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Correlation functions and conformal blocks

Conformal Field Theory is determined by correlation functions

Variables: complex numbers or (better) points on some complex curve

ψ(z1, . . . , zn) =
∑
p

Fp(z1, . . . , zn)Gp(z1, . . . , zn)

where Fp and Gp are holomorphic multivaluable functions with poles at
the diagonals zi = zj
more precisely: Fp and Gp are (flat) sections of bundles of conformal
blocks

Monodromy is described by representations of various braid groups

Example: Pure braid group PBn = π1(Cn \ ∪i 6=j{zi = zj})
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Representations of vertex algebras

Fact: Conformal blocks are controlled by vertex algebras and their
representations

Representations of a vertex algebra V

Notation: Rep(V ) – representations of V
Rep(V ) is a category: we have morphisms of representations with
associative composition
Rep(V ) is C−linear category: Hom(M,N) is C−vector space and
composition is bilinear
Rep(V ) is abelian category: we can talk about kernels and cokernels of
morphisms

Rationality

Rational vertex algebra: any M ∈ Rep(V ) is a direct sum of irreducibles;
there are just finitely many of irreducibles
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Tensor categories

Theorem (Huang)

Let V be a good rational vertex algebra. Then Rep(V ) has a natural
structure of a Modular Tensor Category (MTC).

Definition

Tensor category: sextuple (C,⊗, a•••, 1, l•, r•)
C – category
⊗ : C × C → C – (bi)functor
aXYZ : (X ⊗ Y )⊗ Z ' X ⊗ (Y ⊗ Z ) (functorial) associativity constraint
1 – unit object
lX : 1⊗ X ' X
rX : X ⊗ 1 ' X
subject to axioms
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Axioms

Pentagon axiom:

(X ⊗ Y )⊗ (Z ⊗ T )
aX ,Y ,Z⊗T

**
((X ⊗ Y )⊗ Z )⊗ T

aX⊗Y ,Z ,T

44

aX ,Y ,Z⊗idT
��

X ⊗ (Y ⊗ (Z ⊗ T ))

(X ⊗ (Y ⊗ Z ))⊗ T
aX ,Y⊗Z ,T // X ⊗ ((Y ⊗ Z )⊗ T )

aidX⊗aY ,Z ,T

OO

and Triangle axiom

(X ⊗ 1)⊗ Y
aX ,1,Y //

rX⊗idY

''

X ⊗ (1⊗ Y )
idX⊗lY

ww
X ⊗ Y

Victor Ostrik (U of O) Tensor categories in CFT June 14 5 / 38



Rigidity

X ∈ C: right dual X ∗ ∈ C and left dual ∗X ∈ C

1→ X ⊗ X ∗ coevaluation 1→ ∗X ⊗ X
X ∗ ⊗ X → 1 evaluation X ⊗ ∗X → 1

Axiom: the maps below are identities:

X = 1⊗ X → X ⊗ X ∗ ⊗ X → X ⊗ 1 = X

X ∗ = X ∗ ⊗ 1→ X ∗ ⊗ X ⊗ X ∗ → 1⊗ X ∗ = X ∗

Definition

A tensor category C is rigid if any object has both left and right dual

We will consider only C−linear abelian tensor categories (with bilinear
tensor product)
Useful fact (Deligne, Milne): In a rigid abelian tensor category tensor
product is exact
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Finiteness conditions

Finite category: abelian category equivalent to Repfd(A) where A is a
finite dimensional algebra.
Equivalently: f.d. Hom’s, finitely many irreducible objects, any object has
finite length, and enough projective objects.
Finite multi-tensor category: rigid tensor category which is finite.
Finite tensor category: finite multi-tensor category with End(1) = C.
Fusion category: finite tensor category which is semisimple (that is each
object is a direct sum of irreducible ones).
Multi-fusion category: finite multi-tensor category which is semisimple.

Examples

Vec – finite dimensional vector spaces over C
Rep(G ) (G – finite group) – f.d. representations of G over C
Repfd(H) (H – f.d. (weak/quasi) Hopf algebra)
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Pointed Example (Hoang Sinh)

Example

G is a (semi)group;
simple objects g ∈ G ; g ⊗ h = gh;
ag ,h,k ∈ C×;
pentagon axiom ⇔ agh,k,lag ,h,kl = ag ,h,kag ,hk,lah,k,l
⇔ ∂a = 1, that is a is a 3-cocycle;
triangle axiom ⇔ 3-cocycle a is normalized;
rigidity ⇔ G is a group
Fact: the category above depends only on the class ω = [a] ∈ H3(G ,C×)
Notation: VecωG

Ocneanu rigidity

For a finite group G the group H3(G ,C×) is finite.
Generalization (Ocneanu; Etingof, Nikshych, O): there are just countably
many fusion categories.
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Pivotal and spherical structures

Pivotal structure: choice of an isomorphism of tensor functors Id→ ∗∗

(that is functorial isomorphism X ' X ∗∗ compatible with tensor product)
Allows to define traces and dimensions

Tr(f ) : 1→ X ⊗ X ∗
f⊗id−−−→ X ⊗ X ∗ → X ∗∗ ⊗ X ∗ → 1

dim(X ) = Tr(idX )

Spherical structure: pivotal structure with dim(X ) = dim(X ∗) for all X

Question: Is it true that any fusion category has a spherical structure?

Theorem (Etingof, Nikshych, O)

For any fusion category there is a distinguished isomorphism of tensor
functors Id→ ∗∗∗∗
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Braided structure

Braiding: functorial isomorphism cXY : X ⊗ Y ' Y ⊗ X satisfying
hexagon axioms for c and c rev

XY := c−1YX

X ⊗ (Y ⊗ Z )
cX ,Y⊗Z

((
(X ⊗ Y )⊗ Z

aX ,Y ,Z

66

cX ,Y⊗idZ
��

(Y ⊗ Z )⊗ X

aY ,Z ,X

��
(Y ⊗ X )⊗ Z

aY ,X ,Z

((

Y ⊗ (Z ⊗ X )

Y ⊗ (X ⊗ Z )

idY⊗cX ,Z

66

If C is a braided tensor category then the pure braid group PBn acts on
X1 ⊗ . . .⊗ Xn and the braid group Bn acts on X⊗n.
Remark: c is a braiding ⇐⇒ c rev is a braiding
Notation: Crev = C as a tensor category but c is replaced by c rev
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Pointed Example II

Example (Joyal-Street)

What are possible braided structures on VecωG?
G = A should be abelian (since a⊗ b = ab and b ⊗ a = ba)
For any a ∈ A the braiding caa : a⊗ a→ a⊗ a is just a scalar q(a) ∈ C×
Claim: q : A→ C× is a quadratic form:
B(a, b) := q(ab)

q(a)q(b) is bilinear and

q(a−1) = q(a)
Fact: Braided tensor category above is uniquely determined by (A, q)
In particular ω is determined by q. For example:
ω is trivial ⇔ q(a) = B̃(a, a) for some bilinear (possibly non-symmetric)
form B̃ : A× A→ C×
Notation: C(A, q)

Number of braidings on VecωG is finite.
Generalization (Ocneanu): Number of braidings on a fusion category is
finite.
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Symmetric tensor categories

Definition

A braided tensor category is symmetric if cYX ◦ cXY = Id (equivalently,
c rev = c).

Examples

Vec

C(A, q) is symmetric ⇔ B ≡ 1 (q(ab) = q(a)q(b))

Rep(G ) with cXY (x ⊗ y) = y ⊗ x

Modify Rep(G ): pick a central involution z ∈ G and set

c ′XY (x ⊗ y) = (−1)mny ⊗ x

if zx = (−1)mx , zy = (−1)ny

Notation: Rep(G , z)

Super vector spaces: sVec = Rep(Z/2Z, z) (z nontrivial)
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Classification of symmetric tensor categories

Theorem (Grothendieck, Saavedra Rivano, Doplicher, Roberts,
Deligne)

A rigid symmetric tensor category satisfying some finiteness assumptions is
of the form Rep(G , z) where G is a (super) group.

Remark

Any finite tensor category satisfies the assumptions of the Theorem.
However there are reasonable examples for which Theorem fails.
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Drinfeld center

This is a construction of braided tensor category Z(C) starting with any
tensor category C
Objects of Z(C): (X , c•) with X ∈ C, cY : X ⊗ Y ' Y ⊗ X satisfying one
hexagon axiom
Tensor product: (X , c•)⊗ (Y , d•) = (X ⊗ Y , c̃d•)
Braiding: use cY to identify X ⊗ Y and Y ⊗ X
Remark: there is no reason for the braiding to be symmetric

Remarks

There is a forgetful functor Z(C)→ C, (X , c•) 7→ X

If C is braided, then there are obvious tensor functors C → Z(C) and
Crev → Z(C); moreover we can combine them

C � Crev → Z(C)
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Drinfeld center II

Theorem (Müger; Etingof, Nikshych, O)

Assume C is fusion category. Then Z(C) is also a fusion category.

Theorem (Etingof, O)

Assume C is finite tensor category. Then Z(C) is also a finite tensor
category.

Example

Z(VecωG ) – twisted Drinfeld double of G
If ω = 0 then

Irr(Z(VecωG )) = {(x , ρ)|x ∈ G , ρ ∈ Irr(CG (x))}/G

If ω 6= 0 use projective representations of CG (x)
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Non-degeneracy

Non-degenerate braided tensor category: “opposite” of symmetric

3 equivalent definitions of non-degenerate braided fusion category

1) (Turaev) S−matrix is non-degenerate: Sij = Tr(cXiXj
◦ cXjXi

)
2) (Bruguières, Müger) No transparent objects: if cXY ◦ cYX = idY⊗X for
all Y ∈ C then X is a multiple of 1
3) C is factorizable: the functor C � Crev → Z(C) is an equivalence

Example

C(A, q) is non-degenerate ⇔ B(a, b) = q(ab)
q(a)q(b) is non-degenerate

What about Logarithmic CFT?

Guess: factorizable categories
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Modular Tensor Categories

Definition (Turaev)

MTC is a non-degenerate braided fusion category with a choice of
spherical structure.

Examples

Z(A) where A is a spherical fusion category (e.g. A = VecωG ) is
MTC.

Wess-Zumino-Witten model: let g be a simple finite dimensional Lie
algebra and k ∈ Z>0. Then C(g, k) = integrable ĝ−modules of level
k has a structure of MTC.

Dijkgraaf-Witten: given a compact group G and ω ∈ H4(BG ,Z)
(satisfying some non-degeneracy condition) we should have MTC

G is simple and simply connected: H4(BG ,Z) = Z: WZW model
G is finite: H4(BG ,Z) = H3(G ,C×): Z(Vecω

G )
G is torus: pointed category C(A, q)
general G : not known
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Module categories

Definition

Let C be a tensor category. Module category over C is a quadruple
(M,⊗, a•••, l•)
M is an abelian C−linear category
⊗ : C ×M→M is an exact bifunctor
aXYM : (X ⊗ Y )⊗M ' X ⊗ (Y ⊗M)
lM : 1⊗M ' M
satisfying the pentagon and triangle axioms

Example

Let C = Vec . The module categories over C are all abelian C−linear
categories. Thus it is a bad idea to study all module categories over given
C.

Reasonable class of module categories for a fusion category C: finite
semisimple ones
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Module categories II

Examples

M = C is module category over C
If F : C → D is a tensor functor then D is a module category over C
Let H be a Hopf algebra and let C = Repfd(H). Then there is a
forgetful tensor functor C → Vec . Thus Vec is a module category
over Repfd(H)

In general: M is module category over C ⇔ there is a tensor functor
C → Fun(M,M) (category of exact functors M→M)

Direct sums

There is an easy operation of direct sum M1 ⊕M2. Each module
category as above is a direct sum of indecomposable ones in a unique way.
Thus for a compete classification it is enough to describe indecomposable
module categories.
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Module categories and correlation functions

Theorem (Fjelstad, Fuchs, Runkel, Schweigert)

Let V be a rational vertex algebra and let M be an indecomposable (finite
semisimple) module category over Rep(V ) satisfying some condition.
Then there is a way to combine conformal blocks of V into a consistent
system of correlation functions.

Full RCFT: good rational vertex algebra V and an indecomposable
module category over Rep(V ).

Physical interpretation of objects of M: boundary conditions

Guess for LCFT: exact module categories

Let C be a finite tensor category. A module category over C is exact if
P ⊗M is projective whenever P ∈ C is (notice that X ⊗M is
automatically projective for a projective M ∈M).
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Classifications of module categories

Theorem (Etingof, Nikshych, O)

For a given fusion category C there are just finitely many indecomposable
module categories.

Examples

Rep(G ): Repψ(H) – representations of twisted group algebra C[H]ψ
where H ⊂ G , ψ ∈ H2(H,C×) (Bezrukavnikov, O)

VecωG : (H, ψ) where H ⊂ G , ∂ψ = ω|H (O)

Z(VecωG ): (H, ψ), H ⊂ G × G , ∂ψ = ω̃|H (O)

C(sl2, k): ADE classification (Cappelli, Itzykson, Zuber et al)

C(sln, k): classification is known for n = 3, 4 (Ocneanu)

Haagerup subfactor (Grossman, Snyder)

Problem: Classify module categories over C(g, k).
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Algebras

Definition

An associative algebra with unit A ∈ C is a triple (A,m, i) where
A ∈ C is an object
m : A⊗ A→ A multiplication morphism
i : 1→ A unit morphism

Associativity axiom:

A⊗ (A⊗ A)

&&
(A⊗ A)⊗ A

77

��

A⊗ A

��
A⊗ A // A
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Algebras II

Unit axiom:
A = 1⊗ A→ A⊗ A→ A is idA

A = A⊗ 1→ A⊗ A→ A is idA

Examples

If X ∈ C then A = X ⊗ X ∗ is an algebra:

i : 1
coev−−−→ X ⊗ X ∗, m : X ⊗ X ∗ ⊗ X ⊗ X ∗

id⊗ev⊗id−−−−−→ X ⊗ X ∗

For H ⊂ G , C[H]ψ is an algebra in VecG

For H ⊂ G , ψ ∈ Z 2(H,C×) with ∂ψ = ω|H , C[H]ψ is an algebra in
VecωG

Commutative algebras

If C is braided we say that an algebra A ∈ C is commutative if
A⊗ A

cAA−−→ A⊗ A
m−→ A equals m : A⊗ A→ A
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Modules

Definition

Let A ∈ C be an algebra. Right A−module is a pair (M, µ), M ∈ C,
µ : M ⊗ A→ M such that

(M ⊗ A)⊗ A
µ⊗idA−−−−→ M ⊗ A

µ−→ M coincides with

(M ⊗ A)⊗ A
αMAA−−−→ M ⊗ (A⊗ A)

idM⊗m−−−−→ M ⊗ A
µ−→ M

and M = M ⊗ 1→ M ⊗ A→ M is idM .

Category of A−modules

Right A−modules form an abelian category CA: morphism from (M, µ) to

(N, ν) is f : M → N such that M ⊗ A
f⊗id //

µ

��

N ⊗ A

ν
��

M
f // N

commutes.

Observation: CA has an obvious structure of module category over C:
X ⊗M ∈ CA for X ∈ C, M ∈ CA
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Modules II

Definition

Assume C is fusion category. A ∈ C is separable if CA is semisimple.

Theorem (O)

For a fusion category C any (semisimple) module category over C is of the
form CA for some separable algebra A.

Morita equivalence

Algebra A in the Theorem above is not unique!
Module categories over C ↔ separable algebras in C up to Morita
equivalence

Example

Algebra A = X ⊗ X ∗ is Morita equivalent to algebra 1.
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Bimodules and dual categories

For any algebra A we consider category ACA of A−bimodules.

ACA is tensor category with tensor product ⊗A and unit object A.

Theorem (Etingof, Nikshych, O)

C is fusion category and A ∈ C is separable ⇒ ACA is a fusion category.

Fact: ACA depends only on Morita equivalence class of A.
Notation: dual category C∗M := ACA where M = CA.
Fact (Müger): C ∼ C∗M is an equivalence relation.
This is weak Morita equivalence, or 2-Morita equivalence.
Example: Repfd(H) is 2-Morita equivalent to Repfd(H∗).

Theorem (Drinfeld; Kitaev; Etingof, Nikshych, O)

C and D are 2-Morita equivalent ⇔ Z(C) ' Z(D)

Physical interpretation of objects of C∗M: labels for defect lines
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Étale algebras

Observation

Assume that A ∈ C is commutative. Then CA is tensor category (with ⊗A

as a tensor product)

Definition

An étale algebra in a braided fusion category C is algebra which is both
commutative and separable.

An étale algebra A ∈ C is connected if Hom(1,A) = C
Any étale algebra decomposes uniquely into a direct sum of connected ones

Lemma

Assume that A ∈ C is connected étale. Then CA is a fusion category
(usually not braided). Moreover, we have a surjective tensor functor
C → CA, X 7→ X ⊗ A
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Roles of étale algebras

1 Extensions of vertex algebras

2 Kernels of central functors

3 Kernels of tensor functors

4 Quantum Manin pairs

5 Modular invariants

6 Left/right centers
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Extensions of vertex algebras

Let V be a vertex algebra.
Question: What are possible extensions W ⊃ V ?

Theorem (Kirillov Jr.,O; Huang,Kirillov Jr.,Lepowsky)

Assume that V is good rational, so Rep(V ) is MTC.
Vertex algebra extensions ↔ (some) étale algebras in Rep(V ).

This produces many interesting examples for categories C(g, k) via the
theory of conformal embeddings

Dyslexia (Pareigis)

What is Rep(W ) in the categorical terms?
Answer: dyslectic (or local) modules
C0A = {M ∈ CA|µ ◦ cAM ◦ cMA = µ} ⊂ CA
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Kernels of central functors

Central functors

Let C be a braided category and D be a tensor category. A central functor
F : C → D is a tensor functor together with isomorphisms
F (X )⊗ Y ' Y ⊗ F (X ) satisfying some axioms. Equivalently, this is a
factorization C → Z(D)→ D where functor C → Z(D) is braided.

Observation: The functor C → CA has a natural structure of central
functor.

Theorem (Davydov, Müger, Nikshych, O)

Conversely, let F : C → D be a central functor between fusion categories.
Let I : D → C be the right adjoint functor of F . Then A = I (1) ∈ C has a
natural structure of (connected) étale algebra; moreover the central
functor C → F (C) ⊂ D is isomorphic to C → CA
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Kernels of tensor functors

Let C be a tensor category and let A ∈ Z(C) be a commutative algebra.
Observation (Schauenburg): CA is a tensor category and there is a
tensor functor C → CA, X 7→ X ⊗ A.

Theorem (Schauenburg)

Z(CA) = Z(C)0A

Theorem (Kitaev; Bruguières, Natale; Davydov, Müger, Nikshych, O)

Let F : C → D be a tensor functor between (multi-)fusion categories. Let
I : D → C be the right adjoint functor of F . Then A = I (1) ∈ C has a
natural lift to Z(C); in addition I (1) ∈ Z(C) has a natural structure of
étale algebra. Moreover the tensor functor C → F (C) ⊂ D is isomorphic to
C → CA
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Quantum Manin pairs

Let A be a fusion category. The forgetful functor Z(A)→ A is central
and surjective. Let A = I (1) ∈ Z(A). Then A = Z(A)A.

Theorem (Kitaev; Davydov, Müger, Nikshych, O)

Let C be a non-degenerate braided fusion category and A ∈ C be an étale
algebra. The functor C → CA is isomorphic to the forgetful functor
Z(A)→ A if and only if C0A = Vec.

Definition

Lagrangian algebra: connected étale algebra A in a non-degenerate braided
fusion category C such that C0A = Vec .
Quantum Manin pair: (C,A) where A ∈ C is Lagrangian.

Example (non-degenerate pointed category C(A, q))

étale algebras in C(A, q) ↔ isotropic subgroups (H ⊂ A, q|H = 1)
Lagrangian algebras in C(A, q) ↔ Lagrangian subgroups (H = H⊥)
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Quantum Manin pairs II

Example

There is a conformal embedding so(5)12 ⊂ (E8)1. Since C(E8, 1) = Vec
we see that C(so(5), 12) = Z(A) for some A.

Module category and Lagrangian algebras

Assume that M is a module category over A. Then there is a functor
A → Fun(M,M) described by a connected étale algebra B ∈ Z(A).

Theorem (Kong, Runkel; Etingof, Nikshych, O; Davydov, Müger,
Nikshych, O)

Algebra B ∈ Z(A) is Lagrangian. Moreove, the assignment M 7→ B is a
bijection: indecomposable module categories over A ↔ Lagrangian
algebras B ∈ Z(A)

Aside: lattice of subcategories of A is anti-isomorphic to lattice of étale
subalgebras of I (1) ∈ Z(A)
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Modular invariants (after Rehren)

Reminder: full RCFT ⇔ vertex algebra V and module category M over
C = Rep(V ) ⇔ vertex algebra V and Lagrangian algebra L ∈ Z(C).
C is MTC, so Z(C) = C � Crev ; L ∈ C � Crev is bulk algebra
The class [L] ∈ K (Z(C)) can be written as

∑
i ,j Zij [Xi � Xj ] where

Zij ∈ Z≥0, Z00 = 1 (since L is connected).

Theorem (Böckenhauer, Evans, Kawahigashi; Fuchs, Runkel,
Schweigert)

Assume that Zij commutes with T−matrix. Then Zij commutes with
S−matrix; that is Zij is a modular invariant.

Remark. If dim(Xi ) > 0 then [Z ,T ] = 0 automatically.

Physical modular invariants

Physical modular invariant = modular invariant of the form [L]
Modular invariant can be physical in more than one way.

Victor Ostrik (U of O) Tensor categories in CFT June 14 34 / 38



Modular invariants II

Construction of étale algebras in C �D
Pick étale algebras A ∈ C, B ∈ D, tensor subcategories C1 ⊂ C0A and
D1 ⊂ D0

B and a braided equivalence φ : C1 ' Drev
1 . Then

⊕M∈Irr(C1)M � φ(M)∗ has a natural structure of étale algebra.

Theorem (Müger; Davydov, Nikshych, O)

Any connected étale algebra in C �D is isomorphic to one constructed
above.

This applies to Z(C) = C � Crev where C is non-degenerate (e.g. MTC).
Algebra above is Lagrangian ⇔ C1 = C0A, D1 = (Crev )0B .

Corollary (Böckenhauer, Evans; Fuchs, Runkel, Schweigert)

Indecomposable module categories over a non-degenerate braided fusion
category C are labeled by triples (A,B, φ) where A,B ∈ C are connected
étale algebras and φ : C0A → C0B is a braided equivalence.
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Modular invariants III

Corollary (Etingof, Nikshych, O)

For a non-degenerate C, Autbr (C) ↔ invertible module categories Pic(C)

Physical interpretation ∼ 1989 (Moore, Seiberg; Dijkgraaf, Verlinde)

Algebra L ∈ C � Crev considered as a vector space
⊕

i ,j(Xi ⊗ Xj)
Zij –

Hilbert space of states
[L] considered as a linear combination of characters

∑
i ,j Zijχiχj –

partition function of the theory
type I theory – A = B and φ = id
type II theory – A = B and φ 6= id
heterotic theory – A 6= B

Example

Example: C(G2, 3)−modular invariant |χ00 + χ11|2 + 2|χ02|2 has 2
distinct physical realizations.
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Left/right centers

Two centers

Let E ∈ C be an algebra in a braided category C.

Left center: biggest Cl(E ) ⊂ E
such that Cl(E )⊗ E

m−→ E equals

Cl(E )⊗ E
cCl (E)E−−−−→ E ⊗ Cl(E )

m−→ E .

Right center: biggest Cr (E ) ⊂ E
such that E ⊗ Cr (E )

m−→ E equals

E ⊗ Cr (E )
cECr (E)−−−−→ Cr (E )⊗ E

m−→ E .

Theorem (Fuchs, Schweigert, Runkel)

Let E be a separable algebra in a (non-degenerate) braided fusion category
C. Then Cl(E ) and Cr (E ) are étale. Moreover, there is a braided
equivalence C0Cl (E) ' C

0
Cr (E).

Proof.

Let L = L(A,B, φ) be Lagrangian algebra associated with M = CE . Then
Cl(E ) = A and Cr (E ) = B.
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Thanks for listening!
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