
Abstract
In this paper, a unique approach for road extraction utiliz-
ing pixel spectral information for classification and image
segmentation-derived object features was developed. In this
approach, road extraction was performed in two steps. In
the first step, support vector machine (SVM) was employed
merely to classify the image into two groups of categories: a
road group and a non-road group. For this classification, sup-
port vector machine (SVM) achieved higher accuracy than
Gaussian maximum likelihood (GML). In the second step, the
road group image was segmented into geometrically homoge-
neous objects using a region growing technique based on a
similarity criterion, with higher weighting on shape factors
over spectral criteria. A simple thresholding on the shape
index and density features derived from these objects was per-
formed to extract road features, which were further processed
by thinning and vectorization to obtain road centerlines. The
experiment showed the proposed approach worked well with
images comprised by both rural and urban area features.

Introduction
Road information not only plays a central role in the trans-
portation application, but also is an important data layer in
Geographical Information Systems (GIS). Automated road ex-
traction can save time and labor to a great degree in updating
a road spatial database. Various road extraction approaches
have been developed. Xiong (2001) grouped these methods
into five categories: ridge finding, heuristic reasoning, dy-
namic programming, statistical inference, and map matching.
In ridge finding, edge operators are performed on images to
derive edge magnitude and direction, followed by a threshold-
ing and thinning process to obtain ridge pixels (Nevatia and
Babu, 1980; Treash and Amaratunga, 2000). Alternatively, gra-
dient direction profile analysis can be performed to generate
edge pixels (Gong and Wang, 1997). Ridge points are linked
to produce the road segments. Heuristic reasoning is a
knowledge-based method in which a series of pre-set rules on
road characteristics such as shape index, the distance between
image primitives, fragments trend, and contextual information
are employed to detect and connect image primitives or anti-
parallel linear edges to road segments (McKeown, et al., 1985;
Zhu and Yeh, 1986). In the dynamic programming method,
roads are modeled with a set of mathematical equations on
the derivatives of gray values and select characteristics of
roads, such as smooth curves, homogeneous surface, narrow
linear features, and relatively constant width. Dynamic pro-
gramming is employed to solve the optimization problem
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(Gruen and Li, 1995). In the statistical inference method, lin-
ear features are modeled as a Markov point process or a geo-
metric-stochastic model on the road width, direction, inten-
sity and background intensity, and maximum a posteriori
probability is used to estimate the road network (Barzohar and
Cooper, 1996; Stoica, et al., 2000). In a map matching method,
existing road maps are used as starting point to update the
road network. In general, two steps are involved: first, a map-
image matching algorithm is employed to match the roads on
the map to the image; second, new roads are searched based
on the assumption that they are connected to existing roads
(Stilla, 1995). Xiong’s classification on road extraction meth-
ods is only a generalization, and some other methods may
combine different techniques. Active contour models, known
as snakes, are also used in road extraction (Gruen and Li,
1997; Agouris, et al., 2001). A snake is a spline with mini-
mized energy driven by internal spline and external image
forces (Park, et al., 2001). In general, external image forces are
represented by the gradient magnitude of an image, which at-
tracts snakes to contours with strong edges. Internal forces are
given by a continuity term and a curvature term expressed by
the differences of adjacent snaxels, which are vertex nodes of
the snake, with weights coming from training data, which
control the shape and smoothness of the snakes. Through the
optimization, the snake evolves from its initial position to de-
sired position with minimized energy. Park and Kim (2001)
used template matching to extract road segments in which a
road template was formed around the road seed, and an adap-
tive least squares matching algorithm was used to detect a
target window with similar transformation. This method
assumes a small difference in brightness values between tem-
plate and target windows. Most of these road extraction
methods require some road seeds as starting points, which
are in general provided by users, and road segments evolve
under a certain model. Sometimes control points are needed
to correct the evolution of roads (Zhao, et al., 2002). Further,
these methods use black-and-white aerial photographs or the
panchromatic band of high-resolution satellite images and
therefore the geometric characteristics of roads alone play a
critical role. Boggess (1993) used a classification method in-
corporating texture and neural networks to extract roads by
classifying roads and other features from Landsat TM imagery,
but obtained numerous false-inclusions. Roberts, et al. (2001)
developed a spectral mixture library using hyperspectral im-
ages to extract roads, but the use of spectral information alone
does not capture the spatial properties of these curvilinear
features.
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In the research reported in this paper, a unique hybrid
pixel-object approach was developed using both classification
and segmentation to extract road features from Ikonos im-
agery. Ikonos was launched in September 1999 and is oper-
ated by Space Imaging Inc. Ikonos sensors produce four
multispectral bands with 4 meter spatial resolution and one
panchromatic band with 1 meter resolution. It collects 11-bit
data with a wealth of contrast information, which, in combi-
nation with geometric characteristics of roads, are particularly
useful for road extraction.

Two steps were involved in the proposed approach. First,
the image was classified into two groups of features using sup-
port vector machine: a roads group including actual roads and
features which have spectral reflectance similar to roads such
as some urban areas, and a non-roads group which includes
all other features which have spectral values different from
roads. Second, the roads-group was masked and partitioned
into objects using a region growing image segmentation tech-
nique. In this algorithm, a similarity criterion with a higher
ratio of shape over spectral information was used. Finally,
roads were extracted using the morphological characteristics
of the segments.

This paper is arranged as follows: first, support vector
machines (SVM) used for classification are described; second,
image segmentation used for shape extraction is introduced;
third, an experiment showing the proposed approach to ex-
tract roads using Ikonos image is presented; and lastly, con-
cluding remarks are offered.

Support Vector Machines
Support vector machine (SVM) is a relatively recent classifica-
tion technique developed by Vapnik and his group at AT&T
BELL Laboratories (Vapnik, 1995; Cortes and Vapnik, 1995).
The origin of SVM is the bias-variance tradeoff and over-fitting
problem, and it attempts to achieve the best generalization
performance by balancing the relationship between the accu-
racy attained on the training data and the capacity of the ma-
chine. It has been applied in fields such as handwritten digit
recognition, object recognition, face detection in images, and
text categorization (Burges and Schölkopf, 1997; Blanz, et al.,
1996; Osuna, et al., 1997; Joachims, 1997). It has been shown
that the performance of SVM is as good as or significantly
better than that of other competing methods in most cases
(Burges, 1998).

The main idea of SVM is to separate the classes with a hy-
perplane surface so as to maximize the margin among them.
SVM is an appropriate implementation of the Structural Risk
Minimization principle (Vapnik, 1982) that minimizes the
generalization error of a decision function. Based on Vapnik
(1995), Osuna, et al. (1997) and Burges (1998), SVM is de-
scribed in three cases as follows: linearly separable, non-
separable, and non-linearly separable.

Linearly Separable Case
In this case, because the data set is linearly separable, a hyper-
plane, defined by w � x � b � 0, where x is a point on the hy-
perplane, w is a n-dimensional vector perpendicular to the
hyperplane, and b is the distance of the closest point on the
hyperplane to the origin, can be found such that

w � xi � b � 1, for yi ��1, and (1)

w � xi � b � �1, for yi � �1. (2)

These two inequalities can be combined into:

yi (w � xi � b) � 1 � 0 �i. (3)

The problem SVM attempts to solve is to find a hyperplane
w � x � b � 0 with minimum �w�2, subject to constraints (3). It
is equivalent to finding the hyperplane with the largest mar-

gin, which is defined as the distance between the closest vec-
tors for two classes. Figure 1 shows the geometrical interpreta-
tion. The problem can be formulated as follows:

Minimize
w,b

w2
subject to yi (w � xi � b) � 1 � 0

i � 1, . . . , l. (4)

Using the technique of Lagrange Multipliers, this opti-
mization problem can be formulated into the following qua-
dratic programming problem:

Maximize �
l

i�1
�i � �

l

i�1
�

l

i�1
�i �j yi yj xi � xj

subject to �
l

i�1 
�i yi � 0, �i � 0 i � 1, . . . , l. (5)

The solution of SVM is given by:

w ��
l

i�1 
�i yi xi, b � yi � w � xi . (6)

The decision function for the classification is given by:

f(x) � sign (w � x � b) � sign ��
l

i�1
yi �i (x � xi ) � b�. (7)

In the solution of this problem, those vectors for which
�i � 0 are called support vectors, and all other training vectors
have �i � 0. It is often found that the number of support vec-
tors is dependent on the intrinsic dimensionality for classifi-
cation in the training points, not on the dimensionality of the
feature vectors; therefore, one does not need to worry about
the curse of dimensionality in the support vector machine
method (Gualtieri and Cromp, 1998).

Non-Separable Case
For the non-separable case, there does not exist a separating
hyperplane, so a set of slack variables �i, i � 1, . . . , l is intro-
duced in the constraints (3), which changes the objective
function to:

w2 � C ��
l

i�1
�i�

k
, (8)

where C and k are parameters that define the cost of con-
straints violation. Again, using the technique of Lagrange
Multipliers, the optimization problem becomes:

Maximize �
l

i�1
�i � �

l

i�1
�

l

j�1
�i �j yi yj xi � xj
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Figure 1. Geometric interpretation of SVM: (a) shows a hyper-
plane with largest margin; (b) shows a hyperplane with a
small margin.

(a) (b)
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subject to �
l

i�1
�i yi � 0, 0 � �i  � C, i � 1, . . . , l. (9)

Non-Linear Case
For the non-linear case, noticing the training data appear in
the optimization problem in the form of dot products, one first
maps the feature vectors to a higher dimensional Euclidean
space by a mapping:

� : Rd � H . (10)

Then, we can get the optimization problem in the space H
replacing xi � xj by �(xi) � �(xj). Suppose there exists a kernel
function K such that:

K(xi, xj) � �(xi) � �(xj), (11)

then, we will only need to compute K(xi, xj) in the training
process. The decision function then becomes:

f (x) � sign ��
l

i�1
yi �i K(x, xi) � b�. (12)

Commonly-used kernel functions are (Osuna, et al., 1997):

Gaussian Radial Basis Function (RBF):

K(x, xi) � exp(� � x �xi �
2), (13)

Polynomial with degree d: K(x, xi) � (1 � x � xi)
d, and (14)

Multi-Layer Perceptron (MLP) with values of �:

K(x, xi) � tanh(x � xi � �). (15)

In the field of remote sensing, Hermes, et al. (1999) used
SVM for land use classification with Landsat TM imagery and
found that it outperforms maximum likelihood and neural
network classifiers. Gualtieri and Cromp (1998) applied SVM
to AVIRIS data for hyperspectral image classification and ob-
tained an accuracy of 96 percent for a four-class problem and
87 percent for a 16-class problem. As previously described,
the first step of the proposed approach for road extraction was
to classify the whole scene into two group features: road and
non-road. SVM was initially designed for binary classification,
which obtained good generalization performance through
maximizing the margin between two classes. Because each
group feature was composed of mixed spectral signatures, the
decision boundary should be nonlinear. SVM treats the nonlin-
ear problem by mapping the feature space to a higher dimen-
sional space. Therefore, SVM should be good choice for this
first step classification task.

Shape Extraction from Image Segmentation
Classification alone using spectral values cannot extract roads
because many other land cover types such as urban areas, es-
pecially structures and paved parking areas, have spectral re-
flectance similar to roads. This entails us to explore the geo-
metric characteristics of the road class. In general, roads are
lengthy, narrow, small change-of-curvature objects relative to
other land cover features. After the classification is performed,
the image is classified into two groups: roads and non-roads.
Inside the roads group, shape information can be used to dis-
tinguish roads from similar features such as some urban fea-
tures (called false-roads in this research). Image segmentation
provides a powerful tool to extract features such as texture
and shape from objects. Image segmentation is a process of
partitioning the image into non-intersecting homogeneous re-
gions on neighboring pixels, and no pairs of contiguous

regions are homogeneous on the current standard. In the liter-
ature review of image segmentation, most techniques can be
grouped into three categories: clustering, edge detection and
region growing (Haralick and Shairo, 1985; Pal and Pal, 1993).
Region growing segmentation starts with an initial partition
and regions grow based on certain similarity criteria or opti-
mization of an objective function. This technique seems to be
promising because it exploits spatial information, and it
should be appropriate for linear object extraction because we
could include shape information in the similarity criteria S of
region growing, such that: 

S � r1 � Sspec � (1 � r1) � Sshape, (16)

where Sspec represents the similarity of spectral values, Sshape
represents the similarity for shape features, and r1 is a ratio
coefficient that controls the weights of spectral and shape sim-
ilarity. Because inside the roads group, all features have simi-
lar spectral values, the similarity for shape should have a high
weight.

In this research, eCognition® was employed to perform
image segmentation to derive objects and shape features. In
eCogniton®, image segmentation is performed using a region
growing technique based on the similarity criteria of both spec-
tral and shape information and a hierarchical image segmenta-
tion is implemented which enables the user to select a satisfy-
ing scale of segmentation based on the level of information
needed. In eCognition®, shape similarity Sshape is expressed by
the smoothness similarity Ssmooth and compactness similarity
Scompact and a ratio parameter r2 (between 0 and 1) controlling
the weight of Ssmooth over Sshape, and is formulated as follows:

Sshape � r2 � Ssmooth � (1 � r2) � Scompact (17)

Smoothness is described by the shape index SI, which is
defined as follows:

SI � , (18)

where P represents the border length of the image object, and
A is the area of the object.

Compactness is expressed by the density (DEN) which is
the area of image object divided by its radius approximated by
the variability in X and Y coordinate space of all of the ob-
ject’s pixels in the segmented image, and it is implemented as
follows:

DEN � (19)

where N is the number of pixels inside the object, Var(X) rep-
resents the variance of x-coordinates of all pixels in the object,
and Var(Y) represents the variance of y-coordinates.

After the image is segmented, the shape index and den-
sity can be derived from resulting objects. Road features
should have large values of the shape index, because they
have large perimeter and small area, and should have small
values of density, because of their small radius. Therefore,
roads can be extracted through simple thresholding.

Experiment and Results
Study Area
A subset (700 pixels by 700 pixels, 72�21'34" to 72�23'35" W
longitude, 41�39'02" to 41�40'33" N latitude) of an Ikonos
image located in Connecticut was selected as the study area,
chosen to include both rural and urban features in order to en-
sure that the proposed approach works well for both natural

�N�
			
1 � �Var (X�) � Va�r(Y)�

P	
4 � �A�
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and anthropogenic land covers. The selected Ikonos image
was acquired on 25 April 2000 and contained four multispec-
tral bands: blue (0.45–0.52 �m), green (0.52–0.60 �m), red
(0.63–0.69 �m), near IR (0.76–0.90 �m) with 4 meter spatial
resolution, and one panchromatic band (0.45–0.90 �m) with
1 meter resolution. The image was cloud-free. Figure 2 is a
grayscale rendition of Band 2.

Classification
The purpose of classification was to exclude those features
that have spectral values different from those of roads. The
whole image was classified into two categories (actually two
groups): roads and non-roads. The roads group included those
features that had spectral reflectance similar to roads, but
when training areas for roads group were selected, only pixels
representative of roads were selected, because false-roads fea-
tures would be classified into the roads group during the clas-
sification process if they had spectral values similar to roads.
This approach would classify as few pixels into the roads
group as possible. All other features that had spectral values
different from roads would be grouped into the non-roads
feature class. Representative areas for these non-road features
were selected as training areas. The selection of training areas
was done in the NAUTILUS Image Processing System (NIPS) de-
veloped by the authors, which provided a multipoint tool for
selecting roads points and a polygon tool for selecting other
features.

The training data were used to train the support vector ma-
chine and the resulting model was used to classify the whole
image into two features, shown in Figure 3. For the implemen-
tation of SVM, the software package LIBSVM by Chang and Lin
(2001) was adapted. Gaussian RBF was used as the kernel func-
tion, and parameter C in Equation 8 was set as 10. To evaluate
the classification performance of support vector machine,
Gaussian maximum likelihood classifier (GMLC) was also used
to classify the image. That result is shown in Figure 4. When
training areas were selected, 40 percent of the sample data was
reserved as test data for evaluating the classification accuracy.

Tables 1 and 2 show the classification matrix for SVM and GMLC,
respectively.

A comparison of Table 1 with Table 2, and Figure 3 with
Figure 4, reveals that SVM produced better results than GMLC.
This indicated that the distribution for the feature groups, es-
pecially the non-roads class, does not satisfy the normal con-
dition assumed by GMLC, which contributes to the poor perfor-
mance of GMLC.
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Figure 2. 25 April 2000 Ikonos Band 2 image of the study
area for road extraction. Space Imaging data provided cour-
tesy of NASA Scientific Data Purchase Program.

Figure 3. Classification result from SVM. White areas repre-
sent roads group features and black areas represent non-
road features.

Figure 4. Classification result from GMLC. White areas repre-
sent roads group features and black areas represent non-
road features.
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Road Extraction by Shape Information
After classification, the non-road group features were ex-
cluded and a road mask image was obtained for road group
features. The road mask image was segmented in the second
step. Because there was no significant spectral difference
among the road group features, the spectral similarity for
image segmentation was less important, and consequently,
shape information should weigh more heavily in the similar-
ity criterion. The ratio for shape similarity was set at 0.9, and
a scale of 15 reached a satisfactory segmentation for roads
through preliminary experiments. 

After the road mask image was segmented into objects,
the shape index and density were derived using Equations 18
and 19. Examination of the results revealed the shape index
for road objects was greater than or equal to 2.3, and density
for road objects was less than or equal to 1.1. Finally, a simple
thresholding was performed to extract road features, shown in
Figure 5. 

Road Centerline Extraction and Validation
To this point in the experimental design, roads had been ex-
tracted in raster format. In GIS applications, road centerlines
in vector format are often more useful. To extract the center-
line, two subsequent processes, thinning and vectorization,
were performed on the road features through classification
and segmentation.

The thinning process employed here was derived from
the field of morphological image processing (Castleman,
1996). It was implemented in a two-pass erosion process that
is simply defined as a process of eliminating one pixel from
the boundary of one object in a binary image. In the first pass,
pixels satisfying the condition of a normal erosion were
marked as candidates for removal. In the second pass, candi-
dates that would break the connectivity of the object were re-
tained while those that would not were removed (Pratt, 1991).
Through the thinning process, all road segments became one-
pixel wide. This process was performed in MATLAB®.

After one-pixel wide road segments were derived, a com-
mon vectorization procedure could be performed to convert
road segments from raster to vector format. This process was

done using the module of “Grid to Line Coverage” in
Arc/Info®. The result is shown in Figure 6.

To validate the proposed approach, the extracted roads
were compared to manually digitized roads in the study area
developed by Connecticut Department of Transportation.
They are both shown in Figure 7 with Ikonos imagery as a
backdrop. It can be seen that most roads were extracted cor-
rectly including some detailed roads, constructed after the
date of the earlier Connecticut DOT aerial photography and
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TABLE 1. SUPPORT VECTOR MACHINE (SVM) CLASSIFICATION MATRIX

Reference

User’s
Classification Roads Non-roads Accuracy (%)

Roads 94 0 100
Non-roads 2 88 98

Producer’s 98 100
Accuracy (%)

Overall classification accuracy � 99%

TABLE 2. GAUSSIAN MAXIMUM LIKELIHOOD (GML) CLASSIFICATION MATRIX

Reference

User’s
Classification Roads Non-roads Accuracy (%)

Roads 95 7 93
Non-roads 1 81 99

Producer’s 99 92
Accuracy (%)

Overall classification accuracy � 96%
Figure 5. Road features after thresholding. Non-road fea-
tures have been eliminated.

Figure 6. Road centerlines in vector format. Derived from
data portrayed in Figure 5.
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Figure 7. Validation for road extraction. Roads extracted
with the methods describe in this paper are displayed in
black, and GIS-derived digitized roads are in white and dou-
ble width. Mis-registration between road layers is due to
source material and original projection, yet serve to empha-
size differences between the two road layers.

before the more recent Ikonos imagery, that were not digi-
tized. Some road segments, obscured by shadows or over-
hanging trees, however, were sometimes omitted using the
Ikonos imagery and the techniques described here. These

disjunctions could be solved by manual editing or by a snap-
ping program according to the distance and direction of sepa-
rated two road segments. 

To validate further the proposed approach, we selected
the second experiment area with a subset of 600 pixels by
600 pixels of another Ikonos image located in Connecticut and
acquired on 17 May 2000, shown in Figure 8. Through the
same steps as the first experiment, i.e., classification, segmen-
tation, thinning, and vectorization, the validation results
shown in Figure 9 exhibit similar performance with those of
the first experiment. 

Conclusion and Discussion
In this research, a unique hybrid pixel-object approach for
road extraction based on classification and segmentation was
developed. It is easy to operate yet efficient in road extraction
as revealed through the experiment. In the classification stage
of extracting roads and non-roads groups, the support vector
machine proved superior to the Gaussian maximum likeli-
hood classifier in classifying mixed features that may not con-
form to a normal distribution. Binary classification makes it
easy to select the training areas, because the user does not
need to know what features are in the non-road group cate-
gory. Region growing image segmentation with the similarity
criteria emphasizing shape information works well for road
objects in the road mask image. In eCogntion®, there is no
mask function when the segmentation is performed, but a
mask function would expedite the process of segmentation
and remove the possible effect of background. In eCognition®,
diagonally connected objects seem not to be recognized as one
object, but for the task of road extraction, they should be. This
would help extract very narrow roads. A simple thresholding

Figure 8. 17 May 2000 Ikonos Band 2 image of second
study area, independent test for road extraction. Space
Imaging data provided courtesy of NASA Scientific Data
Purchase Program.

Figure 9. Validation for road extraction of experiment 2.
Roads extracted with the methods describe in this paper
are displayed in black, and GIS-derived digitized roads are in
white and double width. Mis-registration between road lay-
ers is due to source material and original projection, yet
serve to emphasize differences between the two road
layers.
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on shape measurements can extract almost all road features. A
thinning process in morphological binary image processing
and a common vectorization procedure can be performed on
the road features derived using the proposed method to ex-
tract road centerline. Further work is suggested to address the
development of algorithms or heuristics to fill in road gaps
caused by shadow or obscuring land features.
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