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Abstract

Cloud-free optical satellite imagery simplifies remote sen-
sing, but land-cover phenology limits existing solutions to
persistent cloudiness to compositing temporally resolute,
spatially coarser imagery. Here, a new strategy for develop-
ing cloud-free imagery at finer resolution permits simple
automatic change detection. The strategy uses regression
trees to predict pixel values underneath clouds and cloud
shadows in reference scenes from other scene dates. It then
applies improved histogram matching to adjacent scenes.
In the study area, the islands of Puerto Rico, Vieques, and
Culebra, Landsat image mosaics resulting from this strategy
permit accurate detection of land development with only
spectral data and maximum likelihood classification. Be-
tween about 1991 and 2000, urban/built-up lands increased
by 7.2 percent in Puerto Rico and 49 percent in Vieques
and Culebra. The regression tree modeling and histogram
matching require no manual interpretation. Consequently,
they can support large volume processing to distribute
cloud-free imagery for simple change detections with com-
mon classifiers.

Introduction

Persistent cloud cover over many regions complicates
remote sensing with optical satellite imagery. Applications
may require cloud-free parts from many scene dates for each
vegetation map or for each of the times that bound a change
detection. The variously dated scenes or cloud-free scene
parts that might compose an image mosaic will differ in
atmospheric conditions, sun-target-sensor geometry, sensor
calibration, soil moisture, and vegetation phenology. These
differences cause the relationships between land-cover
classes and pixel brightness values to vary across space over
a mosaic period, which refers to the time period spanning
the cloud-free scenes or scene parts that compose an image
mosaic.

One solution to variable relationships between land-
cover classes and their spectral signatures is to separately
classify scene dates (Achard and Estreguil, 1995; Cohen
et al., 2001; Helmer et al., 2002). Depending on the number
of scenes and their degree of cloudiness, however, a scene
wise approach to vegetation mapping or change detection
may not be practical. For example, where cloud-free imagery
is common, scene footprints yield a regular arrangement of
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between-scene differences across space. This regular arrange-
ment leads to a regular arrangement of the unique combi-
nations of scene dates through time. Consequently, change
detection can occur piecewise across space (Cohen et al.,
2002). Piecewise change detection is analogous to scene
wise image classification as a solution to between-date
radiometric differences across a project area. Insofar as cloud
cover determines an irregular arrangement of scene dates
across space for each mosaic period, unique combinations
of scene dates through time form a complex patchwork.
Piecewise change detection becomes infeasible where clouds
are persistent. Reducing across space these radiometric and
phenological scene differences could permit change detec-
tion with one seamless image mosaic for each temporal
endpoint. If the land-cover changes of interest are spectrally
non-subtle, the image mosaics that bound change detection
intervals may not require radiometric normalization to each
other (Cohen et al., 1998; Song et al., 2001).

Other alternatives exist to mosaicing cloud-free parts of
scenes, but they have limitations. The spatial distribution or
optical depth of clouds, along with the spatial complexity of
land cover, limit how well geostatistical interpolation can
predict cloud-obscured pixel values or land cover (Rossi
et al., 1994). Microwave satellite imagery, which clouds do
not obscure, provides an alternative to optical imagery. Yet,
land-cover discrimination with microwave imagery can
benefit from optical data (Rignot et al., 1997). A method to
create cloud-free optical image mosaics expands the options
available for satellite-based remote sensing.

Approaches for cloud removal include satellite image
compositing, which selects pixels for an output, composite
image that are least likely to have cloud cover from among
scenes acquired over a compositing period (Gatlin et al.,
1984; Holben, 1986). A common compositing criterion is to
select pixels for the output image with the largest values of
the normalized difference vegetation index [NDVI = (Near
Infrared — Red)/(Near Infrared + Red)]. A drawback of image
compositing is residual cloud contamination, but excellent
methods exist that detect or correct for cloud contamination
in composite images (Gutman et al., 1994; Cihlar et al., 1996),
or haze in Landsat scenes (Zhang et al., 2002). For imagery
with high temporal resolution, Cihlar et al. (1996), for
example, detect cloud-contaminated pixels in composites
with four thresholds. These thresholds include (a) the
maximum red band reflectance that is present in the data set
from snow and ice-free land under clear sky, (b) positive and
negative deviations from the expected, median NDVI for a
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pixel over the compositing period, and (c) a maximum devi-
ation below the expected maximum NDVI for a pixel over a
compositing period. Designed for image composites, this
approach to cloud screening is not immediately applicable to
imagery with low temporal resolution where only a few dates
of cloud-free data may be available for a pixel. Nor does

it explicitly address cloud shadow. A related issue is that
dependence on image composites can limit spatial resolution.
Compositing usually occurs over short time periods of 5 to 32
days to minimize phenological differences between the input
scenes. The daily image acquisition that consistent phenology
requires for a composite is only widely available for imagery
with coarser spatial resolution. Image compositing itself de-
grades spatial resolution because of minor misregistrations
between pixels from different scene dates. Misregistrations
have potential to permeate an image more thoroughly in
image composites than in mosaics of scene parts, because
image composites are like pixel-level mosaics.

Zhang et al. (2002) developed an approach that optimally
transforms Landsat images to detect the spatial distribution
and intensity of haze and thin clouds. The transform quan-
tifies the perpendicular displacement of a pixel from a clear
Iine. This clear line forms in two-dimensional spectral space
from the spectral signatures, in T™ bands 1 and 3, of clear-
sky pixels that span the range of land-cover classes present
in a scene. Thick clouds or cloud shadows, however, will
still obscure the scenes.

The objective of this study is to test whether a new
strategy for developing cloud-free imagery over a project
area can yield image mosaics that permit simple change
detection. Core parts of the strategy require no manual
interpretation and can thereby contribute to automatically
processing large image volumes. For each scene in a project
area and for each mosaicing period, this new strategy first
uses regression trees to predict the image digital numbers
(DNs) underneath clouds and cloud shadows in reference
Landsat scenes from cloud-free parts of other scenes. The
second part of the strategy is to mosaic the adjacent cloud-
free scenes with histogram matching based on image overlap
areas. Comparing this strategy for developing cloud-free
imagery with other approaches will be important for evaluat-
ing its efficacy. However, this study focuses on a realistic
application, which is another important aspect of testing a
strategy. After developing cloud-free mosaics for each of two
mosaic periods, we test whether the mosaics are suitable for
simple change detection. Change detection with two image
mosaics that span multiple scene footprints avoids the need
for piecewise change detection. The change detection maps
land-cover change to urban/built-up land, a process which
we hereinafter also refer to as land development, using only
spectral data and a maximum likelihood classifier.

Background
Where thick cloud cover persists, or when applications
require finer spatial resolution, optical imagery, mosaicing
cloud-free parts of all scene dates available may be the best
option for cloud-free coverage. Techniques that might reduce
radiometric differences between scene dates in an image
mosaic include atmospheric correction, relative radiometric
normalization, and histogram matching. Atmospheric
correction converts image digital numbers (DNs) to absolute
reflectance at Earth’s surface (Chavez, 1996; Kaufman et al.,
1997). It first converts the DNs for each band to at-satellite
radiance with sensor gains and offsets. It secondly converts
at-satellite radiance to at-surface reflectance through correct-
ing for atmospheric and solar effects.

Radiometric normalization calibrates images to each
other with linear regression (Schott et al., 1988; Vogelmann,
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1988; Hall et al., 1991; Olsson, 1993; Oetter et al., 2001;
Song et al., 2001; Du et al., 2002). For each band, a pixel-
level model generally calibrates one or more subject scenes
to a reference scene. The model has the general form in
Equation 1:

= f(Xsub]'i) (1)

In Equation 1, y,.; and X,,; are brightness values for
the i band from pixels in the reference and subject scenes,
respectively, and they are usually co-located. The function
f (Xgupj) is most commonly linear, but the set of pixels used
in the model varies. Equation 2 then estimates each radio-
metrically normalized pixel, yyarcni:

= f (Xsupji)- (2)

Most previous work on radiometric normalization
focuses on normalizing the scene dates that bound change
detections in a way that preserves phenological differences
and avoids changing scenes to the point where normaliza-
tion obscures change detection. Consequently, previous
normalization models exclude pixels with the marked
spectral changes that might occur with changes in land
cover or phenology, use only same-season imagery across
space, and use linear models. This limitation excludes
alternate-season image data that might be crucial to a single
time of cloud-free coverage over an area.

Histogram matching determines a lookup table for each
image band that causes its histogram to resemble that of a
reference image. Basic histogram matching identifies an
output DN for each input DN through equating histogram
cumulative distribution functions (cDrs). If g (y) is the CDF
for the histogram of a reference image, and f (x) is the CDF
of the histogram to be matched to the reference, then the
histogram matching function for each DN is g7? (f (x)). If the
histograms have unequal pixel numbers, multiplying the
ratio of the total pixel number in the reference image to that
in the subject image scales the histogram matching function
(Richards, 1993). This scaling may negatively affect his-
togram matching. Extensive areas of very bright or dark
pixels can also cause poor histogram matches. Previous
work has avoided such problems by using manually-selected
pixels from scene overlap areas to match the midpoints of
subject scene histograms to the midpoint of the reference
scene histogram (Homer et al., 1997).

A drawback of all these radiometric-matching tech-
niques is that they require scenes across space with consis-
tent vegetation phenology and soil moisture. Between-date
differences in vegetation or soil phenology will cause land-
cover classes to have more variable spectral signatures.
The relationships between corresponding spectral bands in
differently dated scenes will vary by land cover or vegeta-
tion type and cause nonlinearities in Equations 1 and 2.
Such nonlinear relationships will degrade how closely linear
normalization can radiometrically match imagery. When
original scenes differ phenologically, mosaics of scenes
matched from existing approaches may not be amenable to
simple automated processing algorithms.

Given the limitations that compositing, thick cloud
cover, atmospheric correction and linear normalization
impose, this study addresses the need for a strategy to
develop cloud-free mosaics with finer resolution imagery
that is less dependent on same-season imagery. The goal is
to generate satellite image mosaics that are amenable to
simple automatic classification approaches. The mosicing
strategy does not mechanistically address the between-date
differences in Landsat scenes. Instead, it empirically mini-
mizes those differences using regression trees and histogram
matching. The first part of this new strategy uses regression

Yrefi

Y matchi
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trees to reduce radiometric differences between cloud-free
scene parts from different dates. Because regression trees
can model complex nonlinear relationships, they should
provide more flexibility for matching models and the image
data they use. Regression trees use training data to form
regression models at the terminal nodes of decision trees.
Decision trees recursively partition data into smaller groups
based on tests at tree nodes (Breiman et al., 1984; Hansen
et al., 1996; Friedl and Brodley, 1997). Both are now
common in remote sensing for mapping variables like vege-
tation type, tree canopy cover, forest structural attributes
or impervious surface cover (Lawrence and Wright, 2001;
Hansen et al., 2002; Moisen and Frescino, 2002; Yang et al.,
2003). Regression trees have the potential, then, to parti-
tion the relationships between spectral bands in differently
dated scenes into sets of relationships for each band. That
capability permits different matching relationships for dif-
ferent spectral ranges. Assuming that different spectral
ranges correspond to different land-cover classes or vegeta-
tion types, regression tree models could more accurately
predict image data than existing radiometric normalization
or matching approaches.

For each Landsat path/row of a project area, the reg-
ression tree procedure assumes that additional predictor,
or subject, scene dates exist that are cloudless where the
reference scene has clouds as well as cloudless in some
areas where the reference scene is also cloudless. Regres-
sion trees model the relationships between each band in
the reference scene and bands in each predictor, or subject
scene. Preliminary work indicated smaller matching model
error with multiple predictor bands, which Olsson et al.
(1993) also found was true for linear normalization models.
Consequently, the regression tree models for Landsat The-
matic Mapper (T™M) or Enhanced Thematic Mapper (ETM+)
scenes have the following general form:

Yreefi = f(XsubjI’ Xsubj2> Xsubjss Xsubjas Xsubjs» Xsubj7)- (3)

In Equation 1, y, is the DN of a pixel in the reference
scene for the i™ band to be predicted, Xgubjs 15 the DN of the
T™ or ETM+ band 1 of the corresponding pixel in the subject
scene, Xy, is the DN for band 2 of the subject, and so on.
For areas where two predictor scene dates are cloudless, A
and B for example, a regression tree model can use pixels
from two subject scenes to predict each band in the refer-
ence scene, in which case models have the following general
form:

Veefi = f[XsubjAlﬁ XsubjAzs XsubjA3s XsubjA4s XsubjAss XsubjA7s
XsubjB1> XsubjB2> XsubjB3» XsubjB4> XsubjB5s XsubjB7)' (4)

The second part of the strategy is to match the his-
tograms of adjacent scenes that have undergone cloud re-
moval. Although regression tree models based on image
overlap areas might successfully match adjacent scenes,
preliminary work showed some detail loss from image areas
that regression tree models predicted. In contrast, histogram
matching caused little detail loss. Histogram matching is
unlikely to closely match scenes with markedly different
phenologies. Conceivably, however, if the reference scenes
that undergo cloud removal have similar phenology, match-
ing the histograms of imagery based on those scenes may be
successful. An important difference exists between basic
histogram matching and the approach in this strategy. Here,
the histogram matching function derives only from image
overlap areas. Using only overlap areas eliminates scaling
errors that result from matching histograms with unequal
pixel numbers, and it ensures that the histograms for deter-
mining the match cover similar terrain. Unlike previous
work, however, the approach is entirely automatic.
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Methodology

Study Area

Puerto Rico and two of its outer islands, Culebra and Vieques
(Figure 1), are Caribbean islands that have perpetual cloud
cover. Puerto Rico has experienced rapid urban expansion,
which threatens forest conservation in its relatively un-
protected lowland moist and dry ecological zones (Helmer,
2004). Although small (884 km?), these islands require

four scenes for Landsat coverage because they occur at the
intersection of two Worldwide Reference System (WRS) paths
and rows. With elevations ranging from sea level to 1325 m,
the islands have complex vegetation. Forest formations
range from subtropical dry and moist forests to wet and rain
forests including cloud forests (Ewel and Whitmore, 1973).
Consequently, image processing and analysis for island-wide
remote sensing applications is challenging (Helmer et al.,
2002).

Cloud Elimination from Landsat Scenes

As described in more detail below, the data-mining pro-
gram Cubist (www.rulequest.com) developed regression

tree models that predicted pixel values in cloudy parts of
reference scenes from co-located pixels in subject, predictor
scenes. The scenes for the 2000 mosaic period were ETM+
and the scenes for the 1991 mosaic period were T™M. The
dates of the reference scenes included (a) 24 December 1991
and 27 March 2000 for WRrS path/row 4/47-48, and (b)

19 August 1992, and 13 November 2000 for WRs path/row
5/47-48. All the other available scenes that centered on

a given time aided cloud removal for that mosaic period.
The dates of these images were 21 January 1985, 15 January
1986, 22 January 1988, 22 March 1988, 03 February 1991,
03 September 1991, 17 September 1999, 14 May 2000,

02 August 2000, 18 August 2000, 10 September 2000,

09 January 2001, 25 January 2001, 26 February 2001,

05 March 2001, 11 July 2001, 20 July 2001, and 27 July
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Figure 1. Study area location. The study area includes
the Caribbean islands of Puerto Rico, Vieques and
Culebra.
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2001. The images had undergone terrain-corrected georefer-
encing that corrected parallax error from local topographic
relief with a digital elevation model (Level 1T, http://
landsat7.usgs.gov/productinfo.html). The program Image
Tie Points (Kennedy and Cohen, 2003) generated control
points for the scenes in each Landsat path/row to precisely
co-register them. This method was accurate; the root mean
square error between images ranged from 0 to 0.29 pixels.
Imagery from 1985 and 1986 is six to seven years older than
the target change detection endpoint date of 1991. However,
most cloudy areas that these image dates predicted were at
high elevations and included much reserve land. Because
the area of land development in such locations is relatively
small (Helmer, 2004), error from using these older scenes
was also likely to be small.

Building Regression Tree Image Prediction Models

For each scene footprint and mosaic period, the cloud re-
moval process began by making cloud, cloud shadow, and
ocean water masks (cloud/shadow masks) for all scene dates.
The cloud/shadow masks for this study derived from a
combination of unsupervised classification with ISODATA,
using ERDAS Imagine® v. 8.5 (Leica Geosystems, 2003) and
manual editing. The second step was selecting a reference
scene. Of those scenes for a mosaic period that were close
to the target year for analysis, it was the least cloudy scene.
Temporally close reference scenes over the study area, like
same-dated scenes from a single Landsat path, or scenes
with similar vegetation phenology, were preferable. Third,

a second scene date served as the first subject scene for the
footprint. It was cloud complimentary to the reference scene,
meaning that it was cloud-free where the reference scene
was cloudy.

The union of the cloud/shadow masks from the ref-
erence and subject scenes then masked both scenes, which
revealed where both scenes were cloud-free. These mutually
cloud-free areas supplied data for building the regression
tree models in the form of six new images. Each new image
contained the dependent and independent variables for a
regression tree model that predicted one reference scene
band. For example, the image for the model to predict band
1 in the reference scene had the following seven bands: y,,,
Xsubj1s Xsubj2s Xsubjz» Xsubjas Xsubjss and Xsubj7s where the nota-
tion is the same as for Equation 3. Exporting each of these
images to an ASCI file permitted their formatting for regres-
sion tree software. When two dates of subject scenes, A and
B, for example, had common areas that were not obscured
by clouds but were cloudy in the reference scene, the pre-
ceding steps incorporated a second subject image and its
associated cloud/shadow mask. In that case, the six images
for developing regression tree models each had 13 bands,
which corresponded to the dependent variable and 12 inde-
pendent variables in Equation 4.

Applying Regression Tree Models

The first step in applying the regression tree models was
masking the subject scene with both its cloud/shadow masks
and the inverse of the cloud/shadow mask for the reference
scene. This step revealed where the reference scene was
cloudy but the subject scene was clear. In these areas, the
six regression models predicted six new DNs for pixels from
corresponding pixels in the subject scene. Exporting and
formatting the resulting image for input to regression tree
models was the second step in applying the models.
Integrating public domain code (www.rulequest.com) into
an Imagine® program, with the Imagine® C Developer’s
Toolkit (Leica-Geosystems, 2003), enabled Imagine to
interpret and apply the six regression tree models that
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predicted new DNs for each pixel. The predicted image
parts then replaced areas in the reference scene that were
cloudy. These steps were repeated for subsequent subject
scenes that were clear where cloudy areas remained in the
reference scene.

Summarizing Overall Errors for Each Scene that
Underwent Cloud Removal

An independent error analysis estimated the combined mean
and range of differences between reference image pixels

and corresponding pixels that all regression tree models
predicted. The observations for this analysis were from ten
randomly selected, 1000-pixel areas that were cloudless in all
image dates. These areas had been excluded from the pixels
that went into the regression tree models. Each of the Cubist
regression tree models that predicted data for a given scene
predicted DNs for the 1000-pixel areas. That step permitted
(a) finding absolute differences between reference image and
predicted DNs, and (b) combining these differences to estimate
mean potential errors by band and reference scene.

Histogram Matching with Image Match
The histogram matching used a new histogram matching
technique, Image Match, within Imagine. The program
matched images that had undergone cloud removal with
images from adjacent scene footprints using one of those
images from each mosaic period as a reference.

Image Match is a spatial model that automatically runs
a series of image processing steps. It is identical to histo-
gram matching based on equating cumulative distribution
functions. However, it uses only image overlap areas to
determine a lookup table for matching. Because these
overlapping areas have equal total pixel numbers, the
histogram match requires no scaling based on differences
in total pixel numbers, and the terrain that each histogram
covers is similar. For each band in two images to be
matched, Image Match first finds where the two images
overlap based on where they are both non-zero. It outputs
data from each overlapping pixel to form two new images
that are simply the overlapping parts of each input image.
It then performs a basic histogram match between the
overlapping areas using the RASTERMATCH function in
Imagine, which outputs a matched image for the overlapping
piece. The ZONAL_MIN raster function in Imagine then
determines correspondence between DNs in the matched
piece and the unmatched piece of the image to be matched.
The function outputs a table of the minimum value in the
matched piece for each of the 256 DNs in the unmatched
piece. Because only one DN occurs in the matched piece for
every DN in the unmatched one, zonal maximum or mean
functions would give the same result. The resulting table is
a lookup table that directly relates DNs in the original image
to be matched to DNs in the matched overlapping piece. The
DIRECT_LOOKUP function in Imagine® then outputs an
image in which it replaces each DN in the original, entire
image to be matched with the corresponding DN from this
lookup table.

Change Detection with Hybrid Classification of Multitemporal Imagery

A simple hybrid supervised-unsupervised approach to detect
land development began by merging optical bands and
indices from both mosaic dates to form a multitemporal
image (Howarth and Boasson, 1983; Nelson, 1983; Muchoney
and Haack, 1994; Cohen and Fiorella, 1998). The definition
of land development for the change detection was change to
urban/built-up lands, mined lands, or bulldozed lands under
preparation for development. Land development included
any areas both within and outside of metropolitan areas if
they changed from a vegetated surface to an impervious or
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bulldozed surface. It excluded lands that were bulldozed

in the earlier date and urban/built-up by the later date.

In addition to Landsat bands 1 through 5 and 7 for each
mosaic period, we added NDVI and the band 4:5 ratio from
each mosaic. The two indices are sensitive to vegetation; the
band 4:5 ratio, for example, is sensitive to forest succes-
sional stage in both temperate (Fiorella and Ripple, 1993)
and tropical (Helmer et al., 2000) regions. Drops in their
values are good indicators of land development. The result-
ing 16-band multitemporal image included six bands and
two indices for each mosaic period. Second, an unsuper-
vised ISODATA clustering (Leica Geosystems, 2003) classified
the multitemporal image into a 25-class thematic image. The
process also output a signature file containing the spectral
signatures for each class.

Strategically displaying and enhancing three bands from
the 16-band image revealed locations of land development
(Howarth and Boasson, 1983; Sader and Winne, 1992; Cohen
et al., 1998; Seto and Liu, 2003). To visualize land develop-
ment, we displayed ™ band 1 from the first mosaic period

in red, ETM+ band 1 from the second mosaic period in
green, and NDVI from the earlier mosaic period in blue.
Urban/built-up lands in both dates appeared yellow, and
land development (i.e. change) appeared magenta. Agricul-
tural fields that changed from mature or growing crops to
bare soil were also magenta. Vegetated areas that didn’t
change were blue. Displaying band 1 in the red and green
bands provided the most contrast between land development
and other classes.

Displaying the clustered image simultaneously with
the multitemporal image revealed two output classes that
included land development. These two classes, however,
were confused with (a) scattered pixels from urban/built-
up land present in both times, for the first class, and (b)
agricultural change, chiefly from mature sugar cane to bare
cropland, as well as a few pastures in the driest areas that
senesced and greatly brightened, for the second class. We
replaced the signatures for these two confused classes with
three new signatures, each extracted from 1,500 to 6,000
pixels, for (a) urban/built-up land present in both times,

Before Clouds Removed

Before Clouds Removed

After Clouds Removed

(@
After Clouds Removed
0 8 16 24 32
ilometers
0 5 10 15 2%”95
(b)

Plate 1. Results of cloud removal for eastern Puerto Rico for the image mosaic from 27 March 2000.
Extensive cloud cover prevented filling all cloudy areas with data: (a) 27 March 2000 Landsat ETM+
Path 4, Row 47 (4,3,2) — 87 percent clouds removed, (b) 27 March 2000 Landsat ETM+ Path 4, Row
48 (4,3,2) — 83 percent clouds removed.
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TABLE 1.

EAcH OF THE REGRESSION TREE MODELS THAT PREDICTED CLOUDY PARTS OF A GIVEN REFERENCE SCENE WAS ALSO USED TO PREDICT BAND VALUES

IN A RANDOMLY-SELECTED SET OF 1,000 CLOUD-FREE PIXELS FROM THAT SCENE. BAND WISE DIFFERENCES BETWEEN PREDICTED AND CO-LOCATED REFERENCE
ScENE DiGITAL NUMBERS (DNs) INDICATE How CLOSELY THE REGRESSION TREE MODELS PREDICTED REFERENCE SCENE DATA. PRESENTED BELOW ARE THE
MEAN AND 95 PERCENT CONFIDENCE INTERVALS FOR THESE DIFFERENCES, WHICH ARE AVERAGED OVER ALL THE MODELS THAT CONTRIBUTED TO PREDICTING
CLouDY AREAS IN A GIVEN REFERENCE SCENE

Errors in Cloud Removal Process for Puerto Rico
(Mean Difference between Reference and Regression tree Predicted DNs)

Landsat Thematic Mapper Band Number

Landsat Path/Row 1 2 3 4 5 7
2000 Mosaic period
005/047 4 *05 5 * 0.5 6 £ 0.7 9+0.8 10 = 0.9 7 +0.7
005/048 4 =04 5 * 0.5 7 £ 0.7 8 *0.7 10 £ 0.9 7*0.7
004/047 7+ 0.9 8 £ 09 12 = 1.3 9*+0.8 15 = 1.5 12 £ 1.2
004/048 4 = 0.8 4 * 0.9 14 = 1.2 10 £ 0.6 18 £ 1.6 14 = 1.2
1991 Mosaic period*
005/047-048 4 =04 2 *0.2 4+ 04 10 £ 0.8 10 £ 0.8 5* 04
004/047-048 3 +0.3 2*02 3*+0.3 7 * 0.6 7 * 0.6 4+ 04

1Scenes for the 1991 mosaic period had been ordered as movable scenes centered on Landsat Rows 47 and 48.

(b) land development, and (c) the few areas of pasture with
dramatic phenological change. The edited, 26-signature file
enabled a supervised maximum likelihood classification of
the 16-band multitemporal image. Manual editing removed
confusion between land development and agricultural
change in crop development stage from the resulting, 26-
class map. After recoding all classes but land development
to zero and performing a contiguity analysis, we removed
all pixel clusters that had fewer than 11 pixels, yielding a
0.99 ha-minimum mapping unit (MMU). Only 2.4 percent of
patches were smaller than this MMU, and this was a patch
size that, based on fieldwork, was identifiable with cer-
tainty in accuracy assessment. Another reason for the MMU
was that pixels that were a mixture of urban/built-up and
undeveloped lands were likely to cause some misclassifica-
tion of smaller patches. In Puerto Rico, such mixed pixels
are easily misclassified in a maximum likelihood classifi-
cation of T™ spectral data alone (Helmer et al., 2002).

Accuracy Assessment

A randomly selected set of 200 points included 100 points
each from (a) lands that underwent land development
between about 1991 and 2000, including change to bulldozed
or mined land, and (b) lands that did not undergo land
development between the two times. Aerial photos from both
times permitted us to label each point as land development
or no land development. The aerial photos included 1:32 000
scale NASA Aerochrome IR photos dated 1991 and 1:48 000
scale color photos that NOAA collected in 1999. With the goal
of ensuring that we could correctly identify land develop-
ment in aerial photos and imagery, fieldwork 09 April 2003
circumnavigated about three quarters of Puerto Rico along
major roads or highways and selected side roads. It relied on
integrating a GPS receiver with a laptop computer (with a
daylight-viewable image display) running the ERDAS Imagine®
GPS tool (Leica Geosystems, 2003).

Results

For the four scenes that cover Puerto Rico, the cloud removal
procedure removed 73 to 87 percent of clouds and cloud
shadows for the year 2000 mosaic period (Plates 1 and 2).
Cloudy areas in the reference scenes were filled with new
data from other scene dates (Plate 3). For the 1991 mosaic
period, the procedure removed 18 percent of clouds in
western Puerto Rico and 92 percent of clouds in the east.
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For some areas, none of the available images were cloud-
free, which prevented the procedure from removing all
clouds. The mean absolute differences between reference
pixel values and the values that the various regression
models predicted for each scene ranged from 2 to 18 DNs,
but most were =10 DNs (Table 1). These differences estimate
overall errors in the regression tree procedure for each scene
and band.

Matching the histograms of adjacent images that under-
went cloud removal worked well. The new adjacent images
matched tonally to the base image. Mosaicing adjacent images
produced a virtually seamless mosaic, which facilitated
change detection. Visually comparing image mosaics, with
and without prior histogram matching with Image Match
(Plate 4), showed that images mosaiced without the proce-
dure had visible seam-lines.

The hybrid unsupervised-supervised change detection
that manually recoded agricultural change (Plate 5) was
accurate (Table 2), correctly classifying 85.4 percent of
points and yielding an error matrix with a Kappa coefficient
of agreement of 0.66 * 0.12. A remarkable 49 percent increase
in patches of urban/built-up lands =1 ha on the two small
outer islands provided a first and vital estimate of land
development there over the decade (Table 3).

Discussion

Cloud-free Image Mosaic Strategy

Regression trees have successfully modeled continuous
forest- and land-cover attributes from satellite imagery
(Hansen et al., 2002; Moisen and Frescino, 2002; Yang et al.,
2003). In this study they estimate new image DNs. Using
regression trees to model the relationships between co-
located pixels from different image dates is new both in its
use of regression tree models and its application of such
predictive calibration models across space.

Previous work (Homer et al., 1997) uses data from scene
overlap areas to match adjacent Landsat scene histograms.
The strategy in this study uniquely emphasizes an automatic
way to apply histogram matches from image overlap areas.
Deriving a lookup table for histogram matching from the
histograms of overlapping areas reliably produces better
histogram matches that are not subject to scaling errors.
Scaling adjustments are otherwise requisite for matching
histograms with unequal pixel numbers.
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TABLE 2. THE Two IMAGE MOSAICS THAT RESULTED FROM APPLYING A NEW
STRATEGY TO MAKE CLOUD-FREE MOSAICS WERE MERGED INTO ONE
MULTITEMPORAL IMAGE. A SIMPLE HYBRID SUPERVISED-UNSUPERVISED
CLASSIFICATION OF THE MULTITEMPORAL DATA IDENTIFIED CHANGE TO
URBAN/BUILT-UP LANDS (LAND DEVELOPMENT). SHOWN BELOW IS THE
ACCURACY OF THE CHANGE DETECTION, WHICH IS BASED ON AERIAL PHOTO
INTERPRETATION OF 200 RANDOMLY SELECTED CHANGE AND NO-CHANGE
PoINTs (N = 192 AFTER ELIMINATING POINTS THAT WERE CLOUDY IN
AERIAL PHOTOS)

Percent Kappa Commission Error Omission Error
Correct Coefficient of for Mapped Land  for Mapped Land
Overall Agreement Development Development
85.4 0.66 * 0.12 15.5 12.0

TABLE 3. AREAS OF URBAN/DEVELOPED LAND-COVER IN ABOUT 1991 AND
2000, AND INCREASE IN URBAN/DEVELOPED PATCHES =1 HA FROM 1991 1O
2000. THE CHANGE DETECTION PERMITTED THE FIRST ESTIMATES OF LAND
DEVELOPMENT FOR THE STUDY AREA THAT ARE BASED SOLELY ON LANDSAT
IMAGERY. THE LARGE, 49 PERCENT INCREASE IN URBAN/DEVELOPED LANDS IN
VIEQUES AND CULEBRA IS THE FIRST ESTIMATE OF ITS KIND FOR THOSE
ISLANDS. TOTAL AREA FOR THE ISLANDS IS ABouT 874,120 HA FOR PUERTO
Rico AND 15,385 HA FOR VIEQUES AND CULEBRA

Puerto Rico ~ Vieques, Culebra Total
Urban/developed 91,799! 180 97,379
1991 (ha)
Urban/developed 6,647 89 6,736
1991-2000 (ha)
Total in 2000 (ha) 98,446 269 98,715
Percent increase 7.2% 49% 7.3%

1991-2000

Helmer et al., 2002.

Empirically rather than mechanistically minimizing
the differences between Landsat scenes means that these
differences are sources of residual error in the two-part
mosaicing strategy. These between-date error sources
include differences in season (which affect vegetation and
soil phenology), and differences in solar azimuths, solar
elevation angles, and atmospheric conditions. Additional
error sources are non-uniform atmospheric conditions across
a given scene and land-cover changes that occur during each
mosaic period. Differences in illumination between scene
dates may explain some of the detail loss that occurs with
regression tree prediction. For example, topographic features
can become less pronounced. Illumination differences could
cause some pixels to be sunlit in one date and shadowed
in another, which could cause regression tree models to
brighten shadowed dark pixels and darken sunlit bright
ones. Neither the regression tree models nor the histogram
matches explicitly address within-scene differences in
atmospheric conditions. Any non-uniform atmospheric
conditions within scenes likely degrade how accurately the
regression tree models can predict pixel values. Error in
regression tree models may also arise from non-uniform
changes in the spectral signatures of common land-cover
classes. Such changes could arise from land-cover and
agricultural changes during each mosaic period.

Cloud-free imagery resulting from this strategy will
likely support detection of other spectrally non-subtle
changes, like forest clearing or burning, assuming that time
intervals are short enough to prevent confusion between
regrowing and undisturbed forest. Accordingly, wide
availability of such imagery could lead to more timely
forest monitoring with the most basic image processing
tools and skills. Yet, how the strategy compares with other
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possible strategies or performs with other classifiers or
more complex classification objectives remains in ques-
tion. For example, errors in the strategy may cause confu-
sion between land-cover or change classes with subtle
spectral differences. The degree to which more sophisti-
cated classifiers can accommodate these errors, or alto-
gether eliminate the need for this sort of strategy, remains
unknown.

Many other aspects of the strategy merit further explo-
ration or improvement. The regression tree prediction and
histogram matching require no manual image interpreta-
tion. However, large-volume image processing will require
fully automated methods to make cloud/shadow masks.
Also somewhat unclear is whether the strategy would
benefit from atmospherically correcting imagery prior
to applying it. Such correction, though, should facilitate
automatic cloud detection. In addition, incorporating an
approach like that in Zhang et al. (2002), which permits
correction for intra-scene haze variations, might decrease
errors in the matching process. Another potentially impor-
tant issue is the detail loss in image data output from
regression trees. If illumination differences between scene
dates contribute to this detail loss, perhaps incorporating
related ancillary data into the regression tree models could
alleviate this problem. Finally, only parts of the mosaicing
strategy may be applicable to imagery with finer or coarser
spatial resolution. The histogram matching may, for exam-
ple, be more appropriate for images with fine spatial reso-
lution if detail loss prevents the regression tree procedure
from being useful.

Change Detection

Applying the two-part strategy to develop image mosaics
makes possible a fast and accurate detection of land
development with only spectral data and a maximum
likelihood classifier. The resulting map quantifies land
development between about 1991 and 2000 (Table 3). It
further shows how land development has a spatial pattern
that both extends and intensifies (Plate 5). A visual analy-
sis of land development locations indicates that Puerto
Rico remains similar to other temperate and tropical
landscapes. In Puerto Rico, the strongest spatial predictors
of land development are proximity to existing urban areas
and roads. Higher elevations or slopes decrease land
development likelihood. Nevertheless, topography loses
importance for undeveloped lands remaining in metropoli-
tan areas, where land development pressures are largest
(Helmer, 2004). An outcome of these geographical drivers
is an intensification pattern in which remaining unde-
veloped patches in and near urban or residential areas
undergo development. Other studies have observed this
pattern in Puerto Rico and elsewhere (Lugo, 2002; Yang
et al., 2003).

Although the change detection manually discriminates
change from mature crops to bare soil, maximum likeli-
hood classifiers can confuse these changes even when
single scene dates, as opposed to mosaics of many scene
dates, bound change detection intervals (Seto and Liu,
2003). Agricultural change is now limited in Puerto Rico’s
landscape, but manual editing may be impractical where
agricultural spatial patterns are complex. In such land-
scapes, neural network classifiers that accommodate
spectrally heterogeneous classes may distinguish agricul-
tural change from land development (Seto and Liu, 2003).
Additional times of imagery might also distinguish agricul-
tural change if later images changed back from bare soil to
mature crops.

Land-cover changes that occur during each mosaic period
are an error source in the change detection, causing over- or
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Plate 2. Results of cloud removal for western Puerto Rico for the image mosaic from about 2000.
Extensive cloud cover prevented filling all cloudy areas with data: (a) 13 November 2000 Landsat EMT+
Path 5, Row 47-73 percent clouds removed, (b) 13 November 2000 Landsat EMT+ Path 5, Row
48-75 Percent clouds removed.

(a) (b) (c)

Plate 3. Clouds were removed from (a), the image with clouds, using regression tree models. The result
is shown in image (c) in which the clouds were removed. Image (b) shows the areas (blue) where the
regression tree models were applied, i.e., the image with its cloud/shadow mask.

under-estimates of change areas. Moreover, where clouds different seasons, some locations were very persistently
occurred in all scene dates available, land-cover change cloudy. A second error source in the change detection is its
remains unknown. Despite the many scenes that formed each ~ 30-m spatial resolution. At this scale, pixels that contain a
mosaic, and even though the data set included scenes from mixture of developed and vegetated lands cause error in
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Plate 4. Results of mosaicing Landsat scenes of Puerto Rico compared with mosaicing scenes after
using the Image Match histogram matching procedure. The images (a) 1991 mosaiced, and (c) 2000
mosaiced were only mosaiced, and they have visible seam-lines. The images (b) 1991 Image Matched,

and (d) 2000 Image Matched were mosaiced with Image Match and have no visible seam-lines. The
white areas are the remaining clouds/shadows.

'67°0'W '66°30'W '66°0'W
SRR ¢ N = ke 18°30'N

18°0'N —

[ Urban/developed 1977-1991 @

[ Urban/developed 1977

B Urban/developed 1991-2000 il
Primary roads 20 0 ¢

Plate 5. Land development in Puerto Rico from about 1991 to 2000 (this study) and about 1977 to
1991 (Helmer, 2004), and urban/developed areas in 1977 (Ramos and Lugo, 1994). Note that
although accuracy assessment points did not cover Vieques and Culebra (not shown), we carefully
visually verified the results with aerial photos and finer resolution satellite imagery.
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land-cover classifications (Helmer et al., 2002). The MMU that
eliminated land development patches =1 ha avoided attempt-
ing to classify such pixels. The consequence is that the data
are unlikely to include land development at the scale of
single homes, which does occur along rural roads.

Summary and Conclusions

This paper presents a new strategy for making nearly cloud-
free image mosaics with Landsat satellite imagery. The
strategy first uses regression tree models to predict band
values of cloudy pixels in a reference scene from other
scene dates. It secondly matches adjacent scenes with
histogram matching based only on image overlap areas.
Results of the study indicate that regression tree prediction
offers an effective tool for overcoming persistent cloud cover
in Landsat imagery. In addition, histogram matching based
on image overlap areas permits seamless mosaicing of scenes
that have undergone cloud removal with regression tree
prediction. Finally, this study shows that mosaics resulting
from the new strategy can support change detection in
persistently cloudy regions. A fast and accurate detection of
change to urban/built-up lands, with only spectral data from
two mosaics and a maximum likelihood classifier, demon-
strates this conclusion. Errors in the regression tree predic-
tions have the potential to increase confusion between
classes with subtle spectral differences, and they cause some
detail loss in imagery. Consequently, applying the strategy to
form cloud-free image mosaics for complex classification
objectives may require more sophisticated classifiers.

The regression tree modeling and histogram matching
require no manual interpretation. Consequently, they can
support large volume processing to distribute cloud-free
imagery. Such imagery should permit simple change detec-
tions of spectrally marked changes, such as land development
or forest clearing, with widely available classification tools.
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