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Abstract 10 
Africa, a continent endowed with huge water resources that sustain its agricultural activities is 11 
increasingly coming under threat from impacts of climate extremes (droughts and floods), which 12 
puts the very precious water resource into jeopardy. Understanding the relationship between 13 
climate variability and water storage over the continent, therefore, is paramount in order to 14 
inform future water management strategies. This study employs Gravity Recovery And Climate 15 
Experiment (GRACE) satellite products and the higher order (fourth order cumulant) statistical 16 
independent component analysis (ICA) method to study the relationship between Terrestrial 17 
Water Storage (TWS) changes and five global climate-teleconnection indices; El Niño-Southern 18 
Oscillation (ENSO), North Atlantic Oscillation (NAO), Madden-Julian Oscillation (MJO), 19 
Quasi-Biennial Oscillation (QBO) and the Indian Ocean Dipole (IOD) over Africa for the period 20 
2003-2014. Pearson correlation analysis is applied to extract the connections between these 21 
climate indices (CIs) and TWS, from which some known strong CI-rainfall relationships (e.g., 22 
over equatorial eastern Africa) are found. Results indicate unique linear-relationships and 23 
regions that exhibit strong linkages between CIs and TWS. Moreover, unique regions having 24 
strong CI-TWS connections that are completely different from the typical ENSO-rainfall 25 
connections over eastern and southern Africa are also identified. Furthermore, the results indicate 26 
that the first dominant Independent Components (IC) of the CIs are linked to NAO, and are 27 
characterized by significant reductions of TWS over southern Africa. The second dominant ICs 28 
are associated with IOD and are characterized by significant increases in TWS over equatorial 29 
eastern Africa, while the combined ENSO and MJO are apparently linked to the third ICs, which 30 
are also associated with significant increase in TWS changes over both southern Africa as well 31 
as equatorial eastern Africa.  32 
 33 
Keywords: 34 
Africa, Terrestrial Water Storage (TWS), Climate Indices, GRACE, ENSO, IOD, NAO, MJO, 35 
QBO, Climate-TWS Hotspots 36 
 37 
1.0 Introduction 38 
Africa (Figure 1), the world’s poorest continent faces myriad of climate-related extremes, e.g., 39 
droughts and floods (see, e.g., Lyon et al., 2014, Omondi et al., 2014, Awange et al., 2016a, 40 
Mpelesoka et al., 2017, Ndehedehe et al., 2018), which fuel food insecurity thereby putting 41 
millions of lives at risk (e.g., Agutu et al., 2017). Given the large dependency of the continent on 42 
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rain-fed agriculture (Agola and Awange 2015, Agutu et al., 2017), understanding the relationship 43 
that exists between Terrestrial Water Storage (TWS; i.e., a summation of soil moisture, 44 
groundwater, surface, and vegetation water storage compartments) and global climate 45 
teleconnection indices is essential for agricultural production on the one hand, and for improving 46 
the understanding of interactions between climate variability (through, e.g., climate indices) and 47 
the water cycle on the other hand. This is also important for managing the water resources in arid 48 
and semi-arid regions of the continent, and for the general planning purposes in order to make 49 
the continent food secure. Whereas the relationships between climate indices and rainfall is 50 
relevant for meteorological drought mitigation (e.g., Clark et al., 2003, Naumann et al., 2014, 51 
Kurnik et al., 2011, Awange et al., 2016a, 2016b, and Mpelesoka et al., 2017), it is also vital to 52 
understand the relationship between climate indices and TWS in order to be able to mitigate both 53 
hydrological drought as well as agricultural droughts (e.g., Anderson et al., 2012; AghaKouchak, 54 
2015). 55 
 56 
The relationships between the global climate teleconnection indices and TWS over Africa can be 57 
understood within the context of the general climatology since the drivers of climatological-58 
rainfall patterns over the continent also influence terrestrial water storage recharge in the soil, 59 
surface and groundwater reservoirs. The drivers of the general climate (hydroclimate) of Africa 60 
are dominated by atmospheric circulation systems (e.g., monsoonal trade winds) and land surface 61 
processes, which influence inter-tropical convergence zone (ITCZ), where these winds (and rain-62 
generating moisture) normally converge and affect rainfall patterns. The ITCZ over the African 63 
continent has a north-south migration pattern dictated by the position of the overhead sun and 64 
tend to influence the location of maximum precipitation, with approximately 3-4 weeks lag time 65 
(see e.g., Nicholson, 1996).  66 
 67 
Seasonal rainfall distribution over areas south of the Sahara (see Figure 1) is particularly linked 68 
to the movement and position of the ITCZ. However, over the equatorial regions, rainfall tends 69 
to be evenly distributed throughout the year (i.e., showing limited dependence on the ITCZ). For 70 
higher latitudes, however, especially over the Sahel, rainfall tends to be confined to the summer 71 
months-June-September (e.g., Ndehedehe et al., 2016). Over equatorial eastern Africa, rainfall 72 
tends to be highly influenced and dictated by southeast and northeast monsoons, depending on 73 
the north-south migration of the ITCZ position. Southern African rainfall, on the other hand, 74 
tends to exhibit spatio-temporal rainfall distribution largely influenced by major circulation 75 
features of the southern hemisphere. For example, from the equator to about 20

o
S, seasonal 76 

rainfall variability tend to be in synch with the movement of the ITCZ whereas the more sub-77 
tropical regions are influenced by semi-permanent high-pressure cells of the general circulation 78 
of the atmosphere, characterized by a high degree of intra- and inter-annual variability (Tyson, 79 
1986). 80 
 81 
In general, as whole, apparent linkages exist between the global climate indices and rainfall and 82 
to an extent with TWS over a number of regions in sub-Saharan Africa (see, e.g., Ndehedehe et. 83 
al., 2017a, 2018). It is important to note, however, that there may be several other human-84 
induced factors that may contribute to TWS patterns and changes.  For example, at the local 85 
scale, the effects of complex terrain (topography) and large inland water bodies could be 86 
superimposed on the climatological patterns, leading to unique space-time distribution of rainfall 87 
and other hydrological features, including variability and changes in TWS. In addition, other 88 
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human activities related to water resources management and practices such as dam release 89 
procedures and abstraction may also contribute to unique changes in local TWS (e.g., Ndehedehe 90 
et al., 2017b). 91 
 92 
Although a number of studies have previously investigated and discussed the relationships 93 
between global climate indices and rainfall over the African continent (e.g., Becker et al., 2010; 94 
Indeje et al., 2000; Mutai and Ward 2001; Awange et al., 2013), the relationship between some 95 
of the dominant global climate teleconnection indices and seasonal/inter-annual variability of 96 
TWS has not been extensively investigated, except a few recent studies such as Reager and 97 
Famiglieti, (2009), Phillips et al., (2012), Awange et al., (2013), Forootan et al., (2014a) and 98 
Ndehedehe et al., (2017a, 2018). However, these studies also focus on separate sub-regions of 99 
the continent and thus do not consider the entire continent to provide a more comprehensive 100 
understanding of the relationship between the continent’s TWS and major global climate 101 
teleconnection indices. For instance, Awange et al. (2013) look at the Lake Victoria basin in East 102 
Africa while Forootan et al., (2014a) and Ndehedehe et al., (2017a, 2018) consider the West 103 
Africa region. The reason for this is largely due to the fact that a comprehensive measurement of 104 
the components of TWS (surface water, groundwater, soil moisture, snow/ice and biomass) from 105 
the insufficient and unreliable in-situ hydroclimate data remains a big challenge (e.g., Creutzfeldt 106 
et al., 2010). TWS comprises all forms of water stored on the surface and in the subsurface of the 107 
Earth, which is a major component of the hydrological cycle and is critical in understanding the 108 
land surface-atmosphere interactions, and exchanges of moisture and energy. 109 
 110 
Since 2002, however, large-scale TWS has been successfully estimated using the gravity 111 
observations of Gravity Recovery And Climate Experiment (GRACE, e.g., Tapley et al., 2004). 112 
Nominal monthly GRACE TWS can be derived with an accuracy of ~1 cm with few hundred km 113 
spatial resolution. GRACE has been applied globally to study the relationship between climate 114 
variability and TWS changes. For example, Phillips et al., (2012) and Ni et al., (2018) examined 115 
linkages between ENSO and global TWS over the entire globe. Using monthly GRACE-TWS 116 
for the period 2003-2010, Phillips et al., (2012) showed peak correlations between Multivariate 117 
ENSO Index (MEI) and the measured (GRACE) mass anomaly time series to be fairly high for 118 
the Amazon Basin and Borneo in Southeast Asia. However, other tropical regions showed strong 119 
negative correlations with MEI, while arid regions indicated high positive correlations. Phillips 120 
et al., (2012) concluded that using GRACE satellite data and ENSO index helped to isolate 121 
teleconnection patterns around the globe, showing areas where ENSO and TWS were highly 122 
correlated. Other studies that have employed GRACE to study climate-related impacts include 123 
Chen et al., (2010), Becker et al., (2010), Thomas et al., (2014), Zhang et al., (2015), Cao et al., 124 
(2015) and Kushe et al., (2016). Given ENSO’s dominant impact on global TWS changes, 125 
statistical decomposition techniques are developed and applied in Eicker et al. (2016) and 126 
Forootan et al. (2018) to separate variations in TWS that are related to ENSO from the rest, 127 
which are called ‘non-ENSO’ modes. Such separation seems to be significant to understand 128 
TWS trends without the impact of extreme events such as those associated with ENSO. These 129 
studies, however, are global in nature and those that consider various parts of the African 130 
continent do not explore the impact of other major climate indices such as Madden-Julian 131 
Oscillation (MJO), and Quasi-Biennial Oscillation (QBO) on TWS changes at continental scale. 132 
For instance, Forootan et al, (2014a) showed that there is significant influence of NAO and 133 
ENSO on annual and inter-annual variability of TWS over West Africa while Ndehedehe et al., 134 
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(2017) examined the association of three global climate indices (ENSO, IOD, and Atlantic 135 
Multi-decadal Oscillation AMO) with changes in TWS derived from both Modern-Era 136 
Retrospective Analysis for Research and Applications (MERRA, 1980–2015) and Gravity 137 
Recovery and Climate Experiment (GRACE, 2002–2014).  The present contribution aims at 138 
filling this gap by not only considering ENSO, IOD, and NAO that have been treated in parts of 139 
Africa as discussed above, but also two additional climate indices (i.e., MJO and QBO), which 140 
have not previously been considered, and are also known to influence seasonal and intra-seasonal 141 
rainfall variability over parts of Africa (e.g. Semazzi and Indeje, 1999). For the first time, a study 142 
of the linkages between these five major climate indices and TWS is undertaken over the entire 143 
continent of Africa, known to be in-situ data deficient. This pioneering continent-wide study of 144 
climate variability impacts on the stored water of the continent will provide useful information 145 
for some areas that have hardly been covered. Our hypothesis in this study is that generally all 146 
the five global climate indices are linked to sub-seasonal and inter-annual patterns and anomalies 147 
of rainfall over Africa (cf. Figure 1). Hence, the same indices, at times individually or in 148 
combinations, could most likely have a significant influence on the variability of TWS at 149 
seasonal to inter-annual time scales over the continent. Therefore, one can consider the temporal 150 
patterns of the climate indices as known, and try to find similar patterns in TWS time series. This 151 
has been done here by computing linear correlations that are described in the next section along 152 
with a brief description of the different datasets used in this study. 153 
 154 
Therefore, the present study specifically contributes the following; (i) it provides an analysis of 155 
possible linear and non-linear relationships between five common global climate indices (NAO, 156 
QBO, ENSO, IOD, MJO) and GRACE-derived TWS data (hereafter referred to simply as 157 
GRACE-TWS) over the entire African continent, (ii), it provides an analysis of both phase-158 
locked and lagged correlations between these key global climate indices and TWS changes at 159 
sub-seasonal, annual, and decadal time scales, and (iii), it applies a higher order statistical 160 
method of Independent Component Analysis (ICA, Forootan and Kusche, 2012, 2013) to filter 161 
the interrelationships among the five global climate indices and isolate any unique or combined 162 
influences of these indices on TWS changes of the African continent. This enables identification 163 
of unique regions where such relationships are strongest, which is important for water resources 164 
assessments and management. 165 
 166 
The rest of this study is organized as follows; in section 2, the study domain is presented, while 167 
section 3 briefly describes the five global climate indices that have been correlated with TWS 168 
data in this study. Section 4 analyses and discusses the results Section 5 provides the major 169 
conclusions of the study. 170 
 171 
 172 
 173 
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 174 
Figure 1 Study domain. Interior boxes feature sub‐Saharan Africa (SSA) and Lake Victoria Basin (Largest Freshwater surface in 175 

Africa). The colors show elevation in meters. 176 
 177 
2.0 Data and Methods 178 
 179 
The data used include; monthly time series of GRACE-TWS, NOAA's Multivariate ENSO 180 
Indices (MEI), IOD data from Japanese Agency for Marine Earth-Science Research and 181 
Technology (JAMSTEC), QBO and NAO indices (from NOAA archive). Detailed descriptions 182 
of these data sets are presented in what follows. 183 
 184 
2.1 Gravity Recovery And Climate Experiment (GRACE) 185 
 186 
The GRACE mission, launched in 2002, is a joint US National Aeronautics and Space 187 
Administration (NASA) and the German Aerospace Centre (DLR) gravimetric mission aimed at 188 
providing spatio-temporal variations of the Earth's gravity field. On time scales ranging from 189 
months to decades, temporal variations of gravity are mainly due to redistribution of water mass 190 
in the surface fluid envelopes of the Earth. Over land, GRACE provides measurements of 191 
vertically integrated terrestrial water storage (TWS) changes, which include surface water, soil 192 
moisture, groundwater, snow over large river basins, and biomass (see, e.g., Tapley et al., 2004; 193 
Khaki et al., 2017a). Monthly GRACE-TWS data used in this study were obtained from the 194 
German Research Centre for Geosciences Potsdam (GFZ). Version  (RL05a) of GRACE level-2 195 
data (1

0
x 1

0 
spatial resolution) from GFZ that are derived in terms of fully normalized spherical 196 

harmonic (SH) coefficients of the geopotential fields up to degree and order 90 were downloaded 197 
from the Information System and Data Centre (ISDC) (http://isdc.gfz-potsdam.de/index.php) and 198 
used to compute monthly TWS fields. First, GRACE Level-2 solutions were augmented by the 199 
degree-1 (https://grace.jpl.nasa.gov/data/get-data/geocenter/) in order to include the variation of 200 
the Earth's center of mass with respect to a crust-fixed reference system. This replacement is 201 
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undertaken due to its impact on the amplitude of the annual and semi-annual water storage 202 
changes. Degree 2 and order 0 (C20) coefficients from GRACE (Cheng et al., 2014; Khaki et al., 203 
2017b, 2017c) are not well determined and were replaced using JPL products 204 
(http://grace.jpl.nasa.gov/data/get-data/oblateness/). 205 
 206 
GRACE level-2 spherical harmonics at higher degrees are affected by correlated noise (e.g., 207 
Khaki et al., 2018) and are therefore filtered using the DDK3 de-correlation filter (similar to that 208 
of Kusche et al., 2009). Selecting DDK3 for filtering GRACE products makes a good sense since 209 
GFZ RL05a data represents considerably lower noise than the previous release of the GRACE 210 
level-2data. Monthly DDK3 filtered solutions were then used to generate TWS grids over Africa 211 
following the approach of Wahr et al., (1998). Since the signals over land areas are of interest to 212 
this study, the ocean areas were masked using a sea-land mask similar to the mask that is used to 213 
generate GRACE-AOD1B de-aliasing products (http://www.gfz-potsdam.de/AOD1B). 214 
 215 
2.2 Global Climate Indices 216 

All four indices for ENSO, QBO, MJO, and NAO used in the study are derived from those 217 
computed at NOAA, but IOD from the Japanese Marine-Earth Science and Technology 218 
(JAMSTECH),   and are briefly described in the subsequent sub-sections.  219 
 220 
2.2.1 Multivariate ENSO Index (MEI) 221 
 222 
MEI (http://www.esrl.noaa.gov/psd/enso/mei/) is the first principal component of the combined, 223 
normalized fields of sea level pressure, zonal and meridional components of wind, surface air 224 
pressure, and total cloudiness fraction. The units of MEI are standardized and hence a score of 1 225 
represents a full standard deviation departure of the principal component for the respective 226 
season involved (Wolter and Timlin, 2011). A comparison of MEI and Nino3.4 indices in this 227 
study found the negligible difference between the correlation values computed (as will be 228 
demonstrated in the results discussed later in this contribution). NOAA's monthly MEI (2003 to 229 
2014) is utilized in this study, where they are correlated with TWS time series over the same 230 
time period. 231 
 232 
2.2.2 Indian Ocean Dipole (IOD) Index 233 
 234 
Indian Ocean Dipole (IOD) is an irregular oscillation of sea-surface temperatures, in which the 235 
western Indian Ocean becomes alternately warmer or colder than the eastern part of the ocean. It 236 
is represented by anomalous SST gradient between the western equatorial Indian Ocean and the 237 
southeastern equatorial Indian Ocean, where this gradient is often referred to as Dipole Mode 238 
Index (DMI).  In this study, the instantaneous and lagged monthly correlations between DMI 239 
(http://www.jamstec.go.jp/frcgc/research/d1/iod/HTML/Dipole%20Mode%20Index.html) and 240 
TWS data over the period 2003-2014 are analyzed. 241 
 242 
2.2.3 Quasi-Biennial Oscillation (QBO) Index 243 
 244 
QBO (http://www.esrl.noaa.gov/psd/data/correlation/qbo.data) involves the fluctuation between 245 
equatorial westerly and easterly wind regimes in the lower stratosphere with a period of about 246 
26-29 months. This oscillation is discerned through an index that is based on a calculation of 247 
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zonal wind anomaly at 30hPa averaged along the equator (u-30 QBO) or at 50hPa (u-50 QBO). 248 
Lau and Shoo (1988) suggested the link between the easterly phase of QBO and ENSO. In the 249 
present study, QBO zonal index computed from NCEP/NCAR Reanalysis data at 30hPa level 250 
(i.e. u-30 QBO) covering the period 2003-2014 is utilized. 251 
 252 
2.2.4 Madden-Julian Oscillation (MJO) index 253 
 254 
 The Madden-Julian Oscillation (MJO; Madden and Julian 1971, 1972) is a tropical atmospheric 255 
phenomenon first recognized in the early 1970s and is also commonly known as the 40-day 256 
wave. This wave often develops over the Indian Ocean and then travels east across the tropics at 257 
5-10 m/s. The MJO has been suggested as a key factor in connecting or bridging weather and 258 
climate, and thus at times very important in influencing rainfall over eastern Africa, including the 259 
Lake Victoria Basin (see, e.g., Omeny et al., 2008). The MJO data used in this study was 260 
obtained from Climate Prediction Center (CPC) archive for the period 2003-2014 261 
(http://www.cpc.noaa.gov/products/precip/CWlink/daily_mjo_index/mjo_index.html). 262 
  263 
2.2.5 North Atlantic Oscillation (NAO) Index 264 
 265 
The NAO  (http://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml) consists of a 266 
north-south dipole of anomalies, with one center located over Greenland and the other center of 267 
opposite sign spanning the central latitudes of the North Atlantic between 35

o
N and 40

o
N. Both 268 

negative and positive phases of the NAO are associated with basin-wide changes in the intensity 269 
and location of the North Atlantic jet stream and storm track and in large-scale modulations of 270 
the normal patterns of zonal and meridional heat and moisture transport, which in turn results in 271 
changes in global temperature and precipitation patterns. NAO data for the period 2003-2014 272 
was employed in this study. 273 
 274 
3.0 Results and Analysis  275 

The study analyses both instantaneous and lagged relationships between the five global climate 276 
teleconnection indices and GRACE-TWS using Pearson correlations,and Independent 277 
Component Analysis (ICA) technique.  Possible lagged relationships are also explored by 278 
removing annual and semi-annual cycles from both climate indices and GRACE-TWS products 279 
to isolate potential seasonal dependence of total water storage changes on the dominant seasonal 280 
rainfall patterns over most parts of Africa.  Further, in order to minimize redundant information 281 
between climate indices, due to their overlapping inter-relationships, the ICA technique (see e.g., 282 
Forootan and Kusche, 2012 and 2013) is applied.  This is accomplished by performing 283 
correlations between the dominant independent patterns of climate indices and GRACE-TWS 284 
changes. In order to provide a measure of an average influence of each climate index on TWS 285 
changes over the period of our study, the normalized time series of each index along with a linear 286 
trend and annual/semi-annual cycles are fitted to the time series of TWS changes in each grid as: 287 
 288  ,ሺ݅ݔ ݆, ሻݐ ൌ ܽ ൅ ݐܾ ൅ ܿ sinሺ2ݐߨሻ ൅ ݀ cosሺ2ݐߨሻ ൅ 	݁ sinሺ4ݐߨሻ ൅ 	݂ sinሺ4ݐߨሻ ൅ ܫ	݃	 ൅289  ሻሻݐሺܫሺܪ	݄ ൅  ሻEq (1), 290ݐሺߝ	
 291 
where	݅ and ݆ represent the location of the grid, ݐ is time in years, ܪሺܫሺݐሻሻ represents a Hibert 292 
transformation of the normalized climate index, which is the same as I but after shifting by 293 2/ߨ 
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in the spectral domain, and ߝሺݐሻ  represents the temporal residuals. Coefficients ܽ  to ݄  are 294 
computed using the least squares approach. The influence of the five global climate indices on 295 
TWS variability is then examined to identify possible “hot-spots”, where changes in TWS are 296 
significantly influenced by a specific or a combination of the indices (i.e., ENSO, IOD, QBO, 297 
MJO, and NAO), and whether there exists phase-locked or lagged relationships. In the following 298 
sections the influence of ݃ that also indicates the possible contributions of each index (or their 299 
combinations) in TWS changes are presented. 300 
 301 
3.1 Instantaneous Pearson Correlation and Amplitude Analysis. 302 

Instantaneous correlations (lag-0) between the five climate indices and TWS during the period 303 
2003-2014 are presented in Figure 2. Note that the amplitudes of the r-values indicate whether 304 
the effect of a particular climate index represents positive or negative change in monthly TWS 305 
(e.g., Figure 2 A2-E2). The amplitude of each index (݃	in Eq. (1)) is shown in millimeters (mm) 306 
i.e., the middle panels of Figure 2 (A2-E2). The statistical significance of their-values at 95% 307 
confidence level are presented on the right panel (A3-E3), where zero (0) indicates non-308 
significant correlations and 1 is significant. The correlation analysis is undertaken considering 309 
different levels of noise in TWS data. Values between 0 and 1 in the right panel indicate regions 310 
where the estimated correlations are accepted when the noise level is less than 1 cm, and they are 311 
rejected when the noise levels are considerably higher.    312 
 313 
GRACE- TWS and ENSO are highly correlated (positive) primarily along the western coast of 314 
the Indian Ocean/East Africa coast (Figure 2: A-1). Also, positive correlations between ENSO 315 
and TWS occur along the West African coast, especially coast of Guinea, in the Mediterranean, 316 
as well as over central parts of the Sahel. These findings support the work of Ndehedehe et al., 317 
(2017), which found strong presence of ENSO-induced TWS derived from MERRA reanalysis 318 
data in the coastal West African countries and most of the regions below latitude 10◦N. 319 
However, TWS and ENSO are mostly negatively correlated over central Africa (especially over 320 
the Congo Basin/Forest) and parts of South Africa, western Ethiopia and most parts of Sudan. 321 
The correlations are significant over the coastal regions of the Horn of Africa although the 322 
amplitudes (mm) are fairly low (Figure 2: A-1 - A-3). Over the equatorial central/eastern Africa 323 
and the coast of Guinea, however, the amplitudes are greater than 10 mm/month implying that 324 
ENSO-related precipitation induces an increase of about 10 mm/month or more in TWS (Figure 325 
2: A-2). 326 
 327 
Pearson correlations between IOD and TWS reveal a unique dipole correlation pattern with 328 
strong positive correlations with amplitudes exceeding 10 mm/month over the southern margins 329 
of the Sahel, but large negative correlations (with amplitude less than -10mm/month) are 330 
dominant over central and eastern Africa, and particularly over the Congo Basin (Figure 2:B-1 331 
and B-2). It is notable that over equatorial eastern Africa, these correlations are somehow 332 
opposite to the expected wet/dry anomalies associated with positive/negative IOD phases (e.g., 333 
Saji et al., 1999), which might be due to the short period of the dataset used in the present study. 334 
However, several other factors including the complex terrain over East Africa can influence the 335 
spatial organization of surface and sub-surface water patterns in return leading to TWS patterns 336 
that may be inconsistent with known IOD-rainfall relationships. 337 
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 338 

Figure 2 correlations between the five climate indices and TWS during the period 2003‐2014 (A‐1‐E‐1), the amplitude of each 339 
index (A‐2‐E‐2), and the statistical significance of the r‐values at 95% confidence level (A‐3‐E‐3). 340 
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Statistically significant, positive, correlations between QBO and TWS are also found over 341 
southern Africa (Figure 2: C-1, C-2, and C-3). However, the impact of MJO on monthly TWS 342 
changes over Africa is dominated by a dipole pattern, characterized by large negative r-values 343 
over southern margins of the Sahel (Figure 2: D-1 to D-3), extending into western Ethiopia and 344 
over the coast of West Africa, and large positive r-values over equatorial central Africa/Congo 345 
Basin and southwestern coast of Indian Ocean (i.e., southern parts of East Africa extending into 346 
Tanzania and Mozambique). In contrast, the NAO index apparently displays no strong influence 347 
on TWS changes over Africa (Figure 2:E-1 to E-3) based on instantaneous correlations with 348 
monthly data.  349 
 350 
3.2 Lagged Pearson Correlations and Amplitude Analysis 351 

To examine if there existed any lagged relationships between TWS changes and the five global 352 
climate indices given the fact that for hydrological processes, a temporal lag usually exists 353 
between changes in fluxes (precipitation, evapotranspiration, and runoff) and the peak of water 354 
storage (see e.g., Awange et al., 2013), lagged Pearson correlation analysis is done (e.g., Figure 355 
3). Furthermore, global climate teleconnections such as ENSO often lead to shifts in global 356 
climatic patterns such as east-west displacement of the Walker circulation over equatorial eastern 357 
and central Africa that might impose lead/lag time of up to 6 months (e.g., Indeje et al., 2000). 358 
Hence, ENSO could as well affect the seasonal and inter-annual variability of TWS. In Figure 359 
3:A-1, our results show that most regions (north of15

o
S) apparently display very strong lagged 360 

relationships/correlations between ENSO and TWS that include an 8-12 and 4-8 month lagged 361 
relationships over the Sahel and equatorial eastern Africa, respectively (Figure 3:A-3). However, 362 
significant negative correlations between ENSO and TWS over southern Africa appear to be 363 
more phase-locked (lag=0).  But, unique lagged relationships between TWS and IOD are found 364 
particularly over equatorial eastern (around Lake Victoria Basin) and central Africa, where the 365 
amplitudes of the influence are found to be greater than 20 mm/month especially within 2-6 366 
month lags (Figure 3: B-2, B-3, B-4). 367 
 368 
The lagged correlations computed between QBO index and TWS display fairly strong positive 369 
relationship over southern Africa (Figure 3: C-1) especially with 2-month lag (Figure 3: C-3). 370 
However, very low (insignificant) QBO-TWS correlations exist over the rest of sub-Saharan 371 
Africa as shown in Figure 3: C-4. One of the possible reasons is that QBO time scale is in the 372 
intervening period between that of ENSO (3-5 yrs) and IOD (2-5 yrs) and hence the QBO is 373 
highly likely masked by the stronger ENSO and IOD signal given also that our study period 374 
covered only 10 years. 375 
 376 
In Figure 3: D, the relationships between MJO and TWS are explored.  It should be noted that 377 
even though the periodicity of MJO is approximately 30-90 days, we believe that the monthly 378 
time series of TWS and MJO index covering the 13-year period of our study is long enough to 379 
capture the right phases of MJO and possible relationships with TWS changes.  As a whole, the 380 
MJO index is found to be positively/negatively correlated with TWS over northern sub-Saharan 381 
Africa/southern Africa (Figure 3: D-1), with MJO-TWS relationship over southern Africa 382 
appearing to be strong within 6-8 months lag (Figure 3: D-1, D-3). The amplitudes of the 383 
influence are however considerably smaller than other induces (compare Figure 3: D2 with other 384 
plots on the same column). 385 
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 386 

 387 

Figure 3 lagged correlations between the five climate indices and TWS (A‐1‐E‐1), the amplitude of each index (A‐2‐E‐2), 2‐month 388 
time lag between the indices and TWS (A‐3‐E‐3), and the statistical significance test for lagged‐correlation (A‐4‐E‐4). 389 

 390 
With regard to the potential relationships between NAO and TWS variability over sub-Saharan 391 
Africa, our analysis reveals that the only regions where significant lagged correlations exist are 392 
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over the western part of southern Africa. The r-values over these regions are also significant at 393 
95% confidence level, especially at 8-12 month lag (Figure 3: E-3 and E-4). 394 
 395 
To ensure that the results described above are robust enough, we perform further analysis of the 396 
correlations between TWS and climate indices after filtering out seasonal cycle (semi-annual and 397 
annual cycles) from the monthly time series of the five indices. Part of the reason for doing this 398 
is due to the dominant role of ITCZ that drives the seasonality of climate, especially rainfall over 399 
Africa. The results are discussed in detail in the next section. 400 
 401 
3.3 Lagged Correlation and Amplitudes after Filtering Annual and Semi-annual Cycles 402 

The north-south migration of ITCZ and external forcing associated with global atmospheric 403 
circulation and sea surface temperature (SST) perturbations (e.g. Giannini et al., 2003) has been 404 
shown to be partly responsible for the strong seasonal variability of precipitation over Africa. We 405 
investigate if the variability of TWS is also in synch with the seasonal and inter-annual 406 
variability of precipitation, in response to five global teleconnection indices. Generally, the 407 
correlations between the five indices (ENSO, IOD, NAO, MJO, QBO) and TWS are relatively 408 
stronger, with annual/semi-annual cycles filtered from the time series, suggesting apparent 409 
climate-TWS association at inter-annual scale (see Figure 4). For instance, in Figure 4: A-1 to A-410 
4, the correlation between ENSO and TWS is found to be more significant over many parts of 411 
Africa when the seasonal cycle is filtered from the ENSO index, compared to cases where   412 
seasonal cycle is unfiltered(cf. Figure 3: A-1) although the spatial patterns remains the same. 413 
This implies that strong ENSO-TWS relationship is more pronounced when semi-annual and 414 
annual cycles are filtered. However, statistically significant ENSO-TWS r-values greater than 0.4 415 
(using 137-month time series:  2003-2013) tended to occur with 6 to 12 months lags, especially 416 
over the Sahel and the Horn of Africa (Figure 4: A-3 and A-4).  417 
 418 
Similarly, the IOD-TWS relationships after annual/semi-annual cycles are filtered also depict 419 
very strong lagged correlation (more than 0.4 with lags of 2 to 6 months), particularly over 420 
equatorial central Africa and Lake Victoria Basin in eastern Africa (Figure 4: B-1 to B-4). 421 
However, areas depicting strong QBO influence on TWS at inter-annual and longer time scales 422 
tend to be confined mostly over southern Africa (Figure 4:C-1 to C-4). MJO-TWS relationship is 423 
presented in Figure 4: D-1 to D-4, which shows strong relationship over southern Africa within 424 
6-8 months lags (see also Figure 2: D).  Finally, the potential NAO-TWS relationships through 425 
lagged correlation after filtering the seasonal cycle from the time series tend to be dominated by 426 
very large negative correlations over southern Africa (Figure 4: E-4), but virtually uncorrelated 427 
over the rest of the continent. 428 
 429 
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 430 

Figure 4 Lagged Correlations between the five indices and TWS (A‐1‐E‐1), the amplitude of each index A‐2‐E‐2), lags between the 431 
indices and TWS A‐3‐E‐3), and the statistical significance test for lagged‐correlation (A‐4‐E‐4). Note that annual and 432 

semi−annual cycles are removed before these processes. 433 
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Overall, both lagged and instantaneous correlations between individual climate indices (CI) and 434 
TWS produce unique regions, where the CI-TWS connections/relationships are very strong (see 435 
Table 1 for a summary). This is the same for cases both with and without the semi-annual and 436 
annual cycles filtered from the time series of the climate indices during the 137-months’ period, 437 
spanning 2003-2013. In addition, it is worth noting that for some indices (e.g., ENSO and IOD), 438 
the interpretation of possible physical processes/drivers linked to their TWS relationships must 439 
be done with caution. This is due to the fact that ENSO and IOD are sometimes highly 440 
interrelated, posing challenges in separating their unique and/or combined influences on regional 441 
or continental precipitation and TWS patterns. In other words, isolating their unique/combined 442 
contributions (correlation) to TWS variability at monthly, seasonal, inter-annual and longer time 443 
scales is challenging. Hence, in the next section, the statistical interdependence between/among 444 
climate indices are accounted for using Independent Component Analysis (ICA, Forootan and 445 
Kusche, 2012, 2013).  446 
 447 
Table 1: Summary of the influence of global indices on TWS 448 

Index/Mode Impact on TWS 
 Regions with the strong 
CI-TWS  relationship 

  Remark 

ENSO 
Negatively correlated 
Positively correlated 
 

Southern Africa 
Eastern Africa 
 Sahel 

No lag 
No lag 
6-12 month’s lag 

IOD 
 

Positively correlated 
 

Eastern Africa 
Central Africa (Congo 
Basin) 

2-6 month’s lag 
 

QBO Positively correlated Southern Africa 2 month’s lag 

MJO 
 

Positively correlated 
Congo Basin 
Southern Africa 

No lag 
4-6 month’s lag 

NAO Positively correlated Southern Africa 6-8 month’s lag 

 449 
 450 
3.4 ICA-derived Isolation of Redundant Information Between Climate Indices 451 

ICA is applied to the time series of climate indices in order to explore the existence of any 452 
significant modes of monthly and inter-annual variability of TWS over Africa that may be linked 453 
to specific or combined global climate indices (see Table 2). The time series of the three leading 454 
Independent Components (ICs) are retained and correlated with respective time series of the five 455 
climate indices. From a statistical point of view, ICA technique makes use of the higher order 456 
(higher than second order mutual statistical information) between climate indices to extract 457 
modes that are statistically mutually as independent as possible (see Forootan, 2014 for more 458 
details). Applying ICA is equivalent to defining a linear relationship (shown by a mixing matrix 459 
A) between observations (available CIs stored in matrix X) and temporally independent 460 
components ICs (stored in matrix S) 461  ࢄ ൌ  .ࡿ࡭
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Here A is computed by making the fourth-order cumulant’s tensor based on the time series of 462 
CIs as diagonal as possible as outlined in Forootan and Kusche (2012).  463 
 464 
In Figure 5, the correlation matrix of the estimated Independent Components (ICs) from the 465 
climate indices (CIs) versus individual climate indices is presented, and generally, the ICA 466 
technique is able to isolate the redundant information between CIs well. The first ICA mode 467 
(IC1) is seen to be highly correlated with NAO (positive), while the second ICA mode (IC2) is 468 
highly correlated to ENSO (negative) and modestly correlated to MJO (negative). IC3 is highly 469 
correlated with QBO (negative). Therefore, no duplicated correlations are seen between ICs and 470 
the indices (i.e., no climate index is correlated with more than one IC, see Figure 5).  This means 471 
that the leading modes of ICA have the potential to distinguish between the unique or combined 472 
contributions/relationships of the global climate indices and TWS changes. We also note that 473 
none of the ICs are correlated with IOD. Tables 3 show the actual correlation while Figure 5 474 
provides a visual clarity. 475 
 476 

 477 

Figure 5 Correlation between the indices and their Independent Components 478 

 479 
Table2: A summary of the influence of the leading Independent Components (ICs) on TWS 480 

ICA 
Mode 

Impact on TWS 
Regions with strong IC-TWS  
relationship/correlation 

Remark 

IC1 Reduction in TWS 
Eastern Africa 
Southern Africa 

Greater than 
10mm/month reduction 
Occurs 6-8 month’s lag 

IC2 Reduction in TWS Sahel, Central Africa - 

IC3 Unclear influence All sub-Saharan Africa - 

 481 
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 482 

Table 3: Correlations (at 95% confidence level) between leading 
Independent Components and global climate indices 

IC1 1        

IC2 0.01 1       

IC3 -0.1 0.0 1      

ENSO 0.01 -0.8 0.0 1     

NAO 0.9 0.0 0.0 -0.3 1    

QBO 0.1 0.0 -0.8 0.0 0.2 1   

MJO 0.1 -0.3 -0.1 0.4 -0.2 0.0 1  

IOD 0.01 0.01 0.0 0.2 -0.3 -0.2 0.0 1 

 IC1 IC2 IC3 ENSO NAO QBO MJO IOD 

 483 

3.5 Correlations between Leading ICA Modes of Climate Indices and GRACE-TWS 484 

The lagged correlations between IC1 and TWS, after removing the seasonal cycles, are shown in 485 
Figure 6: A-1. The large negative r-values over southern and equatorial Africa (especially over 486 
the Congo Basin), also co-located with regions of reduced TWS of 10mm/month or less are very 487 
conspicuous. The r-values also tended to be larger (negative; <-0.4) and significant at 6-12 488 
months lags. This likely implies that the influence of NAO on TWS (see, Figure 5-B) is very 489 
strong over parts of southern Africa and the Congo Basin (Figure 6: A-3 and A-4) several 490 
months after the peak NAO events. The lagged correlations between IC2 and TWS, after filtering 491 
semi-annual cycle from TWS time series (Figure 6: B-1) most likely represent a combined 492 
ENSO and MJO influence on TWS changes over parts of Africa.  493 
 494 
Generally, large negative correlations are found over equatorial central Africa/Congo Basin and 495 
most parts of the Sahel. The higher (negative) IC amplitudes (mm) are also co-located with 496 
regions of higher r-values (Figure 6:B-2). The r-values are statistically significant over the Sahel, 497 
especially at 6-8 months lag. This apparently implies that ENSO-related hydroclimate anomalies 498 
tend to reduce TWS over these areas (especially over the Sahel) long after the peak of the ENSO 499 
episodes (Figure 6: B-3 and B-4). This ENSO-TWS relationship does not seem to mimic the 500 
often-witnessed ENSO-rainfall wet/dry dipole pattern over eastern/southern Africa (e.g., Indeje 501 
et al., 2000). This probably implies two points: first there are completely unique regions with 502 
very strong ENSO-TWS relationships, and secondly the time lags for ENSO influence on TWS 503 
are completely different from those of ENSO-rainfall relationship. Finally, in Figure 6: C-1, the 504 
lagged correlations between IC3 and TWS are shown.  It should be noted that as shown earlier 505 
(Figure 5) IC3-TWS correlations represents an apparent influence of IOD on TWS. However, 506 
comparing r-values and the amplitudes of IC3 (Figure 6: C-2) and the t-statistics map (Figure 507 
6:C-4),the potential influence of IOD on TWS variability clearly emerges only over southern 508 
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Africa. A summary of the correlation results between climate indices/their independent 509 
components and TWS changes of Africa over 2003-2014 are summarized in Table 1. 510 
 511 

 512 

Figure 6 Lagged Correlations between the five indices Independent Components (ICs) and TWS (A‐1‐E‐1), the amplitude of each 513 
index’s IC (A‐2‐E‐2), lags between the ICs of indices and TWS (A‐3‐E‐3), and the statistical significance test for lagged‐correlation 514 

(A‐4‐E‐4). Note that annual and semi−annual cycles are removed before these processes. 515 

4.0   Discussions 516 

The relationships between a mix of global climate indices and total water storage changes have 517 
not been widely investigated, especially over Africa. This study advances understanding of the 518 
inter-relationships between TWS and global climate teleconnection indices in three ways.  First, 519 
the correlation and ICA analyses identify possible linear and non-linear relationships between 520 
five primary global climate indices (NAO, QBO, ENSO, IOD, MJO) and GRACE-TWS over the 521 
entire African continent. Secondly, both phase-locked and lagged correlations between these 522 
climate indices and TWS changes at sub-seasonal, annual, and decadal time scales are identified. 523 
Thirdly, through application of higher order statistical method of Independent Component 524 
Analysis (ICA), as in Forootan and Kusche (2012, 2013), the interrelationships among the five 525 
global climate indices are filtered.  526 
 527 
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4.1 Understanding lagged relationships between global climate indices and TWS   528 
 529 
Findings from earlier studies involving investigation of linkages between individual climate 530 
index/indices and rainfall of different parts of Africa (e.g., Black et al., 2003, Indeje et al., 2000, 531 
Mutai and Ward 2001, Indeje and Semazzi, 2000), or with total water storage (TWS) changes 532 
(e.g.,, Awange et al., 2013, Awange et al., 2014, Ndehedehe et al., 2017a, 2018) are broadly 533 
consistent with the findings of our study. These studies generally agree in terms of regions where 534 
TWS and rainfall variability and patterns tend to follow the dominant seasonality of rainfall over 535 
different parts of Africa. However, they provide incomplete understanding of the lagged-536 
relationships between TWS and the primary global climate teleconnection indices, at the 537 
continental scale.  538 
 539 
Hassan and Jin (2016) have demonstrated annual phase-lagged relationships between GRACE 540 
TWS and rainfall over the major river catchments over Africa, but fall short of clearly attributing 541 
causes of the lagged relationships. However, this study finds relatively stronger correlations 542 
between the specific and combinations of climate indices and TWS when annual/semi-annual 543 
cycles are filtered from the time series. This is apparent in the positive correlations between 544 
ENSO and TWS at inter-annual scale, and more pronounced at 6-12 month time lags over 545 
equatorial East Africa and the Congo Basin. For other regions the lagged-relationships are 546 
summarized in Table 1. 547 
 548 
4.2 Inter-dependencies between CIs and combined influence on TWS 549 
 550 
The application of Independent Component Analysis in this study helps to filter redundancies 551 
and inter-dependencies between difference CIs thereby ensuring that each ICA mode is attributed 552 
to unique influence of TWS by one or a combination of CIs. The inter-relations between the 553 
indices and influence on TWS are summarized in Table 2. Specifically, through ICA analysis, 554 
our study is able to demonstrate that the first ICA mode (IC1) is uniquely positively correlated 555 
with NAO mostly over southern Africa - meaning significant influence of NAO on TWS changes 556 
there, but less likely elsewhere. The inter-relationships between ENSO, IOD, MJO and QBO in 557 
influencing inter-annual rainfall variability, as demonstrated in studies of Black et al., 2003, 558 
Semazzi and Indeje 2000, and Omeny et al., 2008) are apparent in the second ICA mode (IC2) 559 
that is negatively correlated with ENSO and MJO indicating possible combined influences of 560 
both indices on TWS-especially over equatorial and central Africa, and over the Niger river 561 
basin. Hence, it is possible to isolate unique or combined influences of these indices on TWS, 562 
thus pinpoint regions where synchronous or lagged-relationships are strongest, which is 563 
important for forward planning, assessments and management of water resources, as well as 564 
responding to extreme droughts and floods-often enhanced by global climate 565 
teleconnections/indices. 566 
  567 
5.0 Conclusions 568 

The study investigated the potential influence of five key global climate teleconnection indices 569 
on total water storage (TWS) over Africa. Based on Pearson correlation and independent 570 
component analysis (ICA) analyses, the study:  571 
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1. Revealed unique relationships between TWS and specific global climate indices. In 572 
certain cases the regions with the strong climate indices (CI)-TWS connection, e.g. 573 
where the indices had significant influences on TWS changes corresponded to areas 574 
where previous studies have demonstrated the strong influence of the indices on rainfall 575 
anomalies. For, instance, ENSO tended to have a phase-locked positive relationship with 576 
TWS over equatorial eastern Africa, consistent with the ENSO-rainfall relationship over 577 
the region.  578 

2. Revealed unique regions where CI-TWS relationships were very strong and thus where 579 
specific/combination of climate index/indices tended to have a very significant influence 580 
on the spatio-temporal variability and changes of TWS. For, example, the apparent 581 
ENSO-related influence tended to reduce TWS over certain areas especially over the 582 
Sahel with nearly a 6-8 months’ time lag. Also, an apparent combined ENSO/MJO 583 
negative impact on TWS over equatorial central Africa/Congo Basin and most parts of 584 
the Sahel was consistently identified. In addition, NAO seemed to have a significant 6-585 
10 months lagged impact (increase) on TWS over parts of southern Africa and the 586 
Congo Basin.  587 

3. The Pearson correlations and the independent components of climate indices are found to 588 
be able to somehow isolate possible contributions (correlations) of single or combined 589 
climate indices to TWS changes.  590 

4. NAO was highly correlated with the leading ICA mode (IC1) over parts of southern 591 
Africa and southern Congo Basin. On the one hand, this implied that NAO tended to 592 
influence TWS variability over these regions, especially with a time lag of 6-8 months. 593 
On the other hand, the lagged correlations patterns between the second ICA mode (IC2) 594 
and TWS apparently indicated strong relationships between combined ENSO/MJO 595 
indices and TWS changes, with large negative correlations located over equatorial central 596 
Africa/Congo Basin and most parts of the Sahel, mostly at 8-12 months’ time lag.  597 

5. Finally, strong lagged correlations between the third ICA mode (IC3) and TWS were 598 
stronger over southern Africa and apparently linked to influence of QBO on TWS over 599 
the region. 600 

Whereas it is obvious that a complex mix of processes may dictate the associations between the 601 
global climate teleconnections and continental terrestrial water storage changes, the present study 602 
focused mainly on the potential relationships and influence of specific/combined climate indices 603 
on TWS changes. As such, it should be noted that some of the confounding factors, not fully 604 
considered in our analyses, include e.g., the role of complex terrain especially over the equatorial 605 
and the Horn of Africa that potentially can influence surface and sub-surface hydrological 606 
processes including changes in the groundwater storage, which in return influences the space-607 
time variability of TWS. Other human-induced activities such as land use patterns and 608 
surface/groundwater usage/abstraction might also influence TWS changes but are not necessarily 609 
related to possible influences of global climate indices or teleconnections. Finally, it should also 610 
be noted that isolating the physical mechanisms through which specific/combined global climate 611 
indices might influence TWS changes was beyond the scope of the present study. Instead, the 612 
study focused on isolating the possible influence of global climate indices and/or teleconnections 613 
on TWS over Africa based primarily on first order statistical correlations and ICA 614 
decompositions. 615 

 616 



 

20 
 

Acknowledgments  617 

R. Anyah was supported by US National Science Foundation through Grant #: AGS-1305043. J. 618 
Awange appreciates the financial support of Alexander Von Humboldt foundation that supported 619 
his stay at Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany, Japan Society of 620 
Promotion of Science (JSPS) that supported his stay at Kyoto University Japan and Brazilian 621 
Science without Borders Program/CAPES Grant 88881.068057/2014-01, which supported his 622 
stay at the UFPE, Brazil. E. Forootan is grateful for the financial supports by the German 623 
Aerospace Center (DLR) under the project (D-SAT project - Fkz.: 50 LZ 1402), and the 624 
WASM/TIGeR research fellowship from Curtin University. M. Khaki is grateful for the research 625 
grant of Curtin International Postgraduate Research Scholarships (CIPRS)/ORD Scholarship 626 
provided by Curtin University. The authors are grateful to the GFZ and NASA, and NOAA for 627 
providing the GRACE satellite and Global Climate Indices data for this study.  628 
 629 
6.0 References 630 

AghaKouchak, A. (2015), A multivariate approach for persistence-based drought prediction: 631 
Application to the 2010-2011 East African Drought, Journal of Hydrology, 526, 127-135. 632 

Agola N. O and Awange J. L. (2014) Globalized Poverty and Environment 21st Century 633 
challenges and Innovative Solutions. Springer, Berlin, New York. 634 

Agutu, N.O., J.L. Awange, A. Zerihun, C.E. Ndehedehe, M. Kuhn, Y. Fukuda, (2017), Assessing 635 
multi-satellite remote sensing, reanalysis, and land surface models' products in 636 
characterizing agricultural drought in East Africa, Remote Sensing of Environment, 637 
Volume 194, Pages 287-302, ISSN 0034-4257, https://doi.org/10.1016/j.rse.2017.03.041. 638 

Anderson, W. B., B. F. Zaitchik, C. R. hain, M. C. Anderson, M. T. Yilmaz, J. Mecikalski, 639 
Schultz, L. (2012), Towards an integrated soil moisture drought monitor for East Africa, 640 
Hydrology and Earth System Sciences, 16, 2893-2913. 641 

Anyah, R. O. and Semazzi F. H. M. (2004), Simulation of the sensitivity of Lake Victoria basin 642 
climate to lake surface temperatures. Theoretical and Applied Climatology, 79, 55-69. 643 

Anyah, R.O., Semazzi F. H. M., L. Xie (2006), Simulated physical mechanisms associated with 644 
climate variability over Lake Victoria Basin in East Africa. Mon. Wea. Rev., 134, 3588–645 
3609 646 

Anyah R.O., and Semazzi F.H.M (2007), Variability of East African rainfall based on multi-year 647 
RegCM3 model simulations. Int. J. Climatol.: 27, 357-371 648 

Anyah, R.O., F.H.M. Semazzi, 2009: Idealized simulation of hydrodynamic characteristics of 649 
Lake Victoria that potentially modulate regional climate. International Journal of 650 
Climatology 29:7, 971-981 651 

Awange J.L. and Ong’ang’a, O. (2006), Lake Victoria: Ecology Resource and Environment. 652 
Springer-Verlag, Berlin, Heidelberg, New York, 354p. 653 

Awange J. L., Aluoch J., Ogallo L., Omulo M., and Omondi P. (2007), An assessment of 654 
frequency and severity of drought in the Lake Victoria region (Kenya) and its impact on 655 
food security. Climate Research 33  135-142. 656 

Awange J L, Sharifi M A, Ogonda G, Wickert J, Grafarend E W and Omulo M A (2008), The 657 
falling Lake Victoria water level: GRACE TRIMM and CHAMP satellite analysis of the 658 
lake basin Water Resour. Manage. 22 775–96 659 

Awange J.L, Anyah, R.O., Agola, N.O, Forootan, E., and Omondi, P.O. (2013), Potential 660 
impacts of climate and environmental change on the stored water of Lake Victoria Basin 661 



 

21 
 

and economic implications. Water Resources Research: 49, 8160–8173, 662 
doi:10.1002/2013WR014350.  663 

Awange J.L, Forootan, E., Kuhn M., Kusche J., Heck B (2014) Water storage changes and 664 
climate variability within the Nile Basin between 2002 and 2011. Advances in Water 665 
Resources 73 (2014) 1–15.  http://dx.doi.org/10.1016/j.advwatres.2014.06.010. 666 

Awange,  J.L., Khandu, M. Schumacher, E. Forootan, B. Heck, (2016a), Exploring hydro-667 
meteorological drought patterns over the Greater Horn of Africa (1979–2014) using 668 
remote sensing and reanalysis products, Advances in Water Resources, Volume 94, 2016, 669 
Pages 45-59, ISSN 0309-1708, https://doi.org/10.1016/j.advwatres.2016.04.005. 670 

Awange, J. L., F.Mpelasoka, R. M. Goncalves, (2016b), When every drop counts: Analysis of 671 
Droughts in Brazil for the 1901-2013 period, Science of The Total Environment, 672 
Volumes 566–567, 2016, Pages 1472-1488, ISSN 0048-9697, 673 
https://doi.org/10.1016/j.scitotenv.2016.06.031. 674 

Becker M, LLovel W, Cazenave A, Guntner A, Cretaux JF, (2010), Recent hydrological 675 
behavior of the East African great lakes region inferred from GRACE, satellite altimetry 676 
and rainfall observations, Compt. Rend. Geosci.,342(3), 223-233 677 

Black E., J. Slingo, and Sperber K.R., (2003), An observational study of the relationship between 678 
excessively strong short rains in coastal East Africa and Indian Ocean SST. Mon. Wea. 679 
Rev., 31, 74-94. 680 

Cao, Y.; Nan, Z.; Cheng, G. (2015), GRACE gravity satellite observations of terrestrial water 681 
storage changes for drought characterization in the arid land of Northwestern China. 682 
Remote Sens., 7, 1021–1047. 683 

Clark, C. O., P. J. Webster, and J. E. Cole (2003), Interdecadal variability of the relationship 684 
between the Indian Ocean Zonal Mode and East African Coastal Rainfall Anomalies, 685 
Journal of Climate, 16, 548-554. 686 

Creutzfeldt B., Guntner A., Vorogushyn S., Merz B. (2010), The benefits of gravimeter 687 
observations for modelling water storage changes at the field scale.Hydrol. Earth Sys. 688 
Sci. 14(9):1715-1730 689 

Eicker, A., Forootan, E., Springer, A., Longuevergne, L., Kusche, J. (2016). Does GRACE see 690 
the terrestrial water cycle `intensifying'? Journal of Geophysical Research-Atmosphere, 691 
121, 733-745, doi:10.1002/2015JD023808  692 

Forootan, E., Kusche, J., Talpe, M.J., Shum, C.K., Schmidt, M. (2018). Developing a complex 693 
independent component analysis (CICA) technique to extract non-stationary patterns 694 
from geophysical time series. Surveys in Geophysics, doi:10.1007/s10712-017-9451-1 695 

Forootan, E. (2014), Statistical Signal Decomposition Techniques for analyzing time-variable 696 
satellite gravimetry data, Ph.D. thesis, University of Bonn, Bonn, Germany.	697 

Forootan E., Kusche J., Loth I., Schuh W-D., Eicker A., Awange J., Longuevergne L., 698 
Diekkrueger B., Schmidt M., Shum C.K., (2014a). Multivariate prediction of total water 699 
storage anomalies over West Africa from multi-satellite data. Surveys in Geophysics, 35, 700 
Pages 913-940, doi:10.1007/s10712-014-9292-0. 701 

Forootan, E., and Kusche, J. (2013), Separation of deterministic signals, using independent 702 
component analysis (ICA). Stud. Geophys. Geod. 57, 17-26, doi:10.1007/s11200-012-703 
0718-1. 704 

Forootan, E., and Kusche, J. (2012). Separation of global time-variable gravity signals into 705 
maximally independent components. Journal of Geodesy, 86 (7), 477-497, 706 
doi:10.1007/s00190-011-0532-5. 707 



 

22 
 

Goddard, L., and N.E. Graham, (1999), Importance of the Indian Ocean for simulating rainfall 708 
anomalies over eastern and southern Africa. J. Geophys. Res., 104, 19,099-19,116. 709 

Hassan, A., and Jin, S., 2016: Water storage changes and balances in Africa observed by 710 
GRACE and hydrologic models. Geodesy and Geodynamics, 7(1), 39-49 711 

Indeje M, Semazzi, F.H.M., Ogallo,L.J., 2000: ENSO signals in East African rainfall seasons. 712 
Int. J. Climatol 20: 19–46 713 

Indeje, M., and Semazz, F.H.M., (2000), Relationships between QBO in the lower equatorial 714 
stratospheric zonal winds and east African seasonal rainfall. Meteor. Atm. 73(3-4), 227-715 
244.  716 

Khaki, M., Schumacher, M., J., Forootan, Kuhn, M., Awange, E., van Dijk, A.I.J.M., (2017a) 717 
Accounting for Spatial Correlation Errors in the Assimilation of GRACE into 718 
Hydrological Models through localization. Advances in Water Resources, 108:99-112, 719 
doi:10.1016/j.advwatres.2017.07.024. 720 

Khaki, M., Hoteit, I., Kuhn, M., Awange, J., Forootan, E., van Dijk, A.I.J.M., Schumacher, M., 721 
Pattiaratchi, C., (2017b). Assessing sequential data assimilation techniques for integrating 722 
GRACE data into a hydrological model. Advances in Water Resources, 107:301-316, 723 
doi:10.1016/j.advwatres.2017.07.001. 724 

Khaki, M., Ait-El-Fquih, B., Hoteit, I., Forootan, E., Awange, J., Kuhn, M., (2017c). A Two-725 
update Ensemble Kalman Filter for Land Hydrological Data Assimilation with an 726 
Uncertain Constraint, Journal of Hydrology, Available online 25 October 2017, ISSN 727 
0022-1694, https://doi.org/10.1016/j.jhydrol.2017.10.032. 728 

Khaki, M., Forootan, E., Kuhn, M., Awange, J., Longuevergne, L., Wada, W., (2018), Efficient 729 
Basin Scale Filtering of GRACE Satellite Products, In Remote Sensing of Environment, 730 
Volume 204, 2018, Pages 76-93, ISSN 0034-4257, 731 
https://doi.org/10.1016/j.rse.2017.10.040. 732 

Kurnik, B., P. Barbosa, and J. Vogt (2011), Testing two different precipitation datasets to 733 
compute the standerdised precipitation index over the Horn of Africa, International 734 
Journal of remote Sensing, 32 (21), 5947-5964. 735 

Kusche, J., Schmidt, R., Petrovic, S., Rietbroek, R. (2009), Decorrelated GRACEtime-variable 736 
gravity solutions by GFZ, and their validation using a hydrological model.Journal of 737 
Geodesy, 83, 903–913. http://dx.doi.org/10.1007/s00190-0090308-3. 738 

Kusche, J., Eicker, A., Forootan, E., Springer, A., Longuevergne, L. (2016) Mapping 739 
probabilities of extreme continental water storage changes from space gravimetry, 740 
Geophys. Res. Lett., 43, 8026–8034, doi:10.1002/2016GL069538. 741 

Lau, K. and Shoo, P.J. (1988), Annual cycle, Quasi-Biennial Oscillation and Southern 742 
Oscillation in global precipitation.Journal of Geophysical Research, 93, 10975-10988. 743 

Lyon, B. (2014), Seasonal Drought in the Greater Horn of Africa and Its Recent Increase during 744 
the March-May Long Rains, Journal of Climate, 27, 7953-7975. 745 

Mpelasoka, F, J. L. Awange, R.MikoszGoncalves, (2017), Accounting for dynamics of mean 746 
precipitation in drought projections: A case study of Brazil for the 2050 and 2070 747 
periods, Science of The Total Environment, ISSN 0048-9697, 748 
https://doi.org/10.1016/j.scitotenv.2017.10.032. 749 

Naumann, G., E. Dutra, F. Pappenberger, F. Wetterhall, and J. V. Vogt (2014), Comparison of 750 
drought indicators derived from multiple data sets over Africa, Hydrology and 751 
EarthSystem Sciences, 18, 1625-1640. 752 



 

23 
 

Ndehendehe C, Awange J, Agutu N, Kuhn M, Heck B (2016) Understanding changes in 753 
terrestrial water storage over West Africa between 2002 and 2014. Advances in Water 754 
Resources 88: 211-230, doi:  10.1016/j.advwatres.2015.12.009. 755 

Ndehedehe CE, Awange JL, Kuhn M, Agutu NO, Fukuda Y. (2017a) Climate teleconnections 756 
influence on West Africa's terrestrial water storage. Hydrological Processes.31:3206–757 
3224. https://doi.org/10.1002/hyp.11237 758 

Ndehedehe CE, Awange JL, Kuhn M, Agutu NO, Fukuda Y (2017b) Analysis of hydrological 759 
variability over the Volta river basin using in-situ data and satellite observations. Journal 760 
of Hydrology: Regional Studies 12: 88-110, doi: 10.1016/j.ejrh.2017.04.005. 761 

Ndehedehea CE, Awange JL, Agutu NO, Okwuash O (2018) Changes in hydro-meteorological 762 
conditions over tropical West Africa (1980–2015) and links to global climate. Global 763 
Planetary Change, doi: 10.1016/j.gloplacha.2018.01.020. 764 

Ni, S., Chen, J., Wilson, C.R. et al. (2018) Global Terrestrial Water Storage Changes and 765 
Connections to ENSO Events. Surv Geophys, 39: 1, doi:10.1007/s10712-017-9421-7 766 

Nicholson S.E, Kim, J.,1997: Relationship of ENSO to African rainfall. Int. J. Climatol 17:117–767 
135 768 

Nicholson, S. E. and Kim, J. (1997), The relationship of the El Ni˜no Southern Oscillation to 769 
African rainfall, Int. J. Climatol., 17, 117–135. 770 

Nicholson S.E., Yin X., and Ba M. B. (2000), On the feasibility of using a lake water balance 771 
model to infer rainfall: An example from Lake Victoria. J. Hydrological Sciences, 45, 772 
75–96. 773 

Nicholson S.E., (1996), A review of climate dynamics and climate variability in Eastern Africa. 774 
The limnology, climatology and paleoclimatology of the Eastern Africa Lakes. Gordon 775 
and Breach, New York, 57pp. 776 

Ogallo, L.J. (1988), Relationships between seasonal rainfall in East Africa and the Southern 777 
Oscillation’, Int. J. Climatol., 8, 31–43. 778 

Omeny P.A., Ogallo, L.A., Okoola, R.A., Hendon, H., and Wheeler, M., (2008), East African 779 
rainfall variability associated with the Madden-Julian Oscillation.  J. Kenya Meteorol. 780 
Soc., 2(2) 105–114.  781 

Omondi P, OgalloAwange, J, Ininda J, Forootan E. The influence of lowfrequency sea surface 782 
temperature modes on delineated decadal rainfall zones in Eastern Africa region. Adv. 783 
Water Resour 2013. dx.doi.org/10.1016/j.advwatres.2013.01.001. 784 

Phillips, T., Nerem, R.S., Fox-Kemper, B., Famiglietti, J.S., and Rajagopalan, B., (2012), The 785 
influence of ENSO on global terrestrial water storage using GRACE, GRL, 39, L16705, 786 
doi:10.1029/2012GL052495 787 

Piper B. S., Plinston D.T., Sutcliffe, J. V., (1986), The water balance of Lake Victoria. J. 788 
Hydrological Sciences, 31(1), 25-37 789 

Preisendorfer R., (1988). Principal component analysis in meteorology and oceanography. 790 
Elsevier: Amsterdam. 791 

Reager J.T., and Famiglieti J.S. (2009), Global terrestrial water storage capacity and flood 792 
potential using GRACE. Geophysical Research Letters, 36, L23402,1-6 793 

Rietbroek, R., Brunnabend, S.E., Dahle, C., Kusche, J., Flechtner, F., Schr\"{o}ter, J., and 794 
Timmermann, R. (2009), Changes in total ocean mass derived from GRACE, GPS, and 795 
ocean modeling with weekly resolution. Journal of Geophysical Research, 114, C11004, 796 
doi:10.1029/2009JC005449. 797 



 

24 
 

Saji N.H, Goswami, B.N., Vinayachandran, P.N., Yamagata, T.,1999: A dipole mode in the 798 
tropical Indian Ocean. Nature 401:360–363 799 

Stager J.C., Ruzmaikin A., Conway D., Verburg P., and Mason, P.J., (2007), Sunspots, El Nino, 800 
and the levels of Lake Victoria, East Africa. Journal of Geophysical Research, VOL. 112, 801 
D15106, doi:10.1029/2006JD008362 802 

Swenson, S., and J. Wahr (2009), Monitoring the water balance of Lake Victoria, East Africa, 803 
from space, Journal of Hydrology, 370, 163-176. 804 

Tapley, B., Bettadpur, S., Ries, J., Thompson, P., and Watkins, M. (2004), GRACE 805 
measurements of mass variability in the Earth system. Science,305,503-806 
505.http://dx.doi.org/10.1126/science.1099192 807 

Thomas, A.C.; Reager, J.T.; Famiglietti, J.S.; Rodell, M. A (2014), GRACE-based water storage 808 
deficit approach for hydrological drought characterization. Geophys. Res. Lett., 41, 809 
1537–1545. 810 

Wahr, J., Molenaar, M., and Bryan, F. (1998), Time variability of the Earth's gravity field: 811 
Hydrological and oceanic effects and their possible detection using GRACE. Journal of 812 
Geophysical Research, 103 (B12), 30205-30229, doi:10.1029/98JB02844. 813 

Wolter K., and Timlin, M.S., (2011), El Nino/Southern Oscillation behaviour since 1871 as 814 
diagnosed in an extended multivariate ENSO index (MEI.ext). International J. 815 
Climatology,31(7),1074-1087 816 

Zhang, Z.; Chao, B.; Chen, J.; Wilson, C. (2015), Terrestrial water storage anomalies of Yangtze 817 
River Basin droughts observed by GRACE and connections with ENSO. Glob. Planet. 818 
Chang., 126, 35–45. 819 


