
Abstract
Building boundary is necessary for the real estate industry,
flood management, and homeland security applications.
The extraction of building boundary is also a crucial and
difficult step towards generating city models. This study
presents an approach to the tracing and regularization of
building boundary from raw lidar point clouds. The process
consists of a sequence of four steps: separate building and
non-building lidar points; segment lidar points that belong
to the same building; trace building boundary points; and
regularize the boundary. For separation, a slope based 1D
bi-directional filter is used. The segmentation step is a
region-growing approach. By modifying a convex hull
formation algorithm, the building boundary points are
traced and connected to form an approximate boundary.
In the final step, all boundary points are included in a
hierarchical least squares solution with perpendicularity
constraints to determine a regularized rectilinear boundary.
Our tests conclude that the uncertainty of regularized
building boundary tends to be linearly proportional to the
lidar point spacing. It is shown that the regularization
precision is at 18 percent to 21 percent of the lidar point
spacing, and the maximum offset of the determined build-
ing boundary from the original lidar points is about the
same as the lidar point spacing. Limitation of lidar data
resolution and errors in previous filtering processes may
cause artefacts in the final regularized building boundary.
This paper presents the mathematical and algorithmic
formulations along with stepwise illustrations. Results from
Baltimore city, Toronto city, and Purdue University campus
are evaluated.

Introduction
Airborne lidar (light detection and ranging) technology
provides georeferenced 3D dense point measurements over a
reflective surface on the ground (Baltsavias, 1999; Wehr and
Lohr, 1999). This paper discusses extracting building
boundary outlines from raw lidar datasets over urban areas.
As a prerequisite for many building extraction approaches,
the ground points need to be separated from non-ground
points, for which a number of methods have been devel-
oped. Representatives include early work by Lindenberger
(1993) and Kilian et al. (1996) based on mathematical
morphology; by Kraus and Pfeifer (1998) using least squares
surface fitting; and by Axelsson (1999) and Vosselman
(2000) using slope-based filters. Some recent effort focuses
on the performance comparison and evaluation as reported

Building Boundary Tracing and Regularization
from Airborne Lidar Point Clouds

Aparajithan Sampath and Jie Shan

in Sithole and Vosselman (2004), Zhang et al. (2004), Shan
and Sampath (2005), and Zhang and Whitman (2005), to
which the readers may refer for methodological details and a
comprehensive review on this topic.

Many attempts have been made on building extraction
from lidar points or a digital surface model (DSM) generated
from stereo images. Weidner and Förstner (1995), Brunn
and Weidner (1997), and Ameri (2000) use the difference
between DSM and digital terrain model (DTM) to determine
the building outlines. Haala et al. (1998), Brenner (2000),
and Vosselman and Dijkman (2001) use building plan
maps, and Sohn and Dowman (2003) use Ikonos imagery to
facilitate the detection and reconstruction of buildings from
lidar points. Masaharu and Hasegawa (2000) segment
building polygons from neighboring non-building regions,
and use boundary-tracing methods to segment individual
buildings. Wang and Schenk (2000) generate the triangu-
lated irregular network (TIN) model from the lidar point
clouds. Triangles are then grouped based on the orientation
and position to form larger planar segments. The intersec-
tion of such planar segments results in building corners or
edges. Al-Harthy and Bethel (2002) determine the building
footprints by subtracting DTM from DSM obtained by
initially filtering out the non-ground points. The building
polygon outline is then obtained by using a rotating
template to determine the angle of highest cross-correla-
tion, which suggests the dominant directions of the build-
ing. Morgan and Habib (2002) first determine the break-
lines in a raw lidar dataset and form the TIN model.
Through a connected component analysis on the TIN model
individual buildings are segmented. The final building
boundary is formed by performing the Hough transform
to the centers of the edge triangles in the TIN model.
Rottensteiner and Briese (2002) use hierarchical robust
interpolation (Kraus and Pfeifer, 1998) with a skew error
distribution function to separate building and ground
points. After applying morphological filters to the candi-
date building points, an initial building mask is obtained,
which is then used to determine polyhedral building
patches with a curvature-based segmentation process. The
final individual building regions are found by a connected
component analysis. For a comprehensive literature review,
readers may refer to Vosselman et al. (2004) who present
several techniques for segmenting aerial and terrestrial
lidar point clouds into various classes and extracting
different types of surfaces. To a similar level of extent,
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Brenner (2005) reviews various building reconstruction
techniques from images and lidar data.

Building boundary determination is a crucial and
difficult (Rottensteiner and Briese, 2002) step in the
building reconstruction task. As addressed earlier, some
studies use available building plan maps (Haala et al.,
1998; Brenner, 2000; Vosselman and Dijkman, 2001), which
help reduce the searching space for the estimation of the
parameters of adjoining planar patches. Others, e.g., Wang
and Schenk (2000), Morgan and Habib (2002) use a TIN
model to determine the building boundary from lidar data.
Still others (Suveg and Vosselman, 2004; Fu and Shan,
2004) use a number of rectangles to approximate and
reconstruct the building boundary. In addition, Weidner
(1997), Sohn and Dowman (2003), Suveg and Vosselman
(2004) discuss the principle of the minimum description
length to determine and regularize the building boundary.
As a matter of fact, determining the boundary of a point
cloud is theoretically not a trivial problem. The fundamen-
tal reason for this is the presence of concavity in the
building boundary. Researchers in computational geometry
have studied various approaches to attack this problem.
Jarvis (1977) modifies the convex hull formation algorithm
to limit the searching space to a certain neighborhood.
However, this approach is not very successful in the
experiments because the distribution of the used points is
far from even. Edelsbrunner et al. (1983) propose a so-
called � shape determination algorithm, where the shape of
a point set is defined as the intersection of all closed discs

with radii . This method is computationally complex,

and its performance depends on the parameter �. A more
recent paper by Mandal and Murthy (1997) suggests some
techniques for estimating the best � to determine the
boundary.

This paper is focused on building boundary tracing
and regularization from raw lidar points. It consists of the
following four sequential steps. First, the raw lidar points
are separated to ground and non-ground two classes. Next,
a moving window is used to segment individual buildings
from the non-ground dataset. In the third step, a modified
convex hull formation algorithm is applied to find the
building boundary points and connect them to form the
boundary. The final step is to regularize the building
boundary by determining its parametric equations and
enforcing the rectilinear constraints. A hierarchical least
squares solution is developed to ensure the robustness and
precision of the regularization results. Comparing with
existing studies, the presented approach directly works
with raw lidar points and any potential loss of information
due to the gridding or rasterization process is avoided. The
modified convex hull formation approach provides reliable
and satisfactory building boundary without complicated
shape analysis. The uneven spacing of lidar points in
along and across scan directions is properly considered 
to achieve the best performance for building boundary
tracing. By using a hierarchical least squares solution
strategy, the final regularized building outline is precisely
determined with quantitative quality measures and is
robust to the results of the initially traced building bound-
ary. The proposed approach is presented and evaluated
both visually and numerically with three airborne lidar
datasets.

Building Segmentation
As a prerequisite for building segmentation, the raw lidar
data needs to be separated into two classes, ground and
non-ground. This is accomplished by using the sloped

1
a

based 1D bi-directional filter proposed by Shan and Sam-
path (2005). In brief, the filter detects large slopes and
records the local elevation along the lidar profile. Lidar
points between a large positive slope and large negative
slope will be labeled as non-ground points. To ensure the
robustness, the filtering process is performed twice in
opposite directions along the lidar profile. It is reported that
97 percent of the lidar points can be correctly separated
with this approach.

In a dataset that contains only non-ground points, the
task of building segmentation is to find the different
clusters of points that belong to an individual building.
That is, each lidar point is mapped to one building. The
raw lidar points usually have a rather uniformly dense
spatial distribution. In the building dataset, however, only
the clusters of points that belong to one building will still
have the same spatial distribution. This uniform distribu-
tion of points within one cluster and non-uniform distribu-
tion of points among clusters is used to map each point to
an individual building. The solution is based on a region-
growing (moving window) algorithm by successively
collecting points of the same building. This algorithm
consists of the following steps:

1. Start from a building point P0.
2. Center a window at the point and collect all the points 

A � {P1, P2, . . . Pk} that fall within the window.
3. Move the window center to P1.
4. Collect the points that fall within the window and store

them in a temporary array, T � {tP1, tP2, . . . , tPr}.
5. Move the window center to point P2. Append the newly

collected points to the array T, and in this process make
sure that no two points are identical.

6. Continue the process till the window has been placed over
all the points in the set A.

7. Merge points in A and points in T and store them in B,
i.e., B � {B � A � T}. Initially B is a null set.

8. Replace points in A with points in T such that the newly
populated set A is equivalent to {T A}.

9. Go back to Step 3.
10. Stop when no new point is added to the set B.

At the end of the above steps, the set B has the points
that belong to the same building. The set of points in B are
removed from the original dataset and the algorithm
continues to work on the rest of the points until all the
points are mapped to a building. The window described in
Step 2 is oriented along and perpendicular to the scan
directions. The dimensions of the window are set as
slightly larger than two times the point spacing, which is
usually different in the across and along scan directions
(Shan and Sampath, 2005). Segmented clusters containing
less than a certain number of points are rejected as non-
building points since they are likely vehicle or trees that
are not removed from the filtering process. It should be
noted that the input to this segmentation process is unstruc-
tured 3D building points. Also, the number of searches
progressively reduces as more points are assigned to a
building. Figure 1 shows a portion of the segmentation
results, where different segmented buildings are shown
with symbols of different sizes and shapes.

Boundary Tracing
Once all points of a building are found, the next step is to
determine the building boundary. As pointed out earlier,
many studies have been done to solve such shape determi-
nation problem for a given set of points. An early method
proposed by Jarvis (1977) shows that a modified convex
hull algorithm can be used to determine the shape of a set

�
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of points. The modification is to restrict the searching
space of a convex hull formation algorithm to a neighbor-
hood. The study shows that the approach can yield satis-
factory results if the point distribution is consistent
throughout the point set. Since only the points within one
building are considered, such consistence can be assumed
and thus this idea is adopted and modified to trace the
building boundary.

For a given set of points the convex hull is the small-
est convex boundary containing all the points (de Berg
et al., 2000); it can be understood as a “rubber-band”
wrapped around the “outside” points. As shown in Figure 2,

the left-most point (P) is initially selected. Next, line
segments are formed between P and the rest of the points
in the given set. These points are then sorted in increasing
order of the clockwise angle from the vertical axis. The
point that corresponds to the least angle is chosen as the
next point (A). In the second step, line segments are
formed between the point A and all other points. Then, the
points are sorted in order of their angles between the line
segment AP (the previously formed convex edge) and all
other line segments. As can be seen in the second row of
Figure 2, the point B corresponds to this minimum angle
and is therefore chosen. The algorithm continues till it
reaches the start point P. For more discussion on the
convex hull problem, the reader is referred to de Berg et al.
(2000).

Figure 3 illustrates the principle steps of the modified
convex hull approach to tracing the boundary for a set of
points. As shown in the first row of Figure 3, the algorithm
starts with selecting the left-most point (shown by an empty
circle) as the boundary point. All points (shown by gray
circles) within a neighborhood (shown by a larger circle) are
selected. The convex hull algorithm is then used to deter-
mine the next point on the boundary by only considering
the points within this neighborhood. After that, the algo-
rithm will proceed to this newly determined point and
repeat the same procedure until the boundary is determined
(fourth row in Figure 3). As can be expected, the perform-
ance of the algorithm depends on the neighborhood used
in the tracing process. Since the point spacing in along
and across scan directions is usually different (Shan and
Sampath, 2005), a rectangular neighborhood is used, whose
dimensions are slightly larger than twice of the point
spacing in the along and across scan directions. In this way,
only immediate adjacent points at about one ground-spacing
are considered for the convex hull algorithm, such that a
compact boundary is found.
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Figure 1. Segmented buildings labeled with symbols of
different sizes and shapes.

Figure 2. Convex hull formation for a set of points.
Figure 3. Modified convex hull algorithm for boundary
tracing.
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Based on the above discussion, the proposed boundary
tracing approach is designed as follows. Let B be the set of
points belonging to one building.

1. Start from point P that is necessarily a boundary point (e.g.,
the left-most point).

2. Select a set of points Pts � {P1, P2, . . . , Pm} B such that
all points in Pts lie within the neighborhood of the point P.

3. Using the convex hull approach described above, determine the
next boundary point Pk from Pk Pts. The point is chosen such
that the line segment does not intersect any existing line
segments.

PPk

�

�

4. Choose Pk as the next current point and repeat Steps 2, 3,
and 4.

5. Continue the above steps until the point Pk corresponds with
the point P selected in Step 1.

Demonstrated in Figure 4 are three building boundaries
obtained with this approach. The first row presents the
building points and the second row shows the generated
building convex hull. Clearly, it does not follow all the
boundary points, nor does it represent the building shape
correctly. The third row is the boundary traced by the
proposed approach where the searching space of the
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Figure 4. Principle steps of building boundary determination: (a) building points, (b)
convex hull, (c) traced boundary, and (d) regularized boundary.
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convex hull algorithm is restricted to a rectangular neigh-
borhood.

Boundary Regularization
Since lidar points are randomly collected, the traced
boundary (Figure 4, third row) can not be directly used as
the final building boundary due to its irregular shape and
possible artifacts introduced in the previous steps. Further
refinement must be carried out before they can be input into
a geospatial database. It is noticed that many buildings have
mutually perpendicular directions. We can then use the
traced boundary points to determine these directions and fit
parametric lines representing the building boundary. For
this regularization process, we propose the following
hierarchical least squares solution.

As can be seen in Figure 4, longer edges of a building
are more likely to represent its dominant directions and
form the basic frame of the building boundary. The first step
in regularization is therefore to extract the points that lie on
longer line segments. This is done by sequentially following
the boundary points and looking for positions where the
slopes of two consecutive edges are significantly different.
Points on consecutive edges with similar slopes are grouped
to one line segment. In this way, we form a set of line
segments {l1, l2, . . . ln}, from which longer (�10 meters in
this study) line segments {L1, L2, . . . Lk} are then selected.

As an initial processing step, each of the selected long
line segments is modeled by equation Aix � Biy � 1 � 0.

For each line segment (Ai, Bi), the slope is 

obtained. Line segments that are parallel within a given
tolerance are sorted into one group. In this way, the long
line segments of a building boundary are grouped into two
“horizontal” and “vertical” groups based on their slopes.

The next step is to determine the least squares solution
to these long line segments, with the constraints that the
slopes of these segments are either equal (parallel lines), or
their product is equal to �1 (perpendicular lines) depending
on whether they belong to the same category or different
categories. The solutions consist of a set of parameters that
describe each of the long line segments {L1, L2, . . . Lk}.
Specifically, we have the following formulation for the
regularization problem. For each line segment, the following
line equation is formed:

(1)

where n is the number of line segments, and mi is the
number of points on the line segment i. Let Mu and Mv be
the slopes that define the two mutually perpendicular
directions of a building. For each line segment we have

(2)

where Ms is the slope for the “vertical” or “horizontal” line
segment groups, and it takes either Mu or Mv. Finally, we
have the following orthogonal constraint equation:

(3)

The least squares criterion is used to solve the above
equation system of Equation 1, 2 and 3. The unknowns
include all the line segment parameters Ai and Bi (i � 1,2, .
. . ,n), and the dominant slopes Mu and Mv.

Mu Mv � 1 � 0.

Ai

Bi
 � Ms � 0       i � 1,2,....,n

Aixj � Biyj � 1 � 0          i � 1,2...n; 
j � j(i) � 1,2,....mi

Mi � �
Ai

Bi

The last step is to include all (long and short) line
segments into the least squares solution. The slopes, Mu
and Mv obtained from the previous step are used as
approximate values. The slope parameters for these long
line segments are given high weights in the regularization
adjustment. Therefore, no explicit constraint (Equation 3)
is enforced in this final step. In this way, the line seg-
ments of a building can be properly constrained to its
dominant directions and have the flexibility to fit to the
lidar boundary points.

Summarizing the above sequence of steps, the proposed
solution is a hierarchical regularization approach. Initially,
relatively long line segments are extracted from the building
boundary and their least squares solution is determined,
assuming that these long line segments lie on two mutually
perpendicular directions. In the next step, all the line
segments are included to determine the least squares
solution, using the slopes of the long line segments as
weighted approximations. Figure 4 (fourth row) presents the
determined parametric line segments for the building
boundaries.

Evaluation
Lidar data over Baltimore city (Maryland), Toronto city
(Canada), and Purdue University campus (West Lafayette,
Indiana) is used to evaluate the proposed approach. The
data was collected with Optech™ lidar equipment, and the
first returns are used for the study. The point spacing for
the Baltimore data is 2.5 m and 4.0 m, respectively, for the
along scan direction and the across scan direction. For the
Toronto and Purdue campus datasets, the values are
respectively 1.0 m and 1.5 m, and 1.0 m and 1.2 m. The
point density, calculated by using 50,000 points divided
by their area of extension, is 1.3 points per 10 square
meters for Baltimore, 7.2 points per 10 square meters for
Toronto, and 9.5 points per 10 square meters for the
Purdue campus. Because of the non-uniform point spacing
in different directions, we suggest to use the reciprocal of
the point density as the (average) point spacing. Thus, the
point spacing for Baltimore, Toronto, and Purdue are
respectively 2.7 m, 1.2 m, and 1.0 m. The dimension of
buildings in the datasets is at the range of several dozens
of meters. Most buildings are either parallel or perpendi-
cular to the flight direction, however, some have skew
angles from several up to 45 degrees. Orthoimages are
available for Baltimore city and Purdue campus, and used
as independent reference for evaluation. In addition, the
regularization results are also evaluated by examining the
numerical quality measures obtained from the least
squares adjustment.

Shown in Figures 5, 6, and 7 are the regularized
buildings in Baltimore (with orthoimage), Toronto, and
Purdue campus (with orthoimage), respectively. In these
figures, the lidar points and regularized building boundary
are overlaid atop the lidar surface model; d is the maximum
distance of lidar points off the corresponding parametric line
segments, and � is the standard deviation of the least
squares adjustment based regularization.

Several observations can be made based on the results
in Figures 5, 6, and 7. It is first seen that almost all building
edges are very well determined. The regularized boundary
fits to the lidar points and reflects the building’s shape. The
building outline provides an authentic appearance compar-
ing to the orthoimages and the lidar surface model. Sec-
ondly, many minor rectilinear features, e.g., the short right-
angle edges labelled as A in a circle, are determined
correctly through the regularization process. This forms the
fine details in the determined building boundary, which can
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possibly be inferred from the lidar data. The effect of lidar
data resolution is our third observation. The regularized
building boundary may miss details or introduce artefacts
due to the limited resolution of the lidar data. As shown by
the B labels, right-angle corners formed by short edges may
not be observed in the regularized building boundary.
Similarly, the C labels demonstrate the right-angle corners
introduced as artefacts. For either of the two situations, the
regularization process will produce slightly distorted and
shifted building boundary segments. Finally, it is observed
that very low places of a building may be identified as
ground, e.g., the D labels in Figures 5 and 7. This in turn
will cause missing parts in the final building boundary,
such that the regularization result is similar to the roof print
other than to the footprint.

Table 1 lists the average statistics obtained from 10
buildings, respectively, from Baltimore, Toronto, and Purdue
campus datasets. The maximum distance listed in Table 1 is
the average of the maximum distances of the 10 buildings,
while the standard deviation is obtained from the variance
average of the 10 buildings. These two measures are used to
quantitatively evaluate the fitness of the regularized building

boundary to the lidar points. Clearly, the regularization
quality is dependent on the point density of the lidar data.
It is interesting to note that all study sites suggest that the
maximum distance of the regularized building boundary
off the lidar points is about the same as the lidar point
spacing: 2.4 m versus 2.7 m for Baltimore, 1.1 m versus 1.2
m for Toronto, and 1.2 m versus 1.0 m for Purdue. The
standard deviations are at 18 percent to 21 percent of the
lidar point spacing. Such a relationship varies little among
different datasets, which suggests a trend of linear relation-
ship between regularization uncertainty and lidar point
spacing.

Conclusions
Determining building boundary from raw lidar data are
solved in a four-step process: separation, segmentation,
boundary tracing, and boundary regularization, among which
the latter two are essential to its success. By restricting the
searching space to a rectangular neighborhood, the modified
convex hull algorithm can effectively trace the boundary
points and form the initial good approximation of the
building boundary. The hierarchical least squares solution
produces satisfactory rectilinear building boundaries and is
robust to boundary tracing results. The maximum offset of
the determined building boundary from raw lidar points is
about one lidar point-spacing. The regularization uncertainty
is in average 18 percent to 21 percent of lidar point spacing,
and such a relationship varies little to the lidar point spacing,
which suggests the uncertainty of the regularized building
boundary tends to be linearly proportional to the lidar point
spacing. Limitation of lidar data resolution and errors in
previous filtering process may cause artefacts in the final
regularized building boundary. Future effort will be made to
extend the presented approach to handle buildings with
multiple (�2) and non-perpendicular, dominant directions
and buildings with complex structures, such as inner yards
and non-linear boundaries.
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Figure 5. Regularized building, orthoimage, and quality
(Baltimore): (a) d � 2.06 m, � � �0.43 m, (b) d �
2.72 m, � � �0.54 m (c) d � 3.71 m, � � �0.64 m,
and (d) d � 1.73 m, � � �0.36 m.

Figure 6. Regularized building and quality (Toronto): (a) d
� 0.82 m, � � �0.15 m, (b) d � 0.94 m, � � � 0.12 m
(c) d � 1.60 m, � � �0.23 m, and (d) d � 1.11 m,
� � �0.23 m.
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