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Abstract

The transition maps of a fiber bundle are often said to satisfy the “cocycle condition.”
If we take this terminology seriously we are led to consider cohomology with coefficients in
a non-abelian group. The resulting long exact sequence makes the first and second Stiefel-
Whitney classes (and their interpretations in terms of orientability and spin structures) totally
transparent. We will also muse briefly about the Eilenberg–Mac Lane space K(G, 1), the
classifying space BG, and the derived functor Ext.

1 Definition and examples

A smooth fiber bundle consists of smooth manifolds B, E, and F , called the base space, the total

or entire space, and the fiber, respectively, and a smooth map π : E → B, called the projection,
that looks locally like the projection B × F → B in the following sense: there is an open cover
{Ui} of B and diffeomorphisms ϕi : Ui×F → π−1(Ui) such that π ◦ϕi : Ui×F → Ui is projection
onto the first factor. We write

F ⊂ ✲ E

B.

π
❄

Here are some examples:

• Any vector bundle, e.g. the tangent bundle to the 2-sphere

R
2 ⊂ ✲ TS2

S2

π
❄
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or the Möbius bundle

,

whose fiber is R.

• Any covering space, e.g. the double cover of S1

,

whose fiber is a two-point discrete space.

• The Klein bottle

,

whose fiber is S1.
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2 Short exact sequences

According to Steenrod, we should think of a fiber bundle as a product that lost one of its projec-
tions. Recall that a product has two projections

B × F ✲ F

B.
❄

Today, we would like to think of a fiber bundle as a short exact sequence of spaces. Here are some
reasons:

• A short exact sequence of abelian groups is like a product that lost one of its projections.
The simplest short exact sequence is a product:

0 ✲ A ✲ A× C ✲ C ✲ 0.

A general short exact sequence

0 ✲ A ✲ B ✲ C ✲ 0

has one projection B → C, and if there is a second projection B → A, i.e. a splitting

0 ✲ A ✛
✲ B ✲ C ✲ 0,

then B ∼= A× C.

• A short exact sequence of Lie groups is a fiber bundle. If

1 ✲ K ✲ G
π
✲ H ✲ 1

is a short exact sequence of Lie groups, then G is a bundle over H with fiber K:

K ⊂ ✲ G

H.

π
❄

This is the only place we really need to be working with manifolds—the same statement is
not quite true of topological groups.

• From a fiber bundle

F ⊂ ✲ E

B

π
❄

we get a long exact sequence of homotopy groups

· · · ✲ πi(F ) ✲ πi(E) ✲ πi(B)

✲ πi−1(F ) ✲ πi−1(E) ✲ πi−1(B) ✲ · · · ,

and long exact sequences often arise from short exact sequences.
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3 Transition maps

Recall that we have an open cover {Ui} of B and local trivializations π−1(Ui) ∼= Ui × F . For the
Möbius bundle, the open cover is

and the local trivializations look like

.

If p ∈ Ui ∩Uj , we have two ways to identify the fiber π−1(p) with F : one over Ui and one over
Uj . Thus for each p we get an automorphism of F , so there is a map ψij : Ui ∩ Uj → Diffeo(F ),
called a transition map. Transition maps tell us how to glue the Ui × F together to make E.

If p ∈ Ui ∩ Uj ∩ Uk, then
ψjk(p)ψij(p) = ψik(p).

This is called the cocycle condition, which we will examine in a moment.
Our transition maps probably don’t need to take values in the whole diffeomorphism group of

F—if we choose our trivializations carefully, we may be able to make do with a smaller group:

• For a vector bundle, we only need the general linear group GLn(R).

• For an oriented vector bundle, we only need GL+
n (R) = {A ∈ GLn(R) : detA > 0}. A local

trivialization of a vector bundle is the same as a moving frame

and if we make all our frames positively oriented, our transition maps will all have positive
determinant.
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• For a vector bundle with a Riemannian metric, we can make our frames orthonormal using
the Gram-Schmidt process, so our transition maps will take values in the orthogonal group
O(n).

• For the Möbius bundle, we only need Z/2.

4 Cohomology

Now we have an open cover {Ui} of B and maps ψij : Ui ∩ Uj → G ⊂ Diffeo(F ) which satisfy the
“cocycle condition.” If there are cocycles, there should be cochain groups, coboundary maps, and
a whole cohomology theory hanging around somewhere. Since we are dealing with an open cover,
pairwise intersections Ui∩Uj , and triple intersections Ui∩Uj ∩Uk, it should be Čech cohomology.
Let’s try to define Ȟ∗(B;G) using the usual Čech recipe.

First we define the cochain groups:

• A 0-cochain ϕ consists of smooth maps ϕi : Ui → G for all i.

• A 1-cochain ψ consists of smooth maps ψij : Ui ∩ Uj → G for all i, j.

• A 2-cochain ξ consists of smooth maps ξijk : Ui ∩ Uj ∩ Uk → G for all i, j, k.

These form groups under pointwise multiplication. Next we define the coboundary maps d:

• If ϕ is a 0-cochain, dϕ is the 1-cochain given by (dϕ)ij(p) = ϕj(p)ϕi(p)
−1.

• If ψ is a 1-cochain, dψ is the 2-cochain given by (dψ)ijk(p) = ψij(p)ψik(p)
−1ψjk(p).

But if G is not abelian, these are not group homomorphisms, ker d and im d are not subgroups,
and if we went on to 2-cochains, we would not be able to get d2 = 1. Let’s see what we can do
despite these problems.

For Ȟ0, there is no trouble. If dϕ = 1 then for all p ∈ Ui ∩ Uj , ϕi(p) = ϕj(p), so the partial
functions ϕi : Ui → G patch together to make a global function B → G. Thus

Ȟ0(B;G) = C∞(B,G)

which is a group under pointwise multiplication.
For Ȟ1, neither the 1-cocycles nor the 1-coboundaries form a group, but the group of 0-cochains

acts on the set 1-cocycles by

(ϕ · ψ)ij(p) = ϕj(p)ψij(p)ϕi(p)
−1.

To get Ȟ1(B;G), take the quotient of this set by this action (this should be viewed as taking
cocycles modulo coboundaries) and take the direct limit over all open covers. While Ȟ1(B;G) is
not a group, it does have a distinguished element, represented by the trivial cocycle ψij ≡ 1.

From a fiber bundle with structure group G, we get transition maps, hence a class in Ȟ1(B;G).
But several bundles may have the same transition maps, as for example the Möbius bundle, the
double cover of the circle, and the Klein bottle do. We can eliminate this ambiguity by choosing
the principal G-bundle, where the fiber F is the groupG, and G acts on itself by left multiplication.
Of the three bundles just mentioned, the double cover is the principal Z/2-bundle. Conversely, a
cocycle tells us how to construct a principal G-bundle over B, and if two cocycles represent the
same class in Ȟ1(B;G) then the resulting bundles are isomorphic. Thus

Ȟ1(B;G) = { isomorphism classes of principal G-bundles over B }.

5



We cannot define Ȟ2 and higher unless G is abelian. This is reminiscent of the situation with
relative homotopy groups, where π3(X,A) and higher are abelian, π2 is a group but not necessarily
abelian, π1 is a pointed set, and π0 is not defined.

How does our cohomology theory relate to singular cohomology? If G is abelian then singular
cohomology H∗

sing(B;G) agrees with Čech cohomology Ȟ∗(B;G), where G is the sheaf of locally
constant functions B → G. We are working with smooth functions, not locally constant functions,
but if G is discrete (e.g. Z or Z/2) then these are same, so our Ȟ∗(B;G) agrees with singular
cohomology. But note that our Ȟ1(B;R) = 0 for all B, unless we give R the discrete topology.

5 Aside: representable functors

We have defined Ȟ1(B;G) following the Čech recipe and found that it classifies principalG-bundles
over B. This should not come as a great surprise. If G is abelian,

H1
sing(B;G) = { homotopy classes of maps B → K(G, 1) }

where K(G, 1) is an Eilenberg–Mac Lane space, i.e. its fundamental group is G and all its higher
homotopy groups vanish. On the other hand, for any G,

{ principal G-bundles over B } = { homotopy classes of maps B → BG }

where BG is the classifying space of G. But if you’re like me, you can never keep K(G, 1) and
BG straight, because you build them the same way: you start with a basepoint, add a loop for
every g ∈ G, glue in a triangle with edges g, h, and k whenever gh = k, etc. This is because BG
is a K(G, 1) if G is discrete.

6 Aside: derived functors

We are working with Čech cohomology, which in its natural habitat is a sheaf cohomology theory.
Grothendieck teaches us that sheaf cohomology can also be defined as the derived functors of global
sections Γ = H0. For our sheaf, H0(B;G) is C∞(B,G), which is Hom(B,G) in the category of
smooth manifolds. In the category of abelian groups, the derived functor of Hom is Ext, and
Ext(C,A) classifies 1-step extensions of C by A, that is, short exact sequences

0 → A→ B → C → 0.

For us, H1(B;G) classifies principal G-bundles over B, but earlier we said that we should consider

G ⊂ ✲ E

B

π
❄

as a short exact sequence of spaces.
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7 Induced maps

If f : B′ → B is a smooth map and α : G → H is a group homomorphism, we get induced
maps f∗ : Ȟ∗(B;G) → Ȟ∗(B′;G) and α∗ : Ȟ∗(B;G) → Ȟ∗(B;H) in the usual way: if a class
ψ ∈ Ȟ1(B;G) is represented over an open cover {Ui} of B by maps ψij : Ui ∩ Uj → G, then
{f−1(Ui)} is an open cover of B′ and we let (f∗ψ)ij = ψij ◦ f and (α∗ψ)ij = α ◦ ψij .

What are these induced maps in terms of bundles? If a class ψ ∈ Ȟ1(B;G) corresponds to a
principal G-bundle E → B then f∗ψ corresponds to the pullback bundle f∗E → B′. The class
α∗ψ corresponds to the associated bundle E ×G H : we swap out the fibers G with H , letting the
transition maps act on H by g · h = α(g)h, and because α is a group homomorphism, this is a
principal H-bundle.

Let us emphasize that we are not defining f∗ and α∗ in terms of bundles—we just do what
Čech cohomology obliges us to do, and the bundle interpretation comes for free.

From a short exact sequence of coefficient groups

1 → K
i
−→ G

π
−→ H → 1,

we get a long exact sequence in cohomology

1 → Ȟ0(B;K)
i∗−→ Ȟ0(B;G)

π∗−→ Ȟ0(B;H)

δ
−→ Ȟ1(B;K)

i∗−→ Ȟ1(B;G)
π∗−→ Ȟ1(B;H).

Even though Ȟ1 is not a group, it is a pointed set, so it still makes sense to talk about kernels,
and thus exactness. The usual Čech proof goes through with no trouble, but we can also give a
fun and easy proof by interpreting Ȟ0(B;G) as smooth maps and Ȟ1(B;G) as bundles. To give
the flavor, let us construct the connecting homomorphism δ : Ȟ0(B;H) → Ȟ1(B;K), which in
most cohomology theories is a chore. Since 1 → K → G → H → 1 is a short exact sequence
of Lie groups, G is a principal K-bundle over H , hence determines a class η ∈ Ȟ1(H ;K). If
f ∈ Ȟ0(B;H) then f is a smooth map B → H , hence induces a map f∗ : Ȟ1(H ;K) → Ȟ1(B;K).
We define δf = f∗η.

If K is abelian then Ȟ2(B;K) is defined, and if i(K) is contained in the center of G then we
can continue the exact sequence

1 → Ȟ0(B;K)
i∗−→ Ȟ0(B;G)

π∗−→ Ȟ0(B;H)

δ
−→ Ȟ1(B;K)

i∗−→ Ȟ1(B;G)
π∗−→ Ȟ1(B;H)

δ
−→ Ȟ2(B;K).

Unfortunately there is no slick construction of this second connecting homomorphism.
If we wanted to go on to Ȟ2(B;G) we would need G to be abelian, so H would also be abelian

and the long exact sequence would go on forever, but that story is well-known.

8 Stiefel-Whitney classes

We conclude with an application. If E is a vector bundle overB, Milnor defines the Stiefel-Whitney
classes wi(E) ∈ Hi

sing(B;Z/2) = Ȟi(B;Z/2) by the following axioms:

• Dimension: wi(E) = 0 for i > rankE.
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• Naturality: If f : B′ → B then wi(f
∗E) = f∗wi(E).

• Direct Sum: If E′ is another vector bundle over B then

w(E ⊕ E′) = w(E) ` w(E′)

where w(E) = 1 + w1(E) + w2(E) + w3(E) + · · · .

• Normalization: If B = S1 and E is the Möbius bundle then w1(E) is the non-trivial element
of Ȟ1(S1;Z/2) = Z/2.

This definition is, of course, completely opaque; Milnor only proves that such classes exist fifty
pages later. Let’s use our cohomology theory to get a more concrete understanding of w1 and w2.

The first Stiefel-Whitney class w1(E) lives in Ȟ1(B;Z/2), and vector bundles of rank n live in
Ȟ1(B; GLn(R)), so w1 is a map Ȟ1(B; GLn(R)) → Ȟ1(B;Z/2). We would like it to be induced
by a group homomorphism GLn(R) → Z/2. The first such map that comes to mind is the sign of
the determinant. In fact, one can check that (sign ◦ det)∗ : Ȟ1(B; GLn(R)) → Ȟ1(B;Z/2) satisfies
Milnor’s axioms.

The kernel of sign ◦ det is GL+
n (R), so we have a short exact sequence

1 → GL+
n (R)

i
−→ GLn(R)

sign ◦ det
−−−−−−→ Z/2 → 1.

A piece of the resulting long exact sequence is

Ȟ1(B; GL+
n (R))

i∗−→ Ȟ1(B; GLn(R))
w1−−→ Ȟ1(B;Z/2),

that is,

{oriented vector bundles over B}
i∗−→ {vector bundles over B}

w1−−→ Ȟ1(B;Z/2).

The first map i∗ just forgets the orientation. The image of i∗ is the kernel of w1, which is to say
that w1(E) = 0 if and only if E is orientable.

Elements of Ȟ1(B;Z/2) correspond to principal Z/2-bundles over B, i.e. double covers of B,
so we can also interpret w1 as a map

{vector bundles over B}
w1−−→ {double covers of B}.

If E is tangent bundle of B then w1(E) is the orientation cover of B. An orientation of B is a
section of this cover, and a principal bundle has a global section if and only if it is trivial.

Another piece of the long exact sequence is

Ȟ0(B;Z/2)
δ
−→ Ȟ1(B; GL+

n (R))
i∗−→ Ȟ1(B; GLn(R)),

that is,

{smooth maps B → Z/2}
δ
−→ {oriented vector bundles over B}

i∗−→ {vector bundles over B}.

Exactness means that given an orientable vector bundle, i.e. an element of im i∗, the possible
orientations on it are parametrized by the smooth maps B → Z/2. A smooth map B → Z/2 is
just a choice of ±1 for each connected component of B.
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To interpret the second Stiefel-Whitney class, let’s assume that our vector bundle E → B is
oriented and has a Riemannian metric, so w2 : Ȟ1(B; SO(n)) → Ȟ2(B;Z/2). If we are to under-
stand this in terms of the long exact sequence, w2 will have to be the connecting homomorphism
of a central extension

1 → Z/2 → ? → SO(n) → 1.

If n > 2 then π1(SO(n)) = Z/2, and its universal covering group is called Spin(n). Now from the
short exact sequence of coefficent groups

1 → Z/2 → Spin(n) → SO(n) → 1

we get a long exact sequence in cohomology

Ȟ1(B;Z/2) → Ȟ1(B; Spin(n)) → Ȟ1(B; SO(n))
w2−−→ Ȟ2(B;Z/2)

and one checks that the connecting homomorphism satisfies Milnor’s axioms—the hard part is the
direct sum axiom. Thus w2(E) = 0 if and only if E admits a spin structure, and the inequivalent
spin structures on E are parametrized by Ȟ1(B;Z/2). Spin structures are important in physics;
they are what you need to write the Dirac equation.

We didn’t really need to assume that E was oriented—we could have used the double cover
Pin(n) of O(n), or if we didn’t want to choose a Riemannian metric, the double cover of GLn(R).
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