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Abstract

Completely cloud-free remotely sensed images are preferred,
but they are not always available. Although the average cloud
coverage for the entire planet is about 40 percent, the removal
of clouds and cloud shadows is rarely studied. To address this
problem, a closest spectral fit method is developed to replace
cloud and cloud-shadow pixels with their most similar non-
clouded pixel values. The objective of this paper is to illus-
trate the methodology of the closest spectral fit and test its
performance for removing clouds and cloud shadows in
images. The closest spectral fit procedures are summarized
into six steps, in which two main conceptions, location-based
one-to-one correspondence and spectral-based closest fit, are
defined. The location-based one-to-one correspondence is
applied to identify pixels with the same locations in both base
image and auxiliary images. The spectral-based closest fit is
applied to determine the most similar pixels in an image.
Finally, this closest spectral fit approach is applied to remove
cloud and cloud-shadow pixels and diagnostically checked
using Landsat T™M images. Additional examples using Quick-
Bird and MoDIS images also indicate the efficiency of the
closest spectral fit for removing cloud pixels.

Introduction
A significant obstacle to extracting information from
remotely sensed images is the presence of clouds and their
shadows. The average cloud coverage for our entire planet is
about 40 percent (Simonett, 1983). Sometimes cloudy images
have to be used because they are all that are available. For
example, satellite multispectral scanner images of the Earth’s
surface such as Landsat images are often corrupted by clouds
because of nadir-only observing satellites having relatively
infrequent revisiting periods (Song and Civco, 2002).
Mitchell et al. (1977) developed a cloud distortion model
and filtering procedures to remove cloud cover in satellite
images. Liu and Hunt (1984) and Chanda and Majumder
(1991) further improved the distortion model and filtering
procedures. However, their methods are used for removing
thin clouds, and it is difficult to determine the range of
cloud densities in which clouds and cloud shadows (ccs) are
removed efficiently.
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Cihlar and Howarth (1994) and Simpson and Stitt (1998)
developed special methods for detecting and removing cloud
contamination from AVHRR images. These methods are not
suitable for removing CCS in other satellite imagery. For
example, one prerequisite of their methods is that there is at
least one single maximum or a single minimum for the
seasonal trajectory of a satellite-derived variable (Mitchell
et al., 1977).

The multi-date effect brightness correction method
(Caselles, 1989) is another approach to removing cCS. Song
and Civco (2002) used this method to replace ccs with
appropriate pixel values. In essence, this approach has an
important assumption that the sample mean and standard
deviation (SD) of band values in cCs imagery is as the same
as the cloud-free imagery. It is apparent that the mean and
SD can only be estimated as approximations for that image
since CCS cover parts of the image; the bigger CCS areas in
the imagery, the larger the difference between the estimated
mean and SD and their real values.

This paper develops a closest spectral fit (CSF) technique
for replacing ccs pixels with the most similar pixels at
cloud-free areas in the same image. The CSF technique is
applied to remove CCs pixels in Landsat-5 Thematic Mapper
(Landsat T™) data, and then error diagnostics is conducted
using the images of Landsat T™, QuickBird, and Moderate
Resolution Imaging Spectroradiometer (MODIS) as examples.

Closest Spectral Fit Appr oach

Two satellite images covering the same area and acquired at
different times are needed. The base image is the one with
relatively less ccs, and should retain the information that is
acquired. Also, the base image is the one to be used for further
applications. The other image will be called the auxiliary
image. As much as possible, cloudy areas in the base image
should be cloud-free in the auxiliary image. There should be
no overlap of cloud pixels or cloud-shadow pixels in the two
images and both images are selected for this criteria based on
a visual estimation. If there are overlaps of CCS pixels, we
need select an additional auxiliary image, which can be used
to remove the overlapped ccs pixels. Using only the base
image, it is impossible to select the most similar pixels for the
pixels whose signatures are distorted by cloud and cloud
shadow, since CCS have corrupted the real energy received and
recorded by the satellite sensor. The auxiliary image is used as
a medium to determine the relationship in the base image of
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the most similar pixels to those pixels whose signatures are
distorted by clouds and cloud shadows.

A general process of applying the CSF method to remove
CCS in images is developed, and this general process is
depicted in Figure 1. The conceptions, algorithms and steps
used for CSF are described as follows.

Step 1: Georegistration and Coregistration

The base and auxiliary satellite images often need to be
geo-rectified. Often, U.S. Geological Survey (USGs) Digital
Orthophoto Quarter-quads (DOQQs) are used as the source of
control (i.e., root mean square errors should be less than

10 m). Then, coregistration is conducted to obtain good
alignment.

Step 2: Surface reflectance Calibration

Raw satellite images with the spectral values represented with
digital numbers (DN) often contain substantial noise.

To remove the noise, a surface reflectance calibration process
may be implemented. For example, one way is to use the
commercial package FLAASH to derive the surface reflectance
from the raw images consistently (ITT Company, 2006).

It is not necessary to calculate the surface reflectance in
this research. For example, Landsat T™ images (Path/Row:
18/38) used as one example were bought from the UsGs Earth
Resource Observation System Data Center. The data had been
corrected for the radiometric and geometric distortions of the
images to the precision correction level before delivery.

Step 3: Knowledge-based CCS Detection

The visible and near-infrared bands are sensitive to clouds
and cloud-shadows and can be used to detect CCS. For
example, the bands 1, 3, and 4 of Landsat T™ imagery are the
best indicators for the detection of clouds and cloud shad-
ows, respectively. Clouds are present when the digital
numbers (DN) of band 1 exceeds a threshold (i.e., 95 for the
Landsat-5 used here). Shadows are present when the value of
band 4 is less than a threshold (i.e., 55 is used), and the ratio
of band 4 to band 3 (i.e., 1.3 is used in this research) also is
applied to help distinguish cloud shadows from water. Cloud
shadows and water areas might have similar reflectance
values in band 4. However shadow areas generally have
much higher values in band 4 than those in band 3, while
water areas have relatively close values in band 4 and band 3.

based one-to-one correspondence, pixels
a <> b; lll, the replacement of pixel

available at the ASPRS website:

Figure 1. A diagram of cloud and cloud-shadow removal using closest spectral fit: I, location-

A <> a,and pixels B <> b; ll, closest spectral fit, pixels
A using its most similar pixel
spectral fitof A <> B based on the same relationship of
www.asprs.org .

B according to the closest
a <> b. A color version of this figure is
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The threshold of the ratio of band 4 to band 3 therefore is
used to detect cloud shadows. The values of these thresholds
might vary for images acquired at different times. The
algorithms can be summarized as follows.

A. Algorithm for Identifying Cloud Pixels
If DN of TM band 1 > 95

Then cloud pixel

Set up a dataset for cloud pixel

Otherwise cloud-free pixel

Set up a dataset for cloud-free pixels

B. Algorithm for Identifying Cloud Shadow Pixel
If DN of TM band 4 < 55
and ratio of (band4/band3) > 1.3
Then cloud shadow pixel
Set up a dataset for cloud shadow pixels

Step 4: Closest Spectral Fit

Closest spectral fit examines the distance between each
pixel and the closest pixel to it in spectral space. In an
image, if pixel j has the closest surface reflectance value to
that of pixel i, then, j is called the closest spectral fit to
pixel i (i.e., pixels i and j are more similar to each other
than to any other pixels in this image). Similarly, based on
the surface reflectance, the most similar pixel b in the
auxiliary image can be identified for a given pixel a, in
the auxiliary image (Figurel). In other words, in the
auxiliary image the closest spectral fit analysis determines
the most similar pixels (e.g., pixel b) to each of the pixels
(e.g., pixel a) identified using location-based one-to-one
correspondence to the CCS pixels (e.g., pixel A) in the base
image in Step 3. The relationship of the most similar
pixels a and b in the auxiliary image can be called closest
spectral fit.

The distance from pixel to pixel measured in reflectance
is a type of point-to-point distance. The smaller the distances
are between pixels, the more similar the pixels are. Two pixels
are identical to each other if the distance between them is 0.
Euclidian distance (ED) is used in this CSF technique, since ED
is widely applied in image processing and classification.

ED = A/ % UL _jL)Z [1)
L=1

where ED is the Euclidian Distance between pixels i and j,
L indicates satellite bands, and n is the number of bands for
the imagery being used, such as n = 7 for Landsat imagery.
A SQL algorithm for the closest spectral fit can be summa-
rized below.

SQL Algorithms for Closest Spectral Fit Analysis

sql;

sgrt ((a.band1-b.band1)* (a.band1-b.band1) + (a.band2-b.band2)*
(a.band2-b.band2) + ... + (a.bandm-b.bandm)* (a.bandm-b.bandm))
as distance

from dataset.a, dataset.b

Set up dataset for closest spectral fit;

quit;

where dataset.a is the pixels in the auxiliary image having

the same locations as CCS pixels in the base image, dataset.b

is the cloud-free pixels in the auxiliary image, and m is

band number of the image.

Step 5: Transfer of Closest Spectral Fit

When the relationship of closest spectral fit is built for pixels
in the auxiliary image, we then transfer this to the base
image using the location-based one-to-one correspondence
between the base image and auxiliary image. For example in
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Figure 1, for pixels covered with ccs, we find pixel A (i.e., a
given CCS pixel in the base image) and its location-based one-
to-one correspondence pixel a (i.e., a pixel in the auxiliary
image having the same location as A). We then find in the
auxiliary image a’s most similar b (whose location-correspon-
ding B in the base image must be cloud-free). By doing this
we have built the relationship of closest spectral fit (i.e., the
pixel A and B) in the base image. We then take advantage of
the closest spectral fit in the base image by replacing the
value of A in the base image with the value of B. The
spectral integrity of the base image can be maintained
because we use the most similar pixel B in the base image to
replace the ccs pixel A in this image.

Step 6: Compose an Image in which Clouds and Cloud Shadows

have been Removed

At last, an image in which ccs has been removed can be
composed for the base image using remote sensing software.
Filtering functions may need to be applied to obtain a
smooth view of the composed image.

Case Studies

Example One: CCS Removal using Landsat TM Images

Two Landsat T™M images, the base image (Path 18/Row 38,
acquired on 07 August 2004) and the auxiliary image (Path
18/Row 38, acquired on 29 December 2004), were distrib-
uted by the U. S. Geological Survey (UsGS) with precision
correction (U.S. Geological Survey, 2006). Both images have
areas covered with ccs, but we have determined visually
that most of them are not overlapping. We need not conduct
steps 1 and 2 discussed in the above section, because the
images have been precisely corrected by UsGs. Then, a SAS
program was developed to conduct steps 3, 4, and 5, and
then step 6 was implemented using ERDAS Imagine® 8.7 after
the ccs pixels are replaced and the Ascr files are imported
into ERDAS.

The results of replacing cloud and cloud-shadow pixels
are pictured in Figure 2. Most of CCS are removed, but
unsmooth views of the areas initially covered by ccs are
achieved. A focal median analysis with a 3 X 3 size window
using ERDAS Imagine® 8.7 was applied in order to smooth
the images.

In the step of error diagnostics, we need to check the
accuracy of the values of the replacement pixels. We
randomly generated 10,000 pixels in the images (Figure 2).
We deleted the 3,387 pixels that fell within the cloud and
cloud shadow areas, and used the remaining 6,613 cloud-
free pixels to check the accuracy of CCS removal. We first
applied the CSF technique, i.e., we found pixel A (say, a
given pixel in base image) and its location-corresponding a
(say, a pixel in the auxiliary image having the same location
as A). We found the most similar pixel b (say, a pixel in the
auxiliary image) to a and found b’s location-corresponding B
in the base image. Recalling that in the cloud removal
procedure, B was used to replace the value of A (Figure 1),
the objective now, this being the diagnostic check, is to
examine the difference between the difference of DN between
pixel B and pixel A.

We may wonder whether the CSF is as powerful as
the simple approach of “cut and paste” using the non-
clouded pixels in the auxiliary image to directly replace
the ccs pixels in the base image. In other words, this cut
and paste approach is to use pixel a to replace pixel A
(Figure 1). The cut and paste approach is often used in
practice, since it may be the easiest way. In order to check
the efficiency of the CSF approach, this cut and paste
approach also was conducted using these sampled 6,613
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this figure is available at the

Figure 2. Landsat ™™ images of Path 18/Row 38 with latitude/longitude centroids of 31.75/

Bands 4, 3, and 2 were portrayed as R-G-B, respectively:(a) the base image after removing clouds and
cloud shadows, and (b) randomly sampled pixels (black dots) used to check accuracy. A color version of
ASPRS website: www.asprs.org .

—83.58.

pixels. The CsF technique is compared with the so-called
“cut and paste” approach, because both of them are simple.
Additionally, both approaches need a common prerequisite
of an auxiliary image, and there are not apparent overlaps
of CCS areas in the base image and auxiliary image.

Some statistics are applied to check the errors. Errors
are checked using bias (BS) and mean absolute error (MAE).
Other criteria including the standard deviation of the errors
(sp), relative bias (RBS), relative MAE (RMAE), and ratio of
errors (ROE) also are used to compare values between the
forecasted DN (i.e., the most similar pixel B) obtained using
csr and the DN (i.e., A) in the base image. Bias error is used
to measure either under-forecast or over-forecast of a
parameter, and it is defined by the equation:

1 N
BS(X) = 1 X (%~ X,) (2)

where N is the total number of comparisons, X is the band
of Landsat imagery, X; is the forecast value, and X, is the
observed value. A positive BE indicates a tendency to over-
forecast while a negative BE implies under-forecasts.

Mean-absolute error is the average of the absolute value
of the difference between forecasts and observed pixel
values as defined by Equation 3. Values of MAE close or
equal to 0 indicate perfect or almost perfect forecasts.

1 N
MAE = X[nz:lp(f— X, (3)

The SD is defined using Equation 4. The larger the SD,
the broader the dispersion of error is from its mean:

N 1/2

2 (B, —EY (4)

D =
S N_1n=1

572 May 2009

where N is the sample size (i.e., the numbers of sampled
pixels), E, is the error values, and E is the mean of the errors.

The relative errors and ratio of errors are calculated
using the following equations:

BS
RBS = &*100 (5)
X
MAE
RMAE = %*100 (6)

Error from cut & paste

F =
RO Error from CSF

(7)

The errors of forecasts (bias and MAE), standard deviation
of errors, the relative errors (RBS, RMAE, and ROE), and the
mean and stand deviation of the seven bands were listed in
Table 1. Using CSF approach, we get very small BS (from —0.05
to 1.63) and MAE (from 1.5 to 9.56). Using the cut and paste
approach, we obtained much larger BS (from 3.63 to 52.6) and
MAE (from 12.07 to 53.28). The relative bias using CSF
approach is from 0.06 to 1.11 percent, while it is from 12.61 to
56.07 percent using cut and paste approach. The relative MAE
is from 1.06 to 22.09 percent using CSF approach, while it is
from 25.84 to 56.8 percent using cut and paste approach. The
ratio of errors indicate that bias from cut and paste approach
is at least 11 times as large as that from CSF approach, and the
MAE from cut and paste approach is at least 2 times as large as
that from CSF approach. This error analyses indicate that the
CSF approach results in small errors, and it is simple and
powerful for removing ccs pixels in Landsat imagery.

Example Two: Test CSF using QuickBird and MODIS Images

We then used QuickBird and MODIS images to check the
performance of csF for ccs pixel removal. Two-scene
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TaBLE 1. THE EFFICIENCY OF CLoUDS AND CLOUD SHADOWS REMOVAL USING CSF

Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7
Sampled pixels (70.63)* 30.83 28.79 93.81 84.63 140.99 31.39
(17.61]b 11.91 16.69 27.33 35.13 6.77 20.47
0.15 —0.05 0.32 0.79 1.63 —0.09 0.20
CSF (10.91)° 6.19 9.19 8.59 12.50 1.82 7.31
(0.21)! 0.16 1.11 0.84 1.93 0.06 0.64
BS 14.53 7.29 3.63 52.60 32.27 36.41 8.29
Cut and paste (30.52]b 16.69 22.90 27.90 33.73 17.75 22.30
(20.57)°t 23.65 12.61 56.07 38.13 25.82 26.41
ROE 96.87 145.80 11.34 66.58 19.80 404.56 41.45
7.34 4.50 6.36 6.45 9.56 1.50 5.76
CSF (8.07)° 4.25 6.64 5.72 8.19 1.04 4.50
(10.39)¢* 14.60 22.09 6.88 11.30 1.06 18.35
MAE 24.91 12.07 12.98 53.28 37.70 36.43 15.80
Cut and paste (22.85)P 13.34 18.35 26.58 27.53 17.71 17.79
(35.27)°2 39.15 45.09 56.80 44.55 25.84 50.33
ROE 3.39 2.68 2.04 8.26 3.94 24.29 2.74

Note: BS is bias, MAE is mean absolute error, ROE is ratio of the error of cut and past to the error of csr; and csF is

closest spectral fit.

a: mean;

b: standard deviation of the mean;
c1: relative bias (RBS);

c2: relative MAE (RMAE).

QuickBird images (DigitalGlobe, 2004 and 2005) with four
bands and 2.79 m pixel size and two-scene MODIS images
(NASA, 2004 and 2005) with seven bands and 500 m pixel
size were downloaded from the Global Land Cover Facility
at the University of Maryland and applied to test the
performance of CSF analysis.

We designed the cloudy parts in one scene of QuickBird
and MODIS images since all the images are cloud-free images.
Those images with pseudo clouds were used as the base
images (Figure 3 and 4). The rest of the scene is used as an
auxiliary image. We need not do any processing of surface
reflectance calculation, since the data are already in the
standard level. Identification of ccs pixels is not necessary,
because we fabricated the cloud parts in the images and we
recorded the locations of the cloud parts. The CSF steps 1, 4,
5, 6 were repeated to process the base image and auxiliary
image. Visual comparisons of the assumed cloudy pixels and
the predicted pixels of the QuickBird images indicated not
much difference, and the fused based image maintained the
basic spatial and spectral structure in its original image
(Figure 3). Likewise, the CSF for replacing the cCs pixels in
MODIS images was also good in visualization (Figure 4).

The relative bias error and the relative absolute error at
the per pixel level are summarized in Table 2 and Table 3.
We obtained small bias errors and mean absolute errors for
QuickBird bands 1, 2, and 3, while the bias error and mean
absolute error for band 4 are relatively large (Table 2). The
bias errors for MODIS bands 1, 3, 4, 5, 6 are small, but relative
mean absolute errors for bands 1, 2, 5, 7 are larger than
30 percent of the band mean values (Table 3). The CSF only
performed well for MODIS bands 3, 4, 6, although the relative
bias errors are small for the rest of the bands. However, the
CSF analysis for the ccs pixels covering only the land areas
(i.e., the 25 cloudy regions indicated in light grey circles in
Figure 4c) resulted in significant decreases in bias error
and mean absolute error for bands 1, 2, 4, 5, and 7, though
without significant changes of errors for band 3 and 6
(Table 3). We obtained much larger mean absolute errors in
all the MODIS bands using this CSF technique when the rest of
the 29 cloudy regions covering ocean areas and coastal lines
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were analyzed when the bias errors were relatively small in
bands 3 and 6 (Table 3 and Figure 4).

Discussion
Computational efficiency is important when the analysis of
closest spectral fit is processed. For example, when one
scene Landsat TM image is used as auxiliary image for
selecting the most similar pixels for a given set of pixels
whose location-based one-to-one correspondence are CCS
pixels in base image, one temporary file could be as large as
200 GB, and the CSF process was not completed within one
week using a computer of Dell DIMENSION 8300, Pentium®
4 CPU 3.00GHZ, and 2.00GB of RAM. Then, a random sample
was selected from those cloud-free pixels for the CSF
analysis. We compared the sample size of 5,000, 10,000,
20,000, 50,000, and 100,000. The size of 20,000 was used as
an optimum sample, since we did not obtain significant
differences in closest spectral fit when the sample size was
increased to 50,000 and 100,000. If several advanced
computers and parallel computation are available, using the
whole scene image could improve the closest spectral fit.
The relationship of closest spectral fit in a given pair of
base image and auxiliary image should be the same or very
similar. The two images covering the same area were
obtained using the same remote sensor and had been
processed using the same procedures. Both the base image
and auxiliary image are collected by the same satellite at the
same position but at different times. The original images can
really represent the spectral characteristics of the objects on
the Earth except the cCs pixels. Therefore, in the auxiliary
image, the closest digital numbers (DN) of two pixels a and b
indicate the most similar objects on the ground at location i
and j; in the base image, the two pixels A and B having the
same location i and j as the pixels a and b should still have
the closest DN, because the two most similar objects occupy-
ing the same location i and j on the ground are assumed to
be stable. Once the most similarity relationship of pixel
a and b is determined using auxiliary image, we can apply
this relationship in base image. Then, cCs pixels are
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Figure 3. Clouds and cloud shadows removal using QuickBird images (latitude/longitude
centroids of 19.68/85.30) with 2.79 m pixel size: (a) the base image obtained on 11
December 2004, (b) the auxiliary image obtained on 31 January 2005, (c) designed 122
cloudy regions using the base image, (d) pixel areas assumed being covered by clouds

in the image, (e) predicted pixels for the assumed cloudy areas using the closest

spectral fit based on the auxiliary image, and (f) the fused base image using predicted

pixels by CsF analysis. A color version of this figure is available at the ASPRS website:
www.asprs.org .
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Figure 4. Clouds and cloud shadows removal using MODIS images (latitude/longitude
centroids of 25.77/ —80.98) with 500 m pixel size: (a) the base image obtained on

18 March 2005, (b) the auxiliary image obtained on 12 March 2004, (c) designed 54
cloudy regions (i.e., circle regions) including 25 cloudy regions indicated in light grey
circles covering the land areas of south Florida and the rest 29 cloudy regions covering
ocean and coastal lines, (d) pixel areas assumed covered by clouds in the base image,

(e) predicted pixels for the assumed cloudy areas using the closest spectral fit based on

A color version of this figure is available at the

the auxiliary image, and (f) the fused base image using predicted pixels by

CSF analysis.
ASPRS website: www.asprs.org .

TaBLE 2. ERROR DIAGNOSTICS OF CLOSEST SPECTRAL FIT USING replaced by the most similar pixels in this base image, and
Quick BIRD IMAGES the spectral integrity of the base image can be maintained.
However, the objects on the Earth are not always stable
Bandl Band2 Band3 Band4 or some objects change their locations frequently. For
Mean 195 261 148 121 example, about half of the areas in the MODIS images are
- sea surface water around southern Florida, USA. Compo-
Standard deviation 14 28 26 60 £ th ¢ Lonifi Iv affected b
RBS 5.33 762  13.24 25.61 nents of t le surface water are signi 1c§nt y atfected by waves,
RMAE 5.69 8.19  13.98 26.94 currents, tides, and temperature. In this case, the spectral-

Note: RBS, relative bias error; RMAE, relative mean absolute
error.
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based closest fit determined by the auxiliary image may not
work well in the base image, because water movement can
change its components that significantly change the spectral
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TABLE 3.

CLOSEST SPECTRAL FIT ANALYSIS USING MODIS | MAGES

Mean 5585 12394
Standard deviation 17602 24061
RBS 7.75 20.92
RMAE 45.21 30.32
RBS* 0.19 0.24
RMAE* 1.31 1.82
RBS** 9.73 9.44
RMAE** 80.17 77.95

287 564 9358 1084 766
167 1888 20801 894 3280
3.24 12.05 10.32 0.83  18.92
21.25  23.93 56.63 17.52  36.42
4.12 3.17 0.57 3.01 3.66
24.39 18.39 3.96 20.69  26.07
3.33 6.57 5.24 1.01  64.59
29.90 49.26 113.86 16.33  87.89

Note: RBS, relative bias error; RMAE, relative mean absolute error.
*: error diagnostics for the 22 pseudo cloudy regions covering the land areas in

MODIS image.

**: error diagnostics for the 32 pseudo cloudy regions covering the sea areas in MODIS

image.

characteristics of surface water (e.g., the object of the sea
surface is changing every second). The similarity relations
between two given locations (e.g., two pixels) in the base
image can be significantly different from that of the same
two locations in the auxiliary image, because water compo-
nents are significantly changed as time passes. This can be
the main reason that the CSF cannot perform well when the
MODIS image covering a large sea area was analyzed. This
coincides with the significant differences in the errors of
cloud removal between land areas and ocean areas in the
MODIS images. However, the example using QuickBird images
locating also in a costal area and covering parts of the Chilka
Lake in India indicates good fused images using the pre-
dicted pixels. All in all, whether cSF performs well for given
ocean images mainly depends on the significant changes of
water components because of the currents, waves, and tides.

Conclusions

A closest spectral fit technique has been developed and
conducted in order to remove CCS and to compose cloud-free
images. The examples and diagnostic checks indicate that the
CSF technique is an efficient approach. This CSF technique is
not complex and is easy to understand, and using it generally
includes six steps. The six steps of CSF analysis are needed to
be repeated when an additional auxiliary image is added to
help remove possible overlaps of clouds or cloud shadows in
a given pair of base and auxiliary images. The additional
auxiliary images can be called 279, 3, or 4" auxiliary images
and so on until there is no overlap of clouds and cloud
shadows between the base image and the auxiliary images.

A knowledge-based ccs pixel identification is used to
identify and segment clouds and cloud shadows. The
threshold of 95 for Landsat ™ band 1 was used for detect-
ing clouds. The threshold of Landsat ™ band 4 (i.e., 55)
and the ratio (i.e., 1.3) of Landsat T™ band 4 to band 3 were
used to distinguish cloud shadows in satellite imagery. This
ratio improved the discrimination between cloud shadows
and water areas. The three criteria are flexible and
adjustable from image to image.

The error diagnostics using Landsat T™, QuickBird,
and MODIS images indicates that the technique of closest
spectral fit is a relatively accurate approach to remove
clouds and cloud shadows from images. Compared with
other cloud removal methods discussed above, one advan-
tage of closest spectral fit is that its efficiency (i.e., the
accuracy of removing clouds and cloud shadows) can be
diagnostically checked when it is applied. A statistical
check of errors in predicting band values indicates whether
this band could be used for further applications. Another
advantage is that the CSF technique does not depend on the
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areas, the thickness, and the density of clouds and cloud
shadows in the images.
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