:::1 0:::0 1:::1 0:::0 1:::1 1s1 � s2 � s3 0:::0 1:::1 1:::1 0:::0 1:::1 0:::0 0:::0 1:::1 0Figure 1: Partition of inputs to gW.l.o.g. assume that S000 = f1; : : : ; pg and S111 = fq + 1; : : : ; kg. Notice that the assignment of avariable in Sb1b2b3 under assignment s1 � s2 � s3 is also �xed (to b1 � b2 � b3). Now consider thecollection of constraints1. g(0; : : : ; 0; xp+1 : : : ; xq; 1; : : : ; 1).2. XNOR(x; xi) for i 2 S001.3. XNOR(y; xi) for i 2 S010.4. XNOR(z; xi) for i 2 S011.5. XOR(z; xi) for i 2 S100.6. XOR(y; xi) for i 2 S101.7. XOR(x; xi) for i 2 S110.By existentially quantifying over the variables xp+1; : : : ; xq we perfectly implement a constrainth(x; y; z) with the following properties: h(000) = h(011) = h(101) = 1 and h(110) = 0. Further-more, by restricting more variables in condition (1) above, we can actually implement any functionin the set fhgj0;1. Claim 6.22 now shows that for any such function h, the set fhgj0 perfectlyimplements either OR2;1 or NAND. In the latter case we are done. In the former case, notice thatthe constraints OR2;1(x; z) and XOR(z; y) perfectly implement the constraint NAND(x; y) so inthis case too we are done (modulo Claim 6.22). 2Claim 6.22 If h is ternary function such that h(000) = h(011) = h(101) = 1 and h(110) = 0, thenfhgj0 p=) NAND or fhgj0 p=) OR2;1. 42

x
yz

00 01 11 10

1 - 1 A0

1 B 1 - 0Figure 2: Truth-table of the constraint h(x; y; z)Proof:Figure 2 describes the truth table for the function h. The undetermined values of interest to us areindicated in the table by A and B. The following analysis shows that for every possible value of Aand B, we can perfectly implement either NAND or OR2;1A = 0 =) 9 x h(x; y; z) = :yW zB = 0 =) 9 y h(x; y; z) = :xW zA = 1; B = 1 =) h(x; y; 0) = :xW:yThus in each case we perfectly implement either the constraint NAND or OR2;1. 26.3.3 Remaining casesWe now prove that if F is not strongly decidable, then deciding if there exists a non-zero solutionis NP-hard. This is shown in Lemma 6.23. The last of the hardness results, claiming that �ndinga feasible solution is NP-hard if F is not 0-valid or 1-valid or 2cnf or weakly positive or weaklynegative or linear, follows directly from Schaefer's theorem (Theorem 2.10).Lemma 6.23 If F 6� F 0, for any F 0 2 fFS0;F1;F2CNF;FA;FWP;FWNg, then the problem of�nding solutions of non-zero value to a given instance of (unweighted) Max Ones(F) is NP-hard.Proof: Assume, for simplicity, that all constraints of F have arity k. Given a constraint f :f0; 1gk ! f0; 1g and an index i 2 [k], let f#i be the constraint mapping f0; 1gk�1 to f0; 1g givenby f#i(x1; : : : ; xk) def= f(x1; : : : ; xi�1; 1; xi+1; : : : ; xk) ^ f(x1; : : : ; xi�1; 0; xi+1; : : : ; xk):Let F 0 be the set of constraints de�ned as follows:F 0 def= F [ff#i j f 2 F ; i 2 [k]g:We will show that deciding Sat(F 0) is NP-hard, and that the problem of deciding Sat(F 0) reducesto �nding non-zero solutions to Max Ones(F).First observe that F 0 6� F 00, for any F 00 2 fF0;F1;F2CNF;FA;FWP;FWNg. In particular it is not0-valid, since F is not strongly 0-valid. Hence, once again applying Schaefer's result, we �nd thatdeciding Sat(F 0) is NP-hard.Given an instance of Sat(F 0) on n variables x with m constraints C, with C1; : : : ; Cm0 2 F andCm0+1; : : : ; Cm 2 F 0 n F , consider the instance of Max Ones(F) de�ned on variable setw1; : : : ; wk+1; y1; : : : ; yn; z1; : : : ; znwith the following constraints: 43

1. Let f be a non-1-valid constraint in F . We introduce the constraint f(w1; : : : ; wk).2. For every constraint Ci(vi1 ; : : : ; vik), 1 � i � m0, we introduce two constraints Ci(yi1 ; : : : ; yik)and Ci(zi1 ; : : : ; zik).3. For every constraint Ci(vi1 ; : : : ; vik�1), m0+1 � i � m, we introduce 2(n+k+1) constraints.For simplicity of notation, let Ci(vi1 ; : : : ; vik�1) == g(1; vi1 ; : : : ; vik�1) ^ g(0; vi1 ; : : : ; vik�1)where g 2 F . The 2(n+ k + 1) constraints are:� g(wj ; yi1 ; : : : ; yik�1), for 1 � j � k + 1.� g(zj ; yi1 ; : : : ; yik�1), for 1 � j � n.� g(wj ; zi1 ; : : : ; zik�1), for 1 � j � k + 1.� g(yj ; zi1 ; : : : ; zik�1), for 1 � j � n.We now show that the instance ofMaxOnes(F) created above has a non-zero satisfying assignmentif and only if the instance of Sat(F 0) has a satisfying assignment. Let s = s1s2:::sk be a satisfyingassignment for the non 1-valid constraint f chosen above. First if v1; : : : ; vn form a satisfyingassignment to the instance of Sat(F 0), then we claim that the assignment wj = sj for 1 � j �k, wk+1 = 1 and yj = zj = vj for 1 � j � n is a satisfying assignment to the instance ofMax Ones(F) which has at least one 1 (namely wk+1). Conversely, let some non-zero settingw1; : : : ; wk+1; y1; : : : ; yn; z1; : : : ; zn satisfy the instance of Max Ones(F). W.l.o.g. assume that oneof the variable w1; : : : ; wk+1; y1; : : : ; yn is a 1. Then we claim that the setting vj = zj , 1 � j � nsatis�es the instance of Sat(F 0). It is easy to see that the constraints Ci(vi1 ; : : : ; vik), 1 � i � m0,are satis�ed. Now consider a constraint Ci(vi1 ; : : : ; vik�1) = g(0; vi1 ; : : : ; vik�1)^ g(1; vi1 ; : : : ; vik�1).Since at least one of the variables in the set w1; : : : ; wk is a 0 and at least one of the variables inthe set w1; : : : ; wk+1; y1; : : : ; yn is 1, we know that both g(0; zi1 ; : : : ; zik�1) and g(1; zi1 ; : : : ; zik�1)are satis�ed and hence Ci(vi1 ; : : : ; vik�1) = 1. Thus the reduced instance of Max Ones(F) has anon-zero satisfying assignment if and only if the instance of Sat(F 0) is satis�able. 27 Classi�cation of Min CSP7.1 Preliminary resultsWe start with a simple equivalence between the complexity of the (Weighted) Min CSP problemfor a function family and the family of functions obtained by complementing the 0's and 1's in itsdomain. Recall that for a function f , we de�ned f� to be the function f�(x) = f(1� x), and fora function family F , we de�ned F� = ff� j f 2 Fg.Proposition 7.1 For every constraint family F , (Weighted) Min CSP(F) is AP-reducible to(Weighted) Min CSP(F�).Proof: The reduction substitutes every constraint f(x) from F with the constraint f�(x) from F�.A solution for the latter problem is converted into a solution for the former one by complementingthe value of each variable. The transformation preserves the cost of the solution. 2Proposition 7.2 If F is decidable then Weighted Min CSP(F) is in poly-APX and is AP-reducible to Min CSP(F). 44

Proof: Given an instance I of Weighted Min Ones(F) with constraints C1; : : : ; Cm sorted inorder of decreasing weight w1 � � � � � wm. Let j be the largest index such that the constraintsC1; : : : ; Cj are simultaneously satis�able. Notice that j is computable in polynomial time and anassignment a satisfying C1; : : : ; Cj is computable in polynomial time. Then the solution a is anm-approximate solution to I, since every solution must fail to satisfy at least one of the constraintsC1; : : : ; Cj+1 and thus have an objective of at least wj+1, while a achieves an objective of at mostPmi=j+1wi � mwj+1. Thus we conclude that Weighted Min CSP(F) is in poly-APX. Thesecond part of the proposition follows by Lemma 3.11. 27.2 Containment Results (Algorithms) for Min CSPWe now show the containment results described in Theorem 2.13. Most results described here aresimple containment results which follow easily from the notion of a \basis". The more interestingresult here is a constant factor approximation algorithm for IHS-B which is presented in Lemma 7.3.Recall that the classes contained in PO have already been dealt with in Section 5.1. We now moveon to APX-containment results.Lemma 7.3 If F � FIHS, then Weighted Min CSP(F) 2 APX.Proof: By Propositions 3.4 and 7.1 it su�ces to prove the lemma for the problem WeightedMin CSP(IHS-B), where IHS-B = fORkjk 2 [B]g [fOR2;1; Fg. We will show that for every B,Weighted Min CSP(IHS-B) is B + 1-approximable.Given an instance I of Weighted Min CSP(IHS-B) on variables x1; : : : ; xn with constraintsC1; : : : ; Cm with weights w1; : : : ; wm, we create a linear program on variables y1; : : : ; yn (corre-sponding to the Boolean variables x1; : : : ; xn) and variables z1; : : : ; zm (corresponding to the con-straints C1; : : : ; Cm). For every constraint Cj in the instance I we create a LP constraint using thefollowing transformation rules:Cj : xi1 W � � �W xik ; for k � B ! zj + yi1 + � � �+ yik � 1Cj : :xi1 W xi2 ! zj + (1� yi1) + yi2 � 1Cj : :xi1 ! zj + (1� yi1) � 1In addition we add the constraints 0 � zj; yi � 1 for every i; j. It may be veri�ed that any integersolution to the above LP corresponds to an assignment to the Min CSP problem with the variablezj set to 1 if the constraint Cj is not satis�ed. Thus the objective function for the LP is to minimizePj wjzj .Given any feasible solution vector y1; : : : ; yn; z1; : : : ; zm to the LP above, we show how to obtain a0=1 vector y001 ; : : : ; y00n; z001 ; : : : ; z00m that is also feasible such that Pj wjz00j � (B + 1)Pj wjzj .First we set y0i = minf1; (B+1)yig and z0j = minf1; (B+1)zjg. Observe that the vector y01; : : : ; y0n;z01; : : : ; z0m is also feasible and gives a solution of value at most (B+1)Pj wjzj . We now show howto get an integral solution whose value is at most Pj wjz0j � (B + 1)Pj wjzj. For this part we�rst set y00i = 1 if y0i = 1 and z00j = 1 if z0i = 1. Now we remove every constraint in the LP that ismade redundant. Notice in particular that every constraint of type (1) is now redundant (eitherz00j or one of the y00i 's has already been set to 1 and hence the constraint will be satis�ed by anyassignment to the remaining variables). We now observe that, on the remaining variables, the LPconstructed above reduces to the following 45

Minimize Pj wjzjSubject to yi2 � yi1 + zj � 0yi2 + zj � 1�yi1 + zj � 0with the y0i's and z0j 's forming a feasible solution to the above LP. Notice further that every zj occursin at most one constraint above. Thus the above LP represents s-t min cut problem, and thereforehas an optimal integral solution. We set z00j 's and y00i to such an integral optimal solution. Noticethat the solution thus obtained is integral and satis�es Pj wjz00j �Pj wjz0j � (B + 1)Pj wjzj . 2Lemma 7.4 For any family F � F2A, Weighted Min CSP(F) A-reduces to Min CSP(XOR).Proof: First we will argue that the family F 0 = fXOR; T; Fg perfectly implements F . By Propo-sition 3.4 it su�ces to implement the basic width-2 a�ne functions: namely, the functions XOR,XNOR, T and F . Every function except XNOR is already present in F 0 and by Proposition 3.3XOR perfectly implements XNOR.We conclude by observing that the family fXORg is neither 0-valid nor 1-valid and hence, byLemma 5.7, Weighted Min CSP(F 0) A-reduces to Weighted Min CSP(XOR). Finally theweights can be removed using Proposition 7.2. 2The following lemmas show reducibility toMin 2CNF Deletion, Nearest Codeword andMinHorn Deletion.Lemma 7.5 For any family F � F2CNF, the family fOR;NANDg p=) F and hence WeightedMin CSP(F)�A Min 2CNF Deletion.Proof: Again it su�ces to consider the basic constraints of F and this is some subset offOR2;0;OR2;1;OR2;2; T; Fg:The family fOR;NANDg contains the �rst and the third function. Since it contains a non 0-valid function, a non 1-valid function and a non C-closed function, it can also implement Tand F (by Lemma 4.6. This leaves the function OR2;1 which is implemented by the constraintsNAND(x; zAux) and OR(y; zAux) (on the variables x and y). The A-reduction now follows fromLemma 3.10. 2Lemma 7.6 For any family F � FA, the family fXOR3;XNOR3g perfectly implements everyfunction in F . and thus Weighted Min CSP(F) �A Nearest Codeword.Proof: It su�ces to show implementation of the basic a�ne constraints, namely, constraints ofthe form XNORp and XORq for every p; q � 1. We focus on the former type as the imple-mentation of the latter is analogous. First, we observe that the constraint XNOR(x1; x2) is per-fectly implemented by the constraints fXNOR3(x1; x2; z1);XNOR3(x1; x2; z2);XNOR3(x1; x2; z3);XNOR3(z1; z2; z3)g Next, the constraint F (x1) can be perfectly implemented by fXNOR(x1; z1);XNOR(x1; z2);XNOR(x1; z3);XNOR3(z1; z2; z3)g Finally, the constraint XNORp(x1; : : : ; xp) forany p > 3 can be implemented as follows. We introduce the following set of constraints usingthe auxiliary variables z1; z2; :::; zp�2 and the set of constraints:fXNOR3(x1; x2; z1);XNOR3(z1; x3; z2);XNOR3(z2; x4; z3); : : : ;XNOR3(zp�2; xp�1; xp)g 246

Lemma 7.7 For any family F � FWP, we have fOR3;1; T; Fg p=) F and thus Weighted MinCSP(F) �A Min Horn Deletion.Proof: As usual, it su�ces to perfectly implement every function in the basis fORk j k � 1g [fORk;1 j k � 1g. The constraint OR(x; y) is implemented by the constraints OR3;1(a; x; y) andT (a). OR2;1(x; y) is implemented by OR3;1(x; y; a) and F (a). The implementation of OR3(x; y; z)is OR(x; a) and OR3;1(a; y; z) (the constraint OR(x; a), in turn, may be implemented with thealready shown method). Thus every k-ary constraint, for k � 3 can be perfectly implemented bythe family fOR3;1; T; Fg). For k � 4, we use the textbook reduction from Sat to 3Sat (see e.g.[19, Page 49]) and we observe that when applied to k-ary weakly positive constraints it yields aperfect implementation using only 3-ary weakly positive constraints. 2To conclude this section we describe the trivial approximation algorithms forNearest CodewordandMin Horn Deletion. They follow easily from Proposition 7.2 and the fact that both familiesare decidable.Corollary 7.8 (to Proposition 7.2) Min Horn Deletion and Nearest Codeword are inpoly-APX.7.3 Hardness Results (Reductions) for Min CSPLemma 7.9 (APX-hardness) If F 6� F 0, for F 0 2 fF0;F1;F2Mg, and then Min CSP(F) isAPX-hard.Proof: The proof essentially follows from Lemma 5.8 in combination with Proposition 3.7. Weshow that for every F Max CSP(F) AP-reduces to Min CSP(F). Let I be an instance of MaxCSP(F) on n variables and m constraints. Let x0 be a solution satisfying m=k constraints thatcan be found in polynomial time (by Proposition 3.7). Let x00 be an r-approximate solution tothe same instance I viewed as an instance of Min CSP(F). If opt is the optimum solutionto the maximization problem I, then x00 satis�es at least m � r(m � opt) = ropt � (r � 1)mconstraints. Thus the better of the two solutions is an r0-approximate solution to the instance I ofMax CSP(F), where r0 � optmaxfm=k; ropt� (r � 1)mg� ((r � 1)k + 1)opt(r � 1)k(m=k) + ropt� (r � 1)m= 1 + (r � 1)kr� 1 + (r � 1)kThus Max CSP(F) AP-reduces to Min CSP(F). The lemma follows from the APX-hardness ofMax CSP(F) (Lemma 5.8). 2Lemma 7.10 (Min UnCut-hardness) If F 6� F 0, for F 0 2 fF0;F1;F2M;FIHSg, and F � F2Athen Min CSP(F) is Min UnCut-hard.Proof: Recall that Min UnCut-hardness requires that Min CSP(XOR) be A-reducible to MinCSP(F). 47

Let f 2 F . Consider (all) the minimally dependent sets of f . By Lemma 4.22 all such sets are ofcardinality at most 2. For a minimally dependent set fi; jg letfi;j(xi; xj) def= 9x1; : : : ; xi�1; xi+1; : : : ; xj�1; xj+1; : : : ; xk s.t. f(x1; : : : ; xk):By Lemma 4.17 all the fi;j's are a�ne and thus must be one of the functions T (xi), F (xi)XOR(xi; xj) or XNOR(xi; xj). Furthermore f can be expressed as the conjunction of fi;j's over allthe minimally dependent sets. It follows that there exist i, j such that fi;j(xi; xj) = XOR(xi; xj).(Otherwise f would be a conjunction of T , F and XNOR functions, all of which are in FIHS, andthus f would also be in FIHS.) Thus we conclude that f implements XOR and by Lemma 3.10 weconclude that Min CSP(XOR) is A-reducible to Min CSP(F) as desired. 2For the Min 2CNF Deletion-hardness proof, we need the following three simple lemmas.Lemma 7.11 If f is a 2CNF function which is not width-2 a�ne, then f p=) OR2;l for somel 2 f0; 1; 2g.Proof: For i; j 2 [k], letfi;j(xi; xj) def= 9x1; : : : ; xi�1; xi+1; : : : ; xj�1; xj+1; : : : ; xk s.t. f(x1; : : : ; xk):Recall that f can be expressed as the conjunction of fi:j's over all its maxterms and by Lemma 4.21,all the maxterms of f 's have at most 2 literals in them. Thus f(x1; : : : ; xk) can be expressed asVi;j2[k] fi;j(xi; xj). It follows that some fi;j must be one of the functions OR2;0, OR2;1 or OR2;2(all other functions on 2 variables are a�ne). Thus existentially quantifying over all variables otherthan xi and xj , f perfectly implements OR2;l for some l 2 f0; 1; 2g. 2Lemma 7.12 If f 2 F2CNF is not in IHS-B, then f p=) XOR.Proof: Once again we use the fact that f can be expressed as Vi;j2[k] fi;j(xi; xj), where fi;j is thefunction obtained from f by existentially quantifying over all variables other than xi and xj . Itfollows that one of the fi;j's must be NAND or XOR, since all the other functions on two variablesare in IHS-B+. In the latter case we are done, else we use the fact that f is not in IHS-B� toconclude that f perfectly implements OR or XOR. In the latter case again we are done else we usethe fact that f perfectly implements both the functions NAND and OR, and that NAND(x; y) andOR(x; y) perfectly implement XOR(x; y), to conclude that in this case too, the function f perfectlyimplements XOR. 2Lemma 7.13 If f is the function OR2;l for some l 2 f0; 1; 2g then ff;XORg p=) fOR;NANDg.Proof: The lemma follows from the fact that the function XOR essentially allows us to negateliterals. For example, given the function OR2;1(x; y) and XOR, the applications OR2;1(x; zAux) andXOR(zAux; y) perfectly and strictly implement the function NAND(x; y). Other implementationsare obtained similarly. 2Lemma 7.14 (Min 2CNF Deletion-hardness) If F 6� F 0, for F 0 2 fF0;F1;F2M;FIHS;F2Ag,and F � F2CNF then Min CSP(F) is Min 2CNF Deletion-hard.Proof: By Lemmas 7.11 and 7.12, F implements one of the functions OR2;l for l 2 f0; 1; 2g andthe function XOR. By Lemma 7.13 this su�ces to implement the family fNAND;ORg. Thus byLemma 3.10 we conclude that Min CSP(fOR;NANDg) A-reduces to Min CSP(F). 248

Lemma 7.15 If F � FA but F 6� F 0 for any F 0 2 fF0;F1;F2M;FIHS;F2Ag, then Min CSP(F)is Nearest Codeword-hard.Proof: By Lemma 4.18 we know that in this case F perfectly implements the constraint x1�� � ��xp = b for some p � 3 and some b 2 f0; 1g. Thus the family F [fT; Fg implements the functionsx�y�z = 0; x�y�z = 1. Thus Nearest Codeword =Min CSP(fx�y�z = 0; x�y�z = 1g isA-reducible toMin CSP(F [fF; Tg). Since F is neither 0-valid nor 1-valid, we can use Lemma 5.7to conclude that Min CSP(F) is Nearest Codeword-hard. 2The next lemma describes the best known hardness of approximation for the Nearest Codewordproblem. The result relies on an assumption stronger than NP 6= P.Lemma 7.16 ([2]) For every � > 0, Nearest Codeword is hard to approximate to within afactor of
(2log1�� n), unless NP has deterministic algorithms running in time nlogO(1) n.Proof: The required hardness of the nearest codeword problem is shown by Arora et al. [2]. Thenearest codeword problem, as de�ned in Arora et al., works with the following problem: Given am � n matrix A and a m-dimensional vector b, �nd an n-dimensional vector x which minimizesthe Hamming distance between Ax and b. Thus this problem can be expressed as a Min CSPproblem with m a�ne constraints over n-variables. The only technical point to be noted is thatthese constraints have unbounded arity. In order to get rid of such long constraints, we replace aconstraint of the form x1 � � � � � xl = 0 into l � 2 constraints x1 � x2 � z1 = 0, z1 � x3 � z2 = 0,etc. on auxiliary variables z1; : : : ; zl�3. (The same implementation was used in Lemma 7.6.) Thisincreases the number of constraints by a factor of at most n, but does not change the objectivefunction. Thus if M represents the number of constraints in the new instance of the problem, thenthe approximation hardness which is 2log1��m can be expressed as 2 12 log1��M which is still growingfaster than, say, 2log1�2�M . Since the result of [2] holds for every positive �, we still get the desiredresult claimed above. 2It remains to see the Min Horn Deletion-hard case. We will have to draw some non-trivialconsequences from the fact that a family is not IHS-B.Lemma 7.17 Assume F 6� FIHS and either F � FWP or F � FWN. Then F contains a functionthat is not C-closed.Proof: Let f be a C-closed function in FWP (FWN). We claim that all of f 's maxterms must beof the form T (xi), F (xi) or OR2;1(xi; xj). If not, then since f is C-closed, the maxterm involvingthe complementary literals is also a maxterm of f , but the complementary maxterm is not weaklypositive (and by Lemma 4.20 every maxterm of f must be weakly positive). But if all of f 'smaxterms are of the form T (xi), F (xi) or OR2;1(xi; xj), then f is in IHS-B. The lemma followsfrom the fact that F 6� FIHS. 2Lemma 7.18 If f is a weakly positive function not expressible as IHS-B+, then ff; T; Fg p=)OR3;1. If f is a weakly negative function not expressible as IHS-B-, then ff; T; Fg p=) OR3;2.Proof: Let f be a weakly positive function. By Lemma 4.20 all maxterms of f are weakly positive.Since f is not IHS-B+, f must have a maxterm of the form (:x1Wx2W � � �W xp), for some p � 3.We �rst show that ff; Fg can perfectly implement the function XNOR. To get the former, considerthe function f1(x1; x2) def= 9xp+1; : : : ; xk s.t. f(x1; x2; 0p�2; xp+1; : : : ; xk):49

The function f1 satis�es the properties f1(10) = 0, f1(00) = f1(11) = 1. Thus f1 is either thefunction XNOR or OR2;1. Notice that the constraints f(x1; : : : ; xk) and F (xi), i 2 f3; : : : ; pgperfectly implement f1. Thus ff; Fg perfectly implement either the function XNOR or OR2;1.In the former case, we have the claim and in the latter case we use the fact that the constraintsOR2;1(x; y) and OR2;1(y; x) perfectly implement XNOR(x; y).Next, we show how the family ff; T; F;XNORg (and hence ff; T; Fg) can perfectly implementOR2;1. To do so, we consider the functionf2(x1; x2; x3) def= 9xp+1; : : : ; xk s.t. f(x1; x2; x3; 0p�3; xp+1; : : : ; xk):Again ff; Fg implement f2 perfectly. By the de�nition of a maxterm, we �nd that f2 satis�esthe following properties: f2(100) = 0 and f2(000) = f2(110) = f2(101) = 1. Figure 3 gives thetruth table for f2, where the unknown values are denoted by A, B, C and D. If C = 0 then
BA

0 1

D

x2 x3
x1 00 01 11 10

C1

1

1

0Figure 3: Truth-table of the constraint f2restricting x1 = 1 gives the constraint XOR(x2; x3). But notice that XOR is not a weakly positivefunction and by Lemma 4.19 every function obtained by setting some of the variables in a weaklypositive function to constants and existentially quantifying over some other subset of variables is aweakly positive function. Thus C = 1. If D = 1, we implement the function OR2;1(x1; x2) by theconstraints f2(x1; x2; x3) and F (x3). Else we have D = 0, and the constraints f2(x1; x2; x3) andXNOR(x1; x3) implement the constraint OR2;1(x2; x1).Finally we conclude by observing that the constraints f2(x; z1; z2), OR2;1(z1; y) and OR2;1(z2; z),perfectly implement the constraint OR3;1(x; y; z).This completes the proof for the �rst part. The proof if f is weakly negative is similar. 2Lemma 7.19 (The Min Horn Deletion-hard Case) If F 6� F 0, for any F 0 2 fF0;F1;F2M;FIHS;F2A;F2CNFg, and either F � FWP or F � FWN, then Weighted Min CSP(F) is MinHorn Deletion-hard.Proof: From Lemma 7.18 we have that eitherMin CSP(fOR3;1; T; Fg orMin CSP(fOR3;2; T; Fgis A-reducible to Min CSP(F). Furthermore, since F is not 0-valid or 1-valid we have thatMin CSP(F [fT; Fg) is A-reducible to Min CSP(F). The lemma follows by an applicationof Proposition 7.1 which shows that the problems Min CSP(fOR3;1; T; Fg) A-reduces to MinCSP(fOR3;2; T; Fg). 2To show the hardness of Min Horn Deletion we de�ne a variant of the \label cover" problem.The original de�nition from [2] used a di�erent objective function. Our variant is similar to oneused by Amaldi and Kann [1] under the name Total Label Cover.De�nition 7.20 (Total Label Coverp)Instance: An instance is described by sets R, Q and A and by p functions (given by their tables)Q1; : : : ; Qp : R! Q and a function Acc : R� (A)p ! f0; 1g.50

Feasible solutions: A solution is a collection of p functions A1; : : : ; Ap : Q ! 2A. The so-lution is feasible if for every R 2 R, there exists a1 2 A1(Q1(R)); : : : ; ap 2 Ap(Qp(R)) such thatAcc(R; a1; : : : ; ap) = 1.Objective: The objective is to minimize Ppi=1Pq2Q jAi(q)j.In the appendix, we show how results from interactive proofs imply the hardness of approximatingMin Label-Cover to within a factor of 2log1�� n. We now use this result to show that hardnessof Min Horn Deletion.Lemma 7.21 For every � > 0, Min Horn Deletion is NP-hard to approximate to within afactor of 2log1�� n.Proof: Let p be such that Min Label-Coverp is NP-hard to approximate to within a factor of2log1�� n. (By Lemma A.3 such a p exists.) We now reduce Min Label-Coverp to Min HornDeletion.Let (Q1; : : : ; Qp;Acc) be an instance of Min Label-Coverp, where Qi : R ! Q and Acc :R� (A)p ! f0; 1g. For any R 2 R, we de�ne Acc(R) = f(a1; : : : ; ap) : V (R; a1; : : : ; ap) = 1g.We now describe the reduction. For any R 2 R, a1; : : : ; ap 2 A, we have a variable vR;a1;:::;apwhose intended meaning is the value of Acc(R; a1; : : : ; ap). Moreover, for every i 2 [p], Q 2 Q, anda 2 Ai we have a variable xi;Q;a, with the intended meaning being that its value is 1 if and onlyif a 2 Ai(Q). For any xi;Q;a we have the weight-one constraint :xi;q;a. The following constraints(each with weight (p � jQj � jAj)) enforce the variables to have their intended meaning. Due totheir weight, it is never convenient to contradict them.8R 2 R : W(a1;:::;ap)2Acc(R) vR;a1;:::;ap8R 2 R; a1; : : : ; ap 2 A; i 2 [p] : vR;a1;:::;ap) xi;Qi(R);aiThe constraints of the �rst kind can be perfectly implemented with OR3 and OR3;1 (see Lemma 7.7).It can be checked that this is an AP-reduction fromMin Label-Coverp toMin Horn Deletionand thus the lemma follows. 28 Min Ones Classi�cation8.1 Preliminaries: Min Ones vs. Min CSPWe start with the following easy relation between Min CSP and Min Ones problems. Recall thata family F is decidable if membership in Sat(F) is decidable in polynomial time.Proposition 8.1 For any decidable constraint family F , Weighted Min Ones(F) AP-reducesto Weighted Min CSP(F [fFg).Proof: Let I be an instance of Weighted Min Ones(F) over variables x1; : : : ; xn with weightsw1; : : : ; wn. Let wmax be the largest weight. We construct an instance I 0 of Weighted MinCSP(F [fFg) by leaving the constraints of I (each with weight nwmax), and adding a constraintF (xi) of weight wi for any i = 1; : : : ; n. Notice that whenever I is feasible, the optimum value forI equals the optimum value for I 0. Given a r-approximate solution to x to I 0, we check to see if I51

is feasible and if so �nd any feasible solution x0 and output solution (from among x and x0) thatachieves a lower objective. It is clear that the solution is at least an r-approximate solution if I isfeasible. 2Reducing a Min CSP problem to a Min Ones problem is slightly less general.Proposition 8.2 For any function f , let f 0 and f 00 denote the functions f 0(x; y) = OR(f(x); y)and f 00(x; y) = XOR(f(x); y) respectively. If constraint families F and F 0 are such that for everyf 2 F , f 0 or f 00 is in F 0, then Weighted Min CSP(F) AP-reduces to Weighted Min Ones(F 0).Proof: Given an instance I of Weighted Min CSP(F) we create an instance I 0 of WeightedMin Ones(F 0) as follows: For every constraint Cj we introduce an auxiliary variable yj . Thevariable takes the same weight as the constraint Cj in I. The original variables are retained withweight zero. If the constraint Cj(x)W yj is a constraint of F 0 we apply that constraint, else weapply the constraint Cj(x) � y = 1. Given an assignment to the variables of I, notice that bysetting yj = :Cj, we get a feasible solution to I 0 with the same objective value; conversely, afeasible solution to I 0 when projected onto the variables x gives a solution with the same value tothe objective function of I. This shows that the optimum value to I 0 equals that of I and that anr-approximate solution to I 0 projects to give an r-approximate solution to I. 2Finally the following easy proposition is invoked at a few places.Proposition 8.3 If F=)f , then F�=)f�.8.2 Containment Results for Min OnesLemma 8.4 (PO ccontainment) If F � F 0 for some F 0 2 fF0;FWN;F2Ag, then WeightedMin Ones(F) is solvable exactly in polynomial time.Proof: Follows from Lemma 6.5 and from the observation that for any family F , solvingWeightedMin Ones(F) to optimality reduces to solving Weighted Max Ones(F�) to optimality. 2Lemma 8.5 If F � F 0 for F 0 2 fF2CNF;FIHSg, then Weighted Min Ones(F) is in APX.Proof: For the case F � F2CNF, a 2-approximate algorithm is given by Hochbaum et al. [25].Consider now the case F � FIHS. From Proposition 3.4 it is su�cient to consider only basicIHS-B constraints. Since IHS-B� constraints are weakly negative, we will restrict to basic IHS-B+constraints. We use linear-programming relaxations and deterministic rounding. Let k be themaximum arity of a function in F , we will give a k-approximate algorithm. Let � = fC1; : : : ; Cmgbe an instance of Weighted Min Ones(F) over variable set X = fx1; : : : ; xng with weightsw1; : : : ; wn. The following is an integer linear programming formulation of �nding the minimumweight satisfying assignment for �.Minimize Pi wiyiSubject to yi1 + : : :+ yih � 1 8(xi1 W : : :W xih) 2 �yi1 � yi2 � 0 8(xi1 W:xi2) 2 �yi = 0 8:xi 2 �yi = 1 8xi 2 �yi 2 f0; 1g 8i 2 f1; : : : ; ng (SCB)
52

Consider now the linear programming relaxation obtained by relaxing the yi 2 f0; 1g constrainsinto 0 � yi � 1. We �rst �nd an optimum solution y� for the relaxation, and then we de�ne a 0/1solution by setting yi = 0 if y�i < 1=k, and yi = 1 if y�i � 1=k. It is easy to see that this roundingincreases the cost of the solution at most k times and that the obtained solution is feasible for(SCB). 2Lemma 8.6 For any F � FA,Weighted Min Ones(F) is A-reducible to Nearest Codeword.Proof: From Lemmas 7.6 and 3.9 we have that Weighted Min Ones(F) is A-reducible toWeighted Min Ones(fXNOR3;XOR3g). From Proposition 8.1, we have that Weighted MinOnes(F) A-reduces toWeighted Min CSP(fXOR3;XNOR3; Fg). Notice further that the familyfXNOR3;XOR3g can implement F (by Lemma 4.6). Thus we have that we have that WeightedMin Ones(F) A-reduces to Weighted Min CSP(fXOR3;XNOR3; g) = Nearest Codeword.2Lemma 8.7 For any F � FWP, Weighted Min Ones(F) AP-reduces to Min Horn Deletion.Proof: Follows from the following sequence of assertions:(1) fOR3;1; T; Fg perfectly implements F (Lemma 7.7).(2) WeightedMin Ones(F) AP-reduces toWeightedMin Ones(fOR3;1; T; Fg) (Lemma 3.9).(3) Weighted Min Ones(fOR3;1; T; Fg) AP-reduces to Weighted Min CSP(fOR3;1; T; Fg)= Min Horn Deletion (Proposition 8.1). 2Proposition 8.8 If F is decidable then Min Ones(F) is in poly-APX.Proof: The proposition follows immediately from the fact that in this case it is easy to determineif the input instance is feasible and if so, if the optimum value is zero. If so we output the 0 as thesolution, else we output any feasible solution. Since the objective is at least 1 and the solution hasvalue at most n, this is an n-approximate solution. 28.3 Hardness Results for Min OnesWe start by considering the hardest problems �rst. The case when F is not decidable is immediate.We move to the case where F may be 1-valid, but not in any other of Schaefer's easy classes.Lemma 8.9 If F 6� F 0 for any F 0 2 fF0;F2CNF;FA;FWP;FWNg, then Weighted Min Ones(F)is hard to approximate to within any factor, and Min Ones(F) is poly-APX-hard.Proof: We �rst show how to handle the weighted case. The hardness for the unweighted casewill follow easily. Consider a function f 2 F which is not weakly positive. For such an f , thereexists assignments a and b such that f(a) = 1 and f(b) = 0 and a is zero in every coordinatewhere b is zero. (Such a input pair exists for every non-monotone function f and every monotonefunction is also weakly positive.) Now let f 0 be the constraint obtained from f by restricting it toinputs where b is one, and setting all other inputs to zero. Then f 0 is a satis�able function whichis not 1-valid. We can now apply Schaefer's theorem [42] to conclude that Sat(F [ff 0g) is hard todecide. We now reduce an instance of deciding Sat(F [ff 0g) to approximating Weighted MinCSP(F). Given an instance I of Sat(F [ff 0g) we create an instance which has some auxiliary53

variables W1; : : : ;Wk which are all supposed to be zero. This in enforced by giving them very largeweights. We now replace every occurrence of the constraint f 0 in I by the constraint f on thecorresponding variables with the Wi's in place which were set to zero in f to obtain f 0. It is clearthat if a \small" weight solution exists to the resulting Weighted Min CSP problem, then I issatis�able, else it is not. Thus we conclude it is NP-hard to approximate Weighted Min CSP towithin any bounded factors.For the unweighted case, it su�ces to observe that by using polynomially bounded weights above,we get a poly-APX hardness. Further one can get rid of weights entirely by replicating variables.2We may now restrict our attention to function families F that are 2CNF or a�ne or weakly positiveor weakly negative or 0-valid. In particular, by the containment results shown in the previoussection, in all such cases the problem Weighted Min Ones(F) is in poly-APX. We now give aweight-removing lemma which allow us to focus on showing the hardness of the weighted problems.Lemma 8.10 If F � F 0 for some F 0 2 fF2CNF;FA;FWP;FWN;F0g, then Weighted MinOnes(F) AP-reduces to Min Ones(F).Proof: By Lemma 3.11 it su�ces to verify that Weighted Min Ones(F) is in poly-APXin all cases. If F is weakly negative or 0-valid, then this follows from Lemma 8.4. If F is2CNF then this follows from Lemma 8.5. If F is a�ne or weakly positive, then it A-reducesto Nearest Codeword or MinHornDeletion respectively which are in poly-APX by Corol-lary 7.8. 2Before dealing with the remaining cases, we prove one more lemma that is useful in dealing withMin Ones problems.Lemma 8.11 For every constraint family F such that F [fFg is decidable, Weighted MinOnes(F [fFg) AP-reduces to Weighted Min Ones(F).Proof: Given an instance I of Weighted Min Ones(F [fFg) on n variables x1; : : : ; xn withweights w1; : : : ; wn we create an instance I 0 ofWeightedMin Ones(F), on the variables x1; : : : ; xnusing all the constraints of I that are from F ; and for every variable variable xi such that F (xi) isa constraint of I, we increase the weight of the variable xi to nwmax where wmax is the maximumof the weights w1; : : : ; wn. As in Lemma 8.1 we observe that if I is feasible, then the optima for Iand I 0 are equal and given an r-approximate solution to I 0 we can �nd an r-approximate solutionto I. Furthermore, since F [fFg is decidable, we can decide whether or not I is feasible. 2We now deal with the a�ne problems.Lemma 8.12 If F is a�ne but not width-2 a�ne or 0-valid then Min Ones(XOR3) is AP-reducible to Weighted Min Ones(F).Proof: Notice that since F is a�ne, so is F�. Furthermore, F� is neither width-2 a�ne nor1-valid. Thus by Lemma 6.10 F� perfectly implements either the family fXNOR3g or the familyfXOR;XNOR4g. Thus, by applying Proposition 8.3, we get that F implements either XOR3 or thefamily fXOR;XNOR4g. In the former case, we are done (by Lemma 3.9). In the latter case, noticethat the constraints XNOR4(x1; x2; x3; x5) and XOR(x4; x5) perfectly implement the constraintXOR4(x1; x2; x3; x5). Thus we conclude that Weighted Min Ones(XOR4) is AP-reducible toWeighted Min Ones(F). Finally we use Lemma 8.11 to conclude that the family WeightedMin Ones(F)(fXORgj0) is AP-reducible to Weighted Min Ones(F). The lemma follows fromthe fact that XOR3 2 fXOR4gj0. 254

Lemma 8.13 If F is a�ne but not width-2 a�ne or 0-valid then, for every � > 0, Min Ones(F)is Nearest Codeword-hard and hard to approximate to within a factor of
(2log� n).Proof: Follows from the following sequence of reductions:Nearest Codeword= Weighted Min CSP(fXOR3;XNOR3g)�AP Weighted Min Ones(fXOR4;XNOR4g) (using Proposition 8.2)�AP Weighted Min Ones(fXOR3;XORg) (see below)�AP Weighted Min Ones(XOR3) (using Lemma 8.11)�AP Weighted Min Ones(F) (using Lemmas 8.12 and 3.9)�AP Min Ones(F) (using Lemma 8.10.)The second reduction above follows by combining Lemma 3.9 with the observation that the familyfXOR3;XORg perfectly implement the functions XOR4 and XNOR4 as shown next. The con-straints XOR3(u; v; w) and XOR3(w; x; y) perfectly implement the constraint XNOR4(u; v; x; y);the constraints XOR4(u; v; w; x) and XOR(w; y) perfectly implement XOR4(u; v; x; y). The hard-ness of approximation of Nearest CodewordLemma 7.16. 2Lemma 8.14 If F is weakly positive and not IHS-B (nor 0-valid) then Min Ones(F) is MinHorn Deletion-hard, and hence hard to approximate within 2log1�� n for any � > 0.Proof: Follows from the following sequence of reductions:Min Horn Deletion= Weighted Min CSP(fOR3;1; T; Fg�AP Weighted Min Ones(fOR4;1;OR2;OR2;1g) (Using Proposition 8.2.)�AP Weighted Min Ones(fOR3;1; T; Fg) (Using Lemmas 7.7 and 3.9.)�AP Weighted Min Ones(F [fT; Fg) (Using Lemmas 7.18 and 3.9.)�AP Weighted Min Ones(F [fFg) (Using Lemma 4.6 to perfectly implement T .)�AP Weighted Min Ones(F) (Using Lemma 8.11.)�AP Min Ones(F) (Using Lemma 8.10.)The hardness of approximation follows from Lemma 7.21. 2Lemma 8.15 Min Ones(OR) is APX-hard.Proof: We reduceVertex Cover toMin Ones(OR). Given a graphG on n vertices, we constructan instance of Min Ones(OR) on n variables x1; : : : ; xn. For every edge between vertex i and j ofG, we create a constraint OR(xi; xj). We notice that there is a one-to-one correspondence betweenan assignment to the variables and vertex covers in G (with variables assigned 1 correspondingto vertices in the cover) and the minimum vertex cover minimizes the sum of the variables. Thelemma follows from the fact that Vertex Cover is APX-hard [39, 3]. 2Lemma 8.16 (APX-hardness) If F 6� F 0 for any F 0 2 fF0;FWN;F2Ag, then Min Ones(F) isAPX-hard. 55

Proof: We mimic the proof of Lemma 6.14. We assume that F is not a�ne { the case where Fis a�ne is shown to be Nearest Codeword-hard in Lemma 8.13. By Lemma 8.10 it su�ces toshow that Weighted Min Ones(F) is APX-hard; and by Lemma 8.11 it su�ces to show thatWeighted Min Ones(F [fFg) is APX-hard. Since F [fFg is not 0-valid or 1-valid or C-closedit implements every function in F [fT; Fg and thus every function in Fj0;1. We now shift focuson to the family (Fj0;1)�. Furthermore (Fj0;1)� is neither weakly positive nor a�ne and thus byLemmas 6.20 and 6.21 it implements NAND. Using Proposition 8.3 we get that F0;1 implementsOR. Using Lemma 8.15 we get that Weighted Min Ones(OR) is APX-hard. Thus we concludethat Weighted Min Ones(F) is APX-hard. 2AcknowledgmentsWe thank Mihir Bellare, Nadia Creignou, Oded Goldreich, and Jean-Pierre Seifert for useful dis-cussions. We thank an anonymous referee for pointing out numerous errors in a previous versionof this paper.References[1] E. Amaldi and V. Kann. The complexity and approximability of �nding maximum feasiblesubsystems of linear relations. Theoretical Computer Science, 147(1-2):181{210, 1995.[2] S. Arora, L. Babai, J. Stern and Z. Sweedyk. The hardness of approximate optima inlattices, codes, and systems of linear equations. Journal of Computer and System Sciences,54(2):317{331, 1997.[3] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof veri�cation andhardness of approximation problems. Journal of the ACM, 45(3):501{555, 1998.[4] S. Arora and S. Safra. Probabilistic checking of proofs: A new characterization of NP.Journal of the ACM, 45(1):70{122, 1998.[5] S. Arora and M. Sudan. Improved low degree testing and its applications. Proceedings ofthe Twenty-Ninth Annual ACM Symposium on Theory of Computing, pages 485{495, El Paso,Texas, 4-6 May 1997.[6] T. Asano, T. Ono, and T. Hirata. Approximation algorithms for the maximum satis�a-bility problem. In Rolf G. Karlsson and Andrzej Lingas, editors, SWAT '96, 5th ScandinavianWorkshop on Algorithm Theory, volume 1097 of Lecture Notes in Computer Science, pages100{111, Reykjavik, Iceland, 3-5 July 1996. Springer.[7] M. Bellare, S. Goldwasser, C. Lund and A. Russell. E�cient probabilistically check-able proofs and applications to approximation. Proceedings of the Twenty-Fifth Annual ACMSymposium on Theory of Computing, pages 294{304, San Diego, California, 16-18 May 1993.[8] M. Bellare, O. Goldreich, and M. Sudan. Free bits, PCPs, and nonapproximability {towards tight results. SIAM Journal on Computing, 27(3):804-915, June 1998.56

[9] R. Boppana and M. Hald�orsson. Approximating maximum independent sets by excludingsubgraphs. BIT, 32(2), 180{196, 1992.[10] D.P. Bovet and P. Crescenzi. Introduction to the Theory of Complexity. Prentice Hall,New York, 1994.[11] N. Creignou. A Dichotomy Theorem for MaximumGeneralized Satis�ability Problems. Jour-nal of Computer and System Sciences, 51(3): 511{522, 1995.[12] N. Creignou and M. Hermann. Complexity of generalized satis�ability counting problems.Information and Computation, 125(1): 1{12, 25 February 1996.[13] P. Crescenzi, V. Kann, R. Silvestri, and L. Trevisan. Structure in approximationclasses. SIAM Journal on Computing, 28(5):1759-1782, 1999.[14] P. Crescenzi and A. Panconesi. Completeness in approximation classes. Information andComputation, 93(2):241-262, August 1991.[15] P. Crescenzi, R. Silvestri, and L. Trevisan. To weight or not to weight: Where is thequestion? In Proceedings of the 4th IEEE Israel Symposium on Theory of Computing andSystems, pages 68{77, 1996. Full version to appear in Information and Computation.[16] G. Even, J. Naor, B. Schieber, and M. Sudan. Approximating minimum feedback setsand multicuts in directed graphs. Algorithmica, 20(2): 151{174, February 1998.[17] T. Feder and M. Vardi. The Computational Structure of Monotone Monadic SNP andConstraint Satisfaction: A Study through Datalog and Group Theory. SIAM Journal on Com-puting, 28(1): 57{104, February 1999.[18] U. Feige, S. Goldwasser, L. Lov�asz, S. Safra, and M. Szegedy. Interactive proofsand the hardness of approximating cliques. Journal of the ACM, 43(2): 268{292, 1996.[19] M.R. Garey and D.S. Johnson. Computers and Intractability: a Guide to the Theory ofNP-Completeness. W. H. Freeman, San Francisco, 1979.[20] N. Garg, V.V. Vazirani, and M. Yannakakis. Approximate max-
ow min-(multi)cuttheorems and their applications. SIAM Journal on Computing, 25(2):235{251, 1996.[21] M. Goemans and D. Williamson. New 3/4-approximation algorithms for MAX SAT. SIAMJournal on Discrete Mathematics, 7(4):656{666, 1994.[22] M. Goemans and D. Williamson. Improved approximation algorithms for maximum cutand satis�ability problems using semide�nite programming. Journal of the ACM, 42(6):1115{1145, 1995.[23] J. H�astad. Clique is hard to approximate within n1��. 37th Annual Symposium on Founda-tions of Computer Science, pages 627{636, Burlington, Vermont, 14-16 October 1996. IEEE.[24] J. H�astad. Some optimal inapproximability results. Proceedings of the Twenty-Ninth AnnualACM Symposium on Theory of Computing, pages 1{10, El Paso, Texas, 4-6 May 1997.[25] D.S. Hochbaum, N. Megiddo, J. Naor, and A. Tamir. Tight bounds and 2-approximation algorithms for integer programs with two variables per inequality. MathematicalProgramming, 62:69{83, 1993. 57

[26] H. B. Hunt III, M. V. Marathe, and R. E. Stearns.Generalized CNF satis�ability prob-lems and non-e�cient approximability (preliminary version). Proceedings of the Ninth AnnualStructure in Complexity Theory Conference, pages 356{366, Amsterdam, The Netherlands, 28June-1 July 1994. IEEE Computer Society Press.[27] H. Karloff and U. Zwick. A 7/8-approximation algorithm for MAX 3SAT? 38th AnnualSymposium on Foundations of Computer Science, pages 406{415, Miami Beach, Florida, 20-22October 1997. IEEE.[28] S. Khanna and R. Motwani. Towards a Syntactic Characterization of PTAS. Proceedingsof the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, pages 329{337,Philadelphia, Pennsylvania, 22-24 May 1996.[29] S. Khanna, R. Motwani, M. Sudan, and U. Vazirani. On syntactic versus computationalviews of approximability. SIAM Journal on Computing, 28(1): 164{191, February 1999.[30] S. Khanna, M. Sudan and L. Trevisan. Constraint satisfaction: The approximabilityof minimization problems. Proceedings, Twelfth Annual IEEE Conference on ComputationalComplexity, pages 282{296, Ulm, Germany, 24-27 June 1997. IEEE Computer Society Press.[31] S. Khanna, M. Sudan and D. P. Williamson. A complete classi�cation of the approx-imability of maximization problems derived from Boolean constraint satisfaction. Proceedingsof the Twenty-Ninth Annual ACM Symposium on Theory of Computing, pages 11{20, El Paso,Texas, 4-6 May 1997.[32] P. Klein, A. Agarwal, R. Ravi and S. Rao. Approximation through multicommodity
ow. 31st Annual Symposium on Foundations of Computer Science, volume II, pages 726{737,St. Louis, Missouri, 22-24 October 1990. IEEE.[33] P.N. Klein, S.A. Plotkin, S. Rao, and �E. Tardos. Approximation algorithms for Steinerand directed multicuts. Journal of Algorithms, 22(2):241{269, February 1997.[34] P. G. Kolaitis and M. N. Thakur. Approximation properties of NP minimization classes.Journal of Computer and System Sciences, 50(3):391-411, June 1995.[35] R. Ladner. On the structure of polynomial time reducibility. Journal of the ACM, 22(1):155{171, 1975.[36] C. Lund and M. Yannakakis. On the hardness of approximating minimization problems.Journal of the ACM, 41(5):960{981, September 1994.[37] C. Lund and M. Yannakakis. The approximation of maximum subgraph problems. InSvante Carlsson Andrzej Lingas, Rolf G. Karlsson, editor, Automata, Languages and Pro-gramming, 20th International Colloquium, volume 700 of Lecture Notes in Computer Science,pages 40{51, Lund, Sweden, 5-9 July 1993. Springer-Verlag.[38] R. Panigrahy and S. Vishwanathan. An O(log* n) approximation algorithm for the asym-metric p-center problem. Journal of Algorithms, 27(2):259{268, May 1998.[39] C. Papadimitriou and M. Yannakakis. Optimization, approximation and complexityclasses. Journal of Computer and System Sciences, 43(3):425{440, December 1991.58

[40] E. Petrank. The hardness of approximation: Gap location. Computational Complexity,4(2):133-157, 1994.[41] R. Raz and S. Safra. A sub-constant error-probability low-degree test, and a sub-constanterror-probability PCP characterization of NP. Proceedings of the Twenty-Ninth Annual ACMSymposium on Theory of Computing, pages 475{484, El Paso, Texas, 4-6 May 1997.[42] T. Schaefer. The complexity of satis�ability problems Tenth Annual ACM Symposium onTheory of Computing, pages 216{226, San Diego, California, 1-3 May 1978.[43] L. Trevisan, G. Sorkin, M. Sudan and D. Williamson. Gadgets, approximation, andlinear programming. SIAM Journal on Computing, 29(6): 2074{2097, December 2000.[44] M. Yannakakis. On the approximation of maximum satis�ability. Journal of Algorithms,17(3):475-502, November 1994.[45] D. Zuckerman. On unapproximable versions of NP-complete problems. SIAM Journal onComputing, 25(6):1293{1304, December 1996.A Hardness of Total Label CoverDe�nition A.1 L 2MIPc;s[p; r; q; a] if there exists a polynomial time bounded probabilistic oraclemachine V (veri�er) such that on input x 2 f0; 1gn, the veri�er picks a random string R 2 f0; 1gr(n)and generates p queries Q1 = Q1(x;R); : : : ; Qp = Qp(x;R) 2 f0; 1gq(n) and sends query Qi to prover�i and receives from prover �i an answer Ai = Ai(Qi) 2 f0; 1ga(n) and then computes a verdictAcc(x;R;A1; : : : ; Ap) 2 f0; 1g with the following properties:Completeness: x 2 L) 9A1(�); : : : ; Ap(�) such that ER[Acc(x;R;A1; : : : ; Ap)] � c(n).Soundness: x 62 L) 8A1(�); : : : ; Ap(�), ER[Acc(x;R;A1; : : : ; Ap)] < s(n).We say V is uniform if for every x and i, there exists dx;i, s.t. for every query Qi 2 f0; 1gq(n),jfR 2 f0; 1gr(n)jQi(R) = Qigj = dx;i. We say L is in uniform-MIPc;s[p; r; q; a] if there exists auniform veri�er V which places L in MIPc;s[p; r; q; a].We use a recent result of Raz and Safra [41] (see also [5] for an alternate proof) which provides astrong uniform-MIP containment result for NP.Lemma A.2 ([41, 5]) For every � > 0, there exist constants p; c1; c2 and c3 such thatNP � uniform-MIP1;2� log1�� n [p; c1 logn; c2 log n; c3 logn]:Remark:(1) The result shown by [41, 5] actually has smaller answer sizes, but this turns out to be irrelevantto our application below, so we don't mention their stronger result.(2) The uniformity property is not mentioned explicitly in the above papers. However it can beveri�ed from their proofs that this property does hold for the veri�er constructed there.59

The following reduction is essentially from [36, 7, 2].Lemma A.3 For every � > 0, there exists a p = p� such that Total Label Coverp is NP-hard toapproximate to within a factor of 2log1�� n.Proof: We use Lemma A.2. Let L be an NP-complete language and for � > 0, let p; c1; c2; c3 besuch that L 2 uniform-MIP1;2� log1��=2 n [p; c1 log n; c2 logn; c3 log n] and let V be the veri�er thatshows this containment. Given an instance x 2 f0; 1gn of L, we create an instance of Total LabelCoverp as follows: Set Qi(R) to be the query generated by V to prover �i on input x and randomstring R. For every R; a1; : : : ; ap Acc(R; a1; : : : ; ap) is 1 if V accepts the answers a1; : : : ; ap onrandom string R.Let Q = f0; 1gc2 log n denote the set of all possible queries and let R denote the space of all possiblerandom strings (i.e., R = f0; 1gc1 log n.) If x 2 L, it is clear that there exists a feasible solutionA1; : : : ; Ap such that for every query q 2 Q, and for every i 2 f1; : : : ; pg, it is the case thatjAi(q)j = 1. Thus the value of the optimum solution is at most p � jQj.Now we claim for a given x, if the mapped instance of Total Label Cover has a solution of sizeKpjQjthen there exist provers �1; : : : ;�p such that V accepts with probability at least K�1=p=(p+1)p+1.To see this let �i(q) be a random element of Ai(q). If ni;q denotes the cardinality of Ai(q), thenthe probability that V accepts the provers response is given by1jRj XR2RYi 1=ni;Qi(R):De�ne Ri to be fR 2 Rjni;Qi(R) � (p + 1)Kg. By Markov's inequality and the uniformity of theprotocol jRij=jRj � 1=(p+ 1).Let R0 = R�R1 �R2 � � � � � Rp. Then jR0j=jRj � 1=(p+ 1).We go back to bounding the probability above:1jRj XR2RYi 1=ni;Qi(R) � 1jRj XR2R0Yi 1=ni;Qi(R)� 1jRj XR2R0Yi 1=ni;Qi(R)� 1jRj XR2R0(1=((p + 1)K)p)� K�1=p=(p+ 1)p+1:It follows that if K = K(n) is less than 2log1�� n, then for su�ciently large n, K�1=p=(p + 1)p+1 isgreater than 2log1��=2 n. Thus a K-approximation algorithm for Total Label Coverp can be used todecide L. Thus Total Label Coverp is NP-hard to approximate to within a factor of 2log1�� n. 260

B Schematic Representations of the Classi�cation TheoremsB.1 The Max CSP Classi�cationF+0-valid or 1-valid or2-monotone? -Yes In PO (Lemmas 5.1 and 5.2)
?NoAPX-complete(Proposition 5.5 andLemma 5.8)

61

B.2 The Max Ones Classi�cationF+1-valid or weakly positive orwidth-2 a�ne? -Yes In PO (Lemma 6.5)
?NoA�ne? -Yes APX-complete (Lemmas 6.6 and6.13)?NoStrongly 0-valid or weaklynegative or 2CNF? -Yes poly-APX-complete (Proposition 6.7and Lemma 6.14)?No0-valid? -Yes Not approximable (Lemma 6.23)?NoFeasibility is NP-hard [42]

62

B.3 The Min CSP Classi�cationF+0-valid or 1-valid or2-monotone? -Yes In PO (Lemmas 5.1 and 5.2)
?NoIHS-B? -Yes APX-complete (Lemmas 7.3 and 7.9)?NoWidth-2 a�ne? -Yes Min UnCut-complete (Lemmas 7.4and 7.10)?No2CNF? -Yes Min 2CNF Deletion-complete(Lemmas 7.5 and 7.14)?NoA�ne? -Yes Nearest Codeword-complete(Lemmas 7.6 and 7.15)?NoHorn? -Yes Min Horn Deletion-complete(Lemmas 7.7 and 7.19)?NoNot approximable [42]

63

B.4 The Min Ones Classi�cationF+0-valid or weakly negative orwidth-2 a�ne? -Yes in PO (Lemma 8.4)
?No2CNF or IHS? -Yes APX-complete (Lemmas 8.5 and8.16)?NoA�ne? -Yes Nearest Codeword-complete(Lemmas 8.6 and 8.12)?NoWeakly positive? -Yes Min Horn Deletion-complete(Lemmas 8.7 and 8.14)?No1-valid? -Yes poly-APX-complete (Proposition 8.8and Lemma 8.9)?NoFeasibility is NP-hard [42]

64

