Conformal field theories and tensor categories Beijing, June 2011

Tensor categories in Conformal Field Theory

Victor Ostrik

University of Oregon vostrik@uoregon.edu

June 14

Correlation functions and conformal blocks

Conformal Field Theory is determined by correlation functions

Variables: complex numbers or (better) points on some complex curve

$$\psi(z_1,\ldots,z_n)=\sum_{\rho}F_{\rho}(z_1,\ldots,z_n)\overline{G_{\rho}(z_1,\ldots,z_n)}$$

where F_p and G_p are holomorphic multivaluable functions with poles at the diagonals $z_i = z_j$ more precisely: F_p and G_p are (flat) sections of hundles of conformal

more precisely: F_p and G_p are (flat) sections of bundles of conformal blocks

Monodromy is described by representations of various braid groups

Example: Pure braid group $PB_n = \pi_1(\mathbb{C}^n \setminus \bigcup_{i \neq j} \{z_i = z_j\})$

Representations of vertex algebras

Fact: Conformal blocks are controlled by vertex algebras and their representations

Representations of a vertex algebra V

Notation: Rep(V) – representations of V

Rep(V) is a *category*: we have morphisms of representations with

associative composition

 $\mathsf{Rep}(V)$ is $\mathbb{C}-\mathit{linear}$ category: $\mathsf{Hom}(M,N)$ is $\mathbb{C}-\mathsf{vector}$ space and

composition is bilinear

Rep(V) is abelian category: we can talk about kernels and cokernels of

morphisms

Rationality

Rational vertex algebra: any $M \in \text{Rep}(V)$ is a direct sum of irreducibles; there are just finitely many of irreducibles

Tensor categories

Theorem (Huang)

Let V be a good rational vertex algebra. Then Rep(V) has a natural structure of a Modular Tensor Category (MTC).

Definition

Tensor category: sextuple $(C, \otimes, a_{\bullet\bullet\bullet}, 1, l_{\bullet}, r_{\bullet})$

 \mathcal{C} — category

 $\otimes: \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$ – (bi)functor

 $a_{XYZ}:(X\otimes Y)\otimes Z\simeq X\otimes (Y\otimes Z)$ (functorial) associativity constraint

1 – unit object

 $I_X: \mathbf{1} \otimes X \simeq X$

 $r_X: X \otimes \mathbf{1} \simeq X$

subject to axioms

Axioms

Pentagon axiom:

and Triangle axiom

Rigidity

 $X \in \mathcal{C}$: right dual $X^* \in \mathcal{C}$ and left dual $X^* \in \mathcal{C}$

$$\mathbf{1} o X \otimes X^*$$
 coevaluation $\mathbf{1} o {}^*X \otimes X$
 $X^* \otimes X o \mathbf{1}$ evaluation $X \otimes {}^*X o \mathbf{1}$

Axiom: the maps below are identities:

$$X = \mathbf{1} \otimes X \to X \otimes X^* \otimes X \to X \otimes \mathbf{1} = X$$
$$X^* = X^* \otimes \mathbf{1} \to X^* \otimes X \otimes X^* \to \mathbf{1} \otimes X^* = X^*$$

Definition

A tensor category ${\mathcal C}$ is rigid if any object has both left and right dual

We will consider only $\mathbb{C}-$ linear abelian tensor categories (with bilinear tensor product)

Useful fact (Deligne, Milne): In a rigid abelian tensor category tensor product is exact

Finiteness conditions

Finite category: abelian category equivalent to $Rep^{fd}(A)$ where A is a finite dimensional algebra.

Equivalently: f.d. Hom's, finitely many irreducible objects, any object has finite length, and enough projective objects.

Finite multi-tensor category: rigid tensor category which is finite.

Finite tensor category: finite multi-tensor category with $\mathsf{End}(1) = \mathbb{C}.$

Fusion category: finite tensor category which is semisimple (that is each object is a direct sum of irreducible ones).

Multi-fusion category: finite multi-tensor category which is semisimple.

Examples

- ullet Vec finite dimensional vector spaces over ${\mathbb C}$
- Rep(G) (G finite group) f.d. representations of G over $\mathbb C$
- $Rep^{fd}(H)$ (H f.d. (weak/quasi) Hopf algebra)

Pointed Example (Hoang Sinh)

Example

```
G is a (semi)group; simple objects g \in G; g \otimes h = gh; a_{g,h,k} \in \mathbb{C}^{\times}; pentagon axiom \Leftrightarrow a_{gh,k,l}a_{g,h,kl} = a_{g,h,k}a_{g,hk,l}a_{h,k,l} \Leftrightarrow \partial a = 1, that is a is a 3-cocycle; triangle axiom \Leftrightarrow 3-cocycle a is normalized; rigidity \Leftrightarrow G is a group Fact: the category above depends only on the class \omega = [a] \in H^3(G, \mathbb{C}^{\times}) Notation: Vec_G^{\omega}
```

Ocneanu rigidity

For a finite group G the group $H^3(G, \mathbb{C}^{\times})$ is finite.

Generalization (Ocneanu; Etingof, Nikshych, O): there are just countably many fusion categories.

Pivotal and spherical structures

Pivotal structure: choice of an isomorphism of *tensor* functors $Id \to **$ (that is functorial isomorphism $X \simeq X^{**}$ compatible with tensor product) Allows to define *traces* and *dimensions*

$$\mathsf{Tr}(f): \ \mathbf{1} \to X \otimes X^* \xrightarrow{f \otimes \mathsf{id}} X \otimes X^* \to X^{**} \otimes X^* \to \mathbf{1}$$

 $\mathsf{dim}(X) = \mathsf{Tr}(\mathsf{id}_X)$

Spherical structure: pivotal structure with $dim(X) = dim(X^*)$ for all X

Question: Is it true that any fusion category has a spherical structure?

Theorem (Etingof, Nikshych, O)

For any fusion category there is a distinguished isomorphism of tensor functors $Id \rightarrow ****$

Braided structure

Braiding: functorial isomorphism $c_{XY}: X \otimes Y \simeq Y \otimes X$ satisfying hexagon axioms for c and $c_{XY}^{rev}:=c_{YX}^{-1}$

If C is a braided tensor category then the pure braid group PB_n acts on $X_1 \otimes \ldots \otimes X_n$ and the braid group B_n acts on $X^{\otimes n}$.

Remark: c is a braiding $\iff c^{rev}$ is a braiding

Notation: $C^{rev} = C$ as a tensor category but c is replaced by c^{rev}

Pointed Example II

Example (Joyal-Street)

What are possible braided structures on Vec_G^{ω} ?

$$G = A$$
 should be abelian (since $a \otimes b = ab$ and $b \otimes a = ba$)

For any $a \in A$ the braiding $c_{aa}: a \otimes a \to a \otimes a$ is just a scalar $q(a) \in \mathbb{C}^{\times}$

Claim: $q: A \to \mathbb{C}^{\times}$ is a quadratic form:

 $B(a,b) := \frac{q(ab)}{q(a)q(b)}$ is bilinear and

 $q(a^{-1}) = q(a)$

Fact: Braided tensor category above is uniquely determined by (A, q)

In particular ω is determined by q. For example:

 ω is trivial $\Leftrightarrow q(a) = \tilde{B}(a,a)$ for some bilinear (possibly non-symmetric)

form $\tilde{B}: A \times A \to \mathbb{C}^{\times}$

Notation: C(A, q)

Number of braidings on Vec_G^{ω} is finite.

Generalization (Ocneanu): Number of braidings on a fusion category is finite.

Symmetric tensor categories

Definition

A braided tensor category is *symmetric* if $c_{YX} \circ c_{XY} = \text{Id}$ (equivalently, $c^{rev} = c$).

Examples

- Vec
- C(A, q) is symmetric $\Leftrightarrow B \equiv 1 \ (q(ab) = q(a)q(b))$
- Rep(G) with $c_{XY}(x \otimes y) = y \otimes x$
- Modify Rep(G): pick a central involution $z \in G$ and set

$$c'_{XY}(x\otimes y)=(-1)^{mn}y\otimes x$$

if
$$zx = (-1)^m x$$
, $zy = (-1)^n y$

Notation: Rep(G, z)

• Super vector spaces: $sVec = \text{Rep}(\mathbb{Z}/2\mathbb{Z}, z)$ (z nontrivial)

Classification of symmetric tensor categories

Theorem (Grothendieck, Saavedra Rivano, Doplicher, Roberts, Deligne)

A rigid symmetric tensor category satisfying some finiteness assumptions is of the form Rep(G, z) where G is a (super) group.

Remark

Any finite tensor category satisfies the assumptions of the Theorem. However there are reasonable examples for which Theorem fails.

Drinfeld center

This is a construction of braided tensor category $\mathcal{Z}(\mathcal{C})$ starting with any tensor category \mathcal{C}

Objects of $\mathcal{Z}(\mathcal{C})$: (X, c_{\bullet}) with $X \in \mathcal{C}$, $c_Y : X \otimes Y \simeq Y \otimes X$ satisfying one hexagon axiom

Tensor product: $(X, c_{\bullet}) \otimes (Y, d_{\bullet}) = (X \otimes Y, cd_{\bullet})$

Braiding: use c_Y to identify $X \otimes Y$ and $Y \otimes X$

Remark: there is no reason for the braiding to be symmetric

Remarks

- There is a forgetful functor $\mathcal{Z}(\mathcal{C}) \to \mathcal{C}$, $(X, c_{\bullet}) \mapsto X$
- If \mathcal{C} is braided, then there are obvious tensor functors $\mathcal{C} \to \mathcal{Z}(\mathcal{C})$ and $\mathcal{C}^{rev} \to \mathcal{Z}(\mathcal{C})$; moreover we can combine them

$$\mathcal{C} \boxtimes \mathcal{C}^{\mathsf{rev}} o \mathcal{Z}(\mathcal{C})$$

Drinfeld center II

Theorem (Müger; Etingof, Nikshych, O)

Assume C is fusion category. Then $\mathcal{Z}(C)$ is also a fusion category.

Theorem (Etingof, O)

Assume C is finite tensor category. Then $\mathcal{Z}(C)$ is also a finite tensor category.

Example

 $\mathcal{Z}(\mathit{Vec}_G^\omega)$ – twisted Drinfeld double of G If $\omega=0$ then

$$Irr(\mathcal{Z}(Vec_G^{\omega})) = \{(x,\rho)|x \in G, \rho \in Irr(C_G(x))\}/G$$

If $\omega \neq 0$ use projective representations of $C_G(x)$

Non-degeneracy

Non-degenerate braided tensor category: "opposite" of symmetric

3 equivalent definitions of non-degenerate braided fusion category

- 1) (Turaev) S-matrix is non-degenerate: $S_{ij} = \text{Tr}(c_{X_i X_j} \circ c_{X_j X_i})$
- 2) (Bruguières, Müger) No transparent objects: if $c_{XY} \circ c_{YX} = \mathrm{id}_{Y \otimes X}$ for all $Y \in \mathcal{C}$ then X is a multiple of $\mathbf{1}$
- 3) $\mathcal C$ is factorizable: the functor $\mathcal C\boxtimes\mathcal C^{\sf rev}\to\mathcal Z(\mathcal C)$ is an equivalence

Example

 $\mathcal{C}(A,q)$ is non-degenerate $\Leftrightarrow B(a,b) = \frac{q(ab)}{q(a)q(b)}$ is non-degenerate

What about Logarithmic CFT?

Guess: factorizable categories

Modular Tensor Categories

Definition (Turaev)

MTC is a non-degenerate braided fusion category with a choice of spherical structure.

Examples

- $\mathcal{Z}(\mathcal{A})$ where \mathcal{A} is a spherical fusion category (e.g. $\mathcal{A} = Vec_G^{\omega}$) is MTC.
- Wess-Zumino-Witten model: let \mathfrak{g} be a simple finite dimensional Lie algebra and $k \in \mathbb{Z}_{>0}$. Then $\mathcal{C}(\mathfrak{g},k) = \text{integrable } \hat{\mathfrak{g}} \text{modules of level } k$ has a structure of MTC.
- Dijkgraaf-Witten: given a compact group G and $\omega \in H^4(BG,\mathbb{Z})$ (satisfying some non-degeneracy condition) we should have MTC
 - G is simple and simply connected: $H^4(BG,\mathbb{Z}) = \mathbb{Z}$: WZW model
 - G is finite: $H^4(BG,\mathbb{Z})=H^3(G,\mathbb{C}^\times)$: $\mathcal{Z}(Vec_G^\omega)$
 - G is torus: pointed category C(A, q)
 - general G: not known

Module categories

Definition

Let C be a tensor category. Module category over C is a quadruple $(\mathcal{M}, \otimes, a_{\bullet \bullet \bullet}, l_{\bullet})$

 ${\mathcal M}$ is an abelian ${\mathbb C}-$ linear category

 $\otimes: \mathcal{C} \times \mathcal{M} \rightarrow \mathcal{M}$ is an exact bifunctor

 $a_{XYM}: (X \otimes Y) \otimes M \simeq X \otimes (Y \otimes M)$

 $I_M: \mathbf{1} \otimes M \simeq M$

satisfying the pentagon and triangle axioms

Example

Let $\mathcal{C}=Vec$. The module categories over \mathcal{C} are all abelian $\mathbb{C}-$ linear categories. Thus it is a bad idea to study all module categories over given \mathcal{C} .

Reasonable class of module categories for a fusion category $\mathcal{C}\colon$ finite semisimple ones

Module categories II

Examples

- ullet $\mathcal{M}=\mathcal{C}$ is module category over \mathcal{C}
- ullet If $F:\mathcal{C} o \mathcal{D}$ is a tensor functor then \mathcal{D} is a module category over \mathcal{C}
- Let H be a Hopf algebra and let $\mathcal{C} = \operatorname{Rep}^{fd}(H)$. Then there is a forgetful tensor functor $\mathcal{C} \to Vec$. Thus Vec is a module category over $\operatorname{Rep}^{fd}(H)$
- In general: \mathcal{M} is module category over $\mathcal{C} \Leftrightarrow$ there is a tensor functor $\mathcal{C} \to \mathit{Fun}(\mathcal{M},\mathcal{M})$ (category of exact functors $\mathcal{M} \to \mathcal{M}$)

Direct sums

There is an easy operation of direct sum $\mathcal{M}_1 \oplus \mathcal{M}_2$. Each module category as above is a direct sum of indecomposable ones in a unique way. Thus for a compete classification it is enough to describe *indecomposable* module categories.

Module categories and correlation functions

Theorem (Fjelstad, Fuchs, Runkel, Schweigert)

Let V be a rational vertex algebra and let $\mathcal M$ be an indecomposable (finite semisimple) module category over Rep(V) satisfying some condition. Then there is a way to combine conformal blocks of V into a consistent system of correlation functions.

Full RCFT: good rational vertex algebra V and an indecomposable module category over Rep(V).

Physical interpretation of objects of M: boundary conditions

Guess for LCFT: exact module categories

Let $\mathcal C$ be a finite tensor category. A module category over $\mathcal C$ is exact if $P\otimes M$ is projective whenever $P\in \mathcal C$ is (notice that $X\otimes M$ is automatically projective for a projective $M\in \mathcal M$).

Classifications of module categories

Theorem (Etingof, Nikshych, O)

For a given fusion category $\mathcal C$ there are just finitely many indecomposable module categories.

Examples

- Rep(G): Rep $^{\psi}(H)$ representations of twisted group algebra $\mathbb{C}[H]_{\psi}$ where $H \subset G$, $\psi \in H^2(H, \mathbb{C}^{\times})$ (Bezrukavnikov, O)
- Vec_G^{ω} : (H, ψ) where $H \subset G$, $\partial \psi = \omega|_H$ (O)
- $\mathcal{Z}(Vec_G^{\omega})$: (H, ψ) , $H \subset G \times G$, $\partial \psi = \tilde{\omega}|_H$ (O)
- $C(sl_2, k)$: ADE classification (Cappelli, Itzykson, Zuber et al)
- $C(sl_n, k)$: classification is known for n = 3, 4 (Ocneanu)
- Haagerup subfactor (Grossman, Snyder)

Problem: Classify module categories over $C(\mathfrak{g}, k)$.

Algebras

Definition

An associative algebra with unit $A \in \mathcal{C}$ is a triple (A, m, i) where $A \in \mathcal{C}$ is an object

 $m:A\otimes A\to A$ multiplication morphism

 $i: \mathbf{1} o A$ unit morphism

Associativity axiom:

Algebras II

Unit axiom:

$$A = \mathbf{1} \otimes A \rightarrow A \otimes A \rightarrow A$$
 is id_A
 $A = A \otimes \mathbf{1} \rightarrow A \otimes A \rightarrow A$ is id_A

Examples

• If $X \in \mathcal{C}$ then $A = X \otimes X^*$ is an algebra:

$$i: \mathbf{1} \xrightarrow{\mathsf{coev}} X \otimes X^*, \ m: X \otimes X^* \otimes X \otimes X^* \xrightarrow{\mathsf{id} \otimes \mathsf{ev} \otimes \mathsf{id}} X \otimes X^*$$

- For $H \subset G$, $\mathbb{C}[H]_{\psi}$ is an algebra in Vec_G
- For $H \subset G$, $\psi \in Z^2(H, \mathbb{C}^{\times})$ with $\partial \psi = \omega|_H$, $\mathbb{C}[H]_{\psi}$ is an algebra in Vec_G^{ω}

Commutative algebras

If $\mathcal C$ is braided we say that an algebra $A\in\mathcal C$ is *commutative* if $A\otimes A\xrightarrow{c_{AA}}A\otimes A\xrightarrow{m}A$ equals $m:A\otimes A\to A$

Modules

Definition

Let $A \in \mathcal{C}$ be an algebra. Right A-module is a pair (M, μ) , $M \in \mathcal{C}$, $\mu: M \otimes A \to M$ such that $(M \otimes A) \otimes A \xrightarrow{\mu \otimes \operatorname{id}_A} M \otimes A \xrightarrow{\mu} M$ coincides with $(M \otimes A) \otimes A \xrightarrow{\alpha_{MAA}} M \otimes (A \otimes A) \xrightarrow{\operatorname{id}_M \otimes m} M \otimes A \xrightarrow{\mu} M$ and $M = M \otimes 1 \to M \otimes A \to M$ is id_M .

Category of A-modules

Right A-modules form an abelian category \mathcal{C}_A : morphism from (M, μ) to (N, ν) is $f: M \to N$ such that $M \otimes A \xrightarrow{f \otimes \mathrm{id}} N \otimes A$ commutes.

$$\int_{\mu} \mu \qquad \int_{\nu} \nu$$

$$M \longrightarrow K$$

Observation: C_A has an obvious structure of module category over C: $X \otimes M \in C_A$ for $X \in C$, $M \in C_A$

Modules II

Definition

Assume C is fusion category. $A \in C$ is *separable* if C_A is semisimple.

Theorem (O)

For a fusion category C any (semisimple) module category over C is of the form C_A for some separable algebra A.

Morita equivalence

Algebra A in the Theorem above is not unique! Module categories over $\mathcal{C} \leftrightarrow$ separable algebras in \mathcal{C} up to *Morita equivalence*

Example

Algebra $A = X \otimes X^*$ is Morita equivalent to algebra 1.

Bimodules and dual categories

For any algebra A we consider category ${}_{A}\mathcal{C}_{A}$ of A-bimodules. ${}_{A}\mathcal{C}_{A}$ is tensor category with tensor product \otimes_{A} and unit object A.

Theorem (Etingof, Nikshych, O)

 $\mathcal C$ is fusion category and $A \in \mathcal C$ is separable \Rightarrow ${}_A\mathcal C_A$ is a fusion category.

Fact: ${}_{A}\mathcal{C}_{A}$ depends only on Morita equivalence class of A.

Notation: dual category $\mathcal{C}_{\mathcal{M}}^* := {}_{A}\mathcal{C}_{A}$ where $\mathcal{M} = \mathcal{C}_{A}$. **Fact** (Müger): $\mathcal{C} \sim \mathcal{C}_{\mathcal{M}}^*$ is an equivalence relation.

This is weak Morita equivalence, or 2-Morita equivalence.

Example: Rep^{fd}(H) is 2-Morita equivalent to Rep^{fd}(H^*).

Theorem (Drinfeld; Kitaev; Etingof, Nikshych, O)

 ${\cal C}$ and ${\cal D}$ are 2-Morita equivalent $\Leftrightarrow {\cal Z}({\cal C}) \simeq {\cal Z}({\cal D})$

Physical interpretation of objects of $\mathcal{C}_{\mathcal{M}}^*$: labels for defect lines

Étale algebras

Observation

Assume that $A \in \mathcal{C}$ is commutative. Then \mathcal{C}_A is tensor category (with \otimes_A as a tensor product)

Definition

An étale algebra in a braided fusion category $\mathcal C$ is algebra which is both commutative and separable.

An étale algebra $A\in\mathcal{C}$ is connected if $\mathsf{Hom}(\mathbf{1},A)=\mathbb{C}$ Any étale algebra decomposes uniquely into a direct sum of connected ones

Lemma

Assume that $A \in \mathcal{C}$ is connected étale. Then \mathcal{C}_A is a fusion category (usually not braided). Moreover, we have a surjective tensor functor $\mathcal{C} \to \mathcal{C}_A$, $X \mapsto X \otimes A$

Roles of étale algebras

- Extensions of vertex algebras
- Kernels of central functors
- Kernels of tensor functors
- Quantum Manin pairs
- Modular invariants
- Left/right centers

Extensions of vertex algebras

Let V be a vertex algebra.

Question: What are possible extensions $W \supset V$?

Theorem (Kirillov Jr.,O; Huang,Kirillov Jr.,Lepowsky)

Assume that V is good rational, so Rep(V) is MTC. Vertex algebra extensions \leftrightarrow (some) étale algebras in Rep(V).

This produces many interesting examples for categories $C(\mathfrak{g},k)$ via the theory of *conformal embeddings*

Dyslexia (Pareigis)

What is Rep(W) in the categorical terms?

Answer: dyslectic (or local) modules

$$\mathcal{C}_{A}^{0} = \{ M \in \mathcal{C}_{A} | \mu \circ c_{AM} \circ c_{MA} = \mu \} \subset \mathcal{C}_{A}$$

Kernels of central functors

Central functors

Let $\mathcal C$ be a braided category and $\mathcal D$ be a tensor category. A *central functor* $F:\mathcal C\to\mathcal D$ is a tensor functor together with isomorphisms $F(X)\otimes Y\simeq Y\otimes F(X)$ satisfying some axioms. Equivalently, this is a factorization $\mathcal C\to\mathcal Z(\mathcal D)\to\mathcal D$ where functor $\mathcal C\to\mathcal Z(\mathcal D)$ is braided.

Observation: The functor $\mathcal{C} \to \mathcal{C}_A$ has a natural structure of central functor.

Theorem (Davydov, Müger, Nikshych, O)

Conversely, let $F:\mathcal{C}\to\mathcal{D}$ be a central functor between fusion categories. Let $I:\mathcal{D}\to\mathcal{C}$ be the right adjoint functor of F. Then $A=I(\mathbf{1})\in\mathcal{C}$ has a natural structure of (connected) étale algebra; moreover the central functor $\mathcal{C}\to F(\mathcal{C})\subset\mathcal{D}$ is isomorphic to $\mathcal{C}\to\mathcal{C}_A$

Kernels of tensor functors

Let $\mathcal C$ be a tensor category and let $A\in\mathcal Z(\mathcal C)$ be a commutative algebra. **Observation (Schauenburg):** $\mathcal C_A$ is a tensor category and there is a tensor functor $\mathcal C\to\mathcal C_A$, $X\mapsto X\otimes A$.

Theorem (Schauenburg)

$$\mathcal{Z}(\mathcal{C}_A) = \mathcal{Z}(\mathcal{C})_A^0$$

Theorem (Kitaev; Bruguières, Natale; Davydov, Müger, Nikshych, O)

Let $F:\mathcal{C}\to\mathcal{D}$ be a tensor functor between (multi-)fusion categories. Let $I:\mathcal{D}\to\mathcal{C}$ be the right adjoint functor of F. Then $A=I(\mathbf{1})\in\mathcal{C}$ has a natural lift to $\mathcal{Z}(\mathcal{C})$; in addition $I(\mathbf{1})\in\mathcal{Z}(\mathcal{C})$ has a natural structure of étale algebra. Moreover the tensor functor $\mathcal{C}\to F(\mathcal{C})\subset\mathcal{D}$ is isomorphic to $\mathcal{C}\to\mathcal{C}_A$

Quantum Manin pairs

Let \mathcal{A} be a fusion category. The forgetful functor $\mathcal{Z}(\mathcal{A}) \to \mathcal{A}$ is central and surjective. Let $\mathcal{A} = I(\mathbf{1}) \in \mathcal{Z}(\mathcal{A})$. Then $\mathcal{A} = \mathcal{Z}(\mathcal{A})_{\mathcal{A}}$.

Theorem (Kitaev; Davydov, Müger, Nikshych, O)

Let $\mathcal C$ be a non-degenerate braided fusion category and $A \in \mathcal C$ be an étale algebra. The functor $\mathcal C \to \mathcal C_A$ is isomorphic to the forgetful functor $\mathcal Z(A) \to \mathcal A$ if and only if $\mathcal C_A^0 = \text{Vec}$.

Definition

Lagrangian algebra: connected étale algebra A in a non-degenerate braided fusion category $\mathcal C$ such that $\mathcal C_A^0=Vec.$

Quantum Manin pair: (C, A) where $A \in C$ is Lagrangian.

Example (non-degenerate pointed category C(A, q))

étale algebras in $\mathcal{C}(A,q) \leftrightarrow$ isotropic subgroups $(H \subset A, q|_H = 1)$ Lagrangian algebras in $\mathcal{C}(A,q) \leftrightarrow$ Lagrangian subgroups $(H = H^{\perp})$

Quantum Manin pairs II

Example

There is a conformal embedding $so(5)_{12} \subset (E_8)_1$. Since $\mathcal{C}(E_8,1) = Vec$ we see that $\mathcal{C}(so(5),12) = \mathcal{Z}(\mathcal{A})$ for some \mathcal{A} .

Module category and Lagrangian algebras

Assume that \mathcal{M} is a module category over \mathcal{A} . Then there is a functor $\mathcal{A} \to Fun(\mathcal{M}, \mathcal{M})$ described by a connected étale algebra $\mathcal{B} \in \mathcal{Z}(\mathcal{A})$.

Theorem (Kong, Runkel; Etingof, Nikshych, O; Davydov, Müger, Nikshych, O)

Algebra $B \in \mathcal{Z}(\mathcal{A})$ is Lagrangian. Moreove, the assignment $\mathcal{M} \mapsto B$ is a bijection: indecomposable module categories over $\mathcal{A} \leftrightarrow$ Lagrangian algebras $B \in \mathcal{Z}(\mathcal{A})$

Aside: lattice of subcategories of \mathcal{A} is anti-isomorphic to lattice of étale subalgebras of $I(\mathbf{1}) \in \mathcal{Z}(\mathcal{A})$

Modular invariants (after Rehren)

Reminder: full RCFT \Leftrightarrow vertex algebra V and module category \mathcal{M} over $\mathcal{C} = \operatorname{Rep}(V) \Leftrightarrow$ vertex algebra V and Lagrangian algebra $\mathcal{L} \in \mathcal{Z}(\mathcal{C})$. \mathcal{C} is MTC, so $\mathcal{Z}(\mathcal{C}) = \mathcal{C} \boxtimes \mathcal{C}^{rev}$; $\mathcal{L} \in \mathcal{C} \boxtimes \mathcal{C}^{rev}$ is bulk algebra The class $[\mathcal{L}] \in \mathcal{K}(\mathcal{Z}(\mathcal{C}))$ can be written as $\sum_{i,j} Z_{ij} [X_i \boxtimes X_j]$ where $Z_{ij} \in \mathbb{Z}_{\geq 0}$, $Z_{00} = 1$ (since \mathcal{L} is connected).

Theorem (Böckenhauer, Evans, Kawahigashi; Fuchs, Runkel, Schweigert)

Assume that Z_{ij} commutes with T-matrix. Then Z_{ij} commutes with S-matrix; that is Z_{ij} is a modular invariant.

Remark. If $dim(X_i) > 0$ then [Z, T] = 0 automatically.

Physical modular invariants

Physical modular invariant = modular invariant of the form $[\mathcal{L}]$ Modular invariant can be physical in more than one way.

Modular invariants II

Construction of étale algebras in $\mathcal{C} \boxtimes \mathcal{D}$

Pick étale algebras $A \in \mathcal{C}$, $B \in \mathcal{D}$, tensor subcategories $\mathcal{C}_1 \subset \mathcal{C}_A^0$ and $\mathcal{D}_1 \subset \mathcal{D}_B^0$ and a braided equivalence $\phi : \mathcal{C}_1 \simeq \mathcal{D}_1^{rev}$. Then $\bigoplus_{M \in Irr(\mathcal{C}_1)} M \boxtimes \phi(M)^*$ has a natural structure of étale algebra.

Theorem (Müger; Davydov, Nikshych, O)

Any connected étale algebra in $\mathcal{C} \boxtimes \mathcal{D}$ is isomorphic to one constructed above.

This applies to $\mathcal{Z}(\mathcal{C}) = \mathcal{C} \boxtimes \mathcal{C}^{rev}$ where \mathcal{C} is non-degenerate (e.g. MTC). Algebra above is Lagrangian $\Leftrightarrow \mathcal{C}_1 = \mathcal{C}_A^0$, $\mathcal{D}_1 = (\mathcal{C}^{rev})_B^0$.

Corollary (Böckenhauer, Evans; Fuchs, Runkel, Schweigert)

Indecomposable module categories over a non-degenerate braided fusion category $\mathcal C$ are labeled by triples (A,B,ϕ) where $A,B\in\mathcal C$ are connected étale algebras and $\phi:\mathcal C_A^0\to\mathcal C_B^0$ is a braided equivalence.

Modular invariants III

Corollary (Etingof, Nikshych, O)

For a non-degenerate \mathcal{C} , $Aut^{br}(\mathcal{C}) \leftrightarrow invertible module categories <math>Pic(\mathcal{C})$

Physical interpretation \sim 1989 (Moore, Seiberg; Dijkgraaf, Verlinde)

Algebra $\mathcal{L} \in \mathcal{C} \boxtimes \mathcal{C}^{rev}$ considered as a vector space $\bigoplus_{i,j} (X_i \otimes X_j)^{Z_{ij}}$ – Hilbert space of states

 $[\mathcal{L}]$ considered as a linear combination of characters $\sum_{i,j} Z_{ij} \chi_i \overline{\chi_j}$ - partition function of the theory

 $\mathbf{type}\ \mathbf{I}\ \mathrm{theory}-A=B\ \mathrm{and}\ \phi=\mathrm{id}$

type II theory -A = B and $\phi \neq id$

heterotic theory $-A \neq B$

Example

Example: $C(G_2,3)$ —modular invariant $|\chi_{00} + \chi_{11}|^2 + 2|\chi_{02}|^2$ has 2 distinct physical realizations.

Left/right centers

Two centers

Let $E \in \mathcal{C}$ be an algebra in a braided category \mathcal{C} .

Left center: biggest $C_l(E) \subset E$ such that $C_l(E) \otimes E \xrightarrow{m} E$ equals

Right center: biggest $C_r(E) \subset E$ such that $E \otimes C_r(E) \xrightarrow{c_{EG}(E)} E$ equals

$$C_I(E) \otimes E \xrightarrow{c_{C_I(E)E}} E \otimes C_I(E) \xrightarrow{m} E.$$

$$E \otimes C_r(E) \xrightarrow{c_{EC_r(E)}} C_r(E) \otimes E \xrightarrow{m} E.$$

Theorem (Fuchs, Schweigert, Runkel)

Let E be a separable algebra in a (non-degenerate) braided fusion category \mathcal{C} . Then $C_l(E)$ and $C_r(E)$ are étale. Moreover, there is a braided equivalence $\mathcal{C}^0_{C_l(E)} \simeq \mathcal{C}^0_{C_r(E)}$.

Proof.

Let $\mathcal{L} = \mathcal{L}(A, B, \phi)$ be Lagrangian algebra associated with $\mathcal{M} = \mathcal{C}_E$. Then $C_I(E) = A$ and $C_r(E) = B$.

Thanks for listening!