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Abstract 

3D-core sandwich composites are novel lightweight construction materials being used heavily 

in defense, aerospace, marine, and automobile industries. In spite of the many commendable 

advantages, the 3D-core sandwich composite structures are prone to barely visible low-speed 

impact damages that may significantly jeopardize the safety and integrity of the structural 

assembly. The aim of this paper is to develop an advanced structural health monitoring 

framework to efficiently identify such damages in the sandwich structure using ultrasonic 

guided wave propagation. Theoretical analysis, numerical simulations and laboratory 

experiments of guided wave propagation in 3DCSCS have been carried out to demonstrate the 

effectiveness of the identification of barely visible impact damages. It is found that the presence 

of such damage regions significantly magnifies the fundamental antisymmetric mode of the 

propagating signals. The 3D numerical simulation gives physical insight and a good agreement 

has been observed with experimental results which affirms our understanding of the effect of 

damage on the propagating waves. The impact damage regions in the sandwich structure are 

experimentally identified using a modified signal difference algorithm based health monitoring 

framework. The proposed structural monitoring framework is found to be significantly efficient 

for the detection of impact damages in a sandwich structure.  

Keywords: 3D-core sandwich composite structure; guided wave; piezoelectric transducer disc; 
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1. Introduction 

Honeycomb sandwich composites have proven their usefulness as lightweight construction 

materials due to their high strength-to-weight ratio, effective acoustic damping and high 

energy-absorption capability [1]. The 3D-core sandwich composite structures (3DCSCS) is one 

of these sandwich structures, which consist of two thin glass fiber reinforced composite 

(GFRC) face-sheet (skin) bonded to a relatively thick and lightweight composite hexagonal 

honeycomb core [2]. The function of the face-sheets is to carry in-plane and bending forces, 

while the purpose of the core is to keep together the skins and to persuade transverse shear 

loadings [3]. The combination of thin, stiff skins and thick-core results in a lightweight 

structure with high load-bearing capacity. However, low-speed foreign object impacts can 

cause significant localized damage or debondings at the skin-core interphase. These impacts 

are frequently caused due to improper handling, tools drops, and encounter with runway debris, 

amongst others [4-7. It should be noted that such type of defects generally are not readily 

noticeable and can grow due to aging, cyclic loading or due to an intensive load on the structure, 

which may cause a major loss in stiffness and jeopardize the safety and overall integrity of the 

structure [8]. Thus, identification of such barely visible or hidden defects is crucial to prevent 

failures of sandwich structures.  

An experimental and analytical impact damage study on a highly loaded sandwich 

fuselage keel panel made of graphite-epoxy skins and honeycomb core was presented in [9]. It 

was shown that the low-speed impact defects depend on the impact energy and velocity (low-

speed impact was defined as less than 50J in impact energy and 4-8 m/s impact velocity for the 

studied sandwich structure). Several attempts have been made previously to represent the 

barely visible low-speed impact damage (BVLID) phenomena and to develop detection 

techniques to assess different damage types [10-13]. A comparison between different 

identification methods including visual, shearography and C-scan to inspect the post-impact 

damages/defects of a sandwich composite structure was presented in [12]. Some authors [11-

12] described the study on nonlinear elastic wave spectroscopy to detect BVLIDs in carbon-

fiber reinforced composites, based on the influence of dynamic characteristics of composites. 

An experimental study on impact damage identification in sandwich composite structures 

using Lamb wave excitation and Laser-Doppler-Vibrometer (LDV) was presented in [10]. 

The ultrasonic guided wave (GW) based inspection methods have the capability to 

identify defects in sandwich structures [14-18]. The major referred advantages of the GW based 



BVLID inspection methods are the resulting modification in wave packets based on their 

phase-velocity and frequency, potential to penetrate into the hidden layers and the long distance 

inspection capability [19-20]. It has also been reported that the proper identification of different 

wave modes is crucial to the success of GW based non-destructive evaluation (NDE) and 

structural health monitoring (SHM) of composite structures using piezoelectric 

actuator/sensors [21]. It is was also stated that the complex nature of sandwich composite 

structures inherently imposes many challenges for the understanding of GW propagation 

phenomenon with different excitation frequencies. The GW propagation characteristics in 

aluminum-skin and hexagonal shaped Nomex-core sandwich structures, using surface-bonded 

piezoelectric actuator-sensor system was numerically and experimentally investigated in [22]. 

A significant increment in the propagating GW signal amplitudes due to the presence of 

debondings in the sandwich structure was observed in several studies [17,18,23]. A debonding 

detection algorithm for sandwich composite structures, which uses the received GW signals 

from surface-bonded sensor network as inputs were presented in [14]. An online structural 

damage identification method based on the constrained dual extended Kalman filter was 

proposed in [24]. 

Non-contact laser measurement techniques have also been proposed by many authors 

[25-27]. The scanning LDV technique allows capturing the full wavefield in the structural 

elements. The application of scanning LDV for Lamb wave propagation measurements was 

first introduced in [15]. A more refined damage visualization method based on frequency-

wavenumber domain filtering, which uses the incident wave removal procedures was proposed 

in [26]. Such procedures have the objective of filtering the transducer generated waves to obtain 

a residual wavefield that comprises only of the contributions of scattered waves. The residual 

wavefield analysis technique was successfully applied for baseline-free characterization and 

identification of damage in composite panels [27]. Filtering mask in the wavenumber domain 

has been proposed as an alternative approach to improve damage localization accuracy [29]. 

This technique eliminates the boundary reflections obscuring weaker damage reflection and 

thereby the whole surface can be inspected and analyzed as opposed to the techniques proposed 

in [26,27,30]. This approach for multiple damage localization as well as size estimation was 

further enhanced in [20]. In the study, the authors presented the capabilities of the technique 

for assessment and identification of cracks in composite thin-walled structures by using full 

wavefield data from out-of-plane velocity components. The effectiveness of the technique was 

successfully verified by comparing with numerical and experimental results. 



A limited number of theoretical studies on wave propagation in sandwich structures 

have also been reported which investigate the dispersion characteristics and elastic response of 

the propagating GWs due to transient surface loading [31-34]. More efficient 2D semi-

analytical models with limited applications have been developed for GW propagation in 

sandwich plates [35-37]. Recently, a global matrix method based robust semi-analytical model 

for rapid calculations of time-dependent transient surface excitation induced elasto-dynamic 

fields in a laterally unbounded sandwich composite plate was developed [38]. The 2D model 

has shown its potential to accurately analyze the modal characteristics of propagating GW 

signals in a triple-layered composite sandwich structure. However, GW propagation and 

BVLID identification in 3DCSCS has not been studied yet and remains open to investigation.  

In this paper, theoretical dispersion curves have been derived for GW propagation in 

the 3DCSCS in the ultrasonic frequency range. Based on the obtained dispersion curves, 

different GW modes in the numerically and experimentally obtained sensor signals are 

identified. A 3D finite element simulation of GW propagation in 3DCSCS with BVLIDs is 

carried out in ABAQUS. Laboratory experiments are conducted to verify the simulation results, 

and to identify the BVLIDs. A parametric study is also carried out to study the BVLID size 

effects on the propagating GW modes. The BVLID induced differential features in the sensor 

signals are captured by applying an advanced probability based coefficient-of-signal-difference 

(CSD) algorithm, which uses an image-fusion technique to image the BVLID regions. Further, 

a full-wavefield measurement based experimental investigation is also carried out to locate the 

BVLID regions in the 3DCSCS to verify the efficiency of the proposed SHM framework. 

 

2. Experimental setup and selection of operating signal 

An experimental setup has been configured to carry out the inspection of 3DCSCS using PTD 

actuator-sensory network based on GW propagation strategy for the proposed SHM-framework 

and a separate setup for full wavefield measurement has been made using a single-headed 

scanning LDV and PTD actuator. The following sub-sections explain both the GW propagation 

based experimental setups in detail. 

2.1. Sample 3DCSCS plate and experimental setup for the proposed SHM-framework 



A hexagonal shaped epoxy honeycomb foam core (3D-core) and GFRC-skin made 3DCSCS 

(500 mm × 500 mm × 7 mm) sample plate is selected for the laboratory experiment,  

as shown in Fig. 1. The layer-wise elastic material properties of the 3DCSCS are shown in 

Table 1. In the sample plate, two BVLID regions are introduced at different locations by using 

 Table 1. 3DCSCS elastic material properties. 

Material  E1 

(GPa) 

E2 

(GPa) 

E3 

(GPa) 

G12 

(GPa) 

G23 

(GPa) 

G13 

(GPa) 

12 13 23  

(kg/m3) 

t 

(mm) 

GFRP-

skin 

30.35 30.35 5.9 12.42 3.66 3.66 0.05 0.26 0.26 2400 0.98 

3D-core 1.45 1.45 2.33 0.088 0.172 0.172 0.42 0.42 0.42 78 5 

Adhesive 0.0486 0.0486 0.0486 0.0174 0.0174 0.0174 0.40 0.40 0.40 1110 0.02 

 

        Fig 1: Experimental sample 3DCSCS plate with BVLIDs. 



a standard low-speed steel ball-drop impact device with an impact energy of 10 J, as shown in  

 

Fig. 2. Experimental setup for the low-speed impact on the 3DCSS. 

Fig. 2. The visual effect of the impacted regions appears to be circular in shape with 

approximately 15 mm in diameter. In the setup, circular PTDs (NCE51) of 10 mm diameter 

and 0.4 mm thickness are applied for both actuation and reception of GW signals in the 

3DCSCS. 

 

Fig. 3. Experimental setup for the GW based SHM of 3DCSS using PTDs. 

In order to operate the PTDs, the setup is configured with a multi-channel function-

generator (FGEN) cum data-acquisition (DAQ) based PXI-system, a computer to control the 



PXI-system and to save the required sensor data. The complete experimental setup is shown in 

Fig. 3. 

2.2. Selection of operating signal for the PTDs 

An optimum operating frequency of the PTDs is determined by placing two PTDs (actuator-

sensor) on the sample plate at a distance of 220 mm, as shown in Fig. 4(a). In this process, a 

predefined range of actuator frequencies are applied and the corresponding sensor signals are 

collected. The collected signals are then analyzed to calculate maximum responses for different 

actuation frequencies and a frequency-response plot is generated, as shown in Fig. 4(b). It is 

found that the PTDs are showing highest A0-mode response around 100 kHz frequency. Thus, 

a 100 kHz 5-cycle sine Hanning pulse represented in Fig. 5 is selected as actuation frequency 

for all the cases unless stated otherwise. 
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(a)                                                                 (b) 

Fig. 4. (a) Setup for driving frequency optimization of PTDs and (b) corresponding calibration curve 

for frequency modulation. 
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Fig. 5. 100 kHz 5-cycle Hanning input pulse. 



 

2.3. Experimental setup for wavenumber domain signal processing using LDV 

In order to identify the BVLID effects, a single-headed scanning LDV (Polytec PSV-400) is 

applied for the full-wavefield measurement of a PTD-actuated propagating GWs in the sample 

3DCSCS. The scanned wave data obtained from predefined grid points on the sample plate is 

registered in the form of out-of-plane velocities. A schema of the experimental setup for LDV 

test is presented in Fig. 6. In the setup, an actuator-PTD was mounted at the center of the sample 

plate to generate the GWs. An arbitrary waveform-generator and an amplifier are used to 

generate user-defined excitations in the form of a Hanning window modulated 5-cycle tone-

burst sinusoidal signals with carrier-frequency of 10 kHz and 15 kHz respectively. A scanning-

head which is connected to a DAQ and a controller is aligned such a way that the laser-beam 

is normal to the surface of the target-specimen and orients its scanning mirror to set an 

appropriate decoder to provide a voltage-proportional to the registered velocity. These 

measured velocities are obtained from the Doppler-shift which is a frequency shift in the 

reflected laser signal caused by movement in the scanned sample plate. The digital generator 

is connected to a controller by a synchronization cable. Initially, the elastic-waves are generated 

and registered synchronously in one point of the grid on the sample plate surface, in order to 

set up the wave attenuation time. The waves are then re-generated from the actuator-PTD but 

the laser-beam measures velocities in the next grid point. 

 

Fig. 6. Schema of the experimental setup for scanning LDV test on the 3DCSCS 

 

3. Numerical Simulation 

Analytical prediction of BVLID effects on the propagating GWs in 3DCSCS with BVLIDs is 

difficult, owing to the complexities involved in the structural geometry and the boundary 



conditions. Hence, the BVLID effects on the propagating GWs are numerically analyzed using 

the finite element simulation in ABAQUS.  

Towards this, 3D numerical modeling of GW propagation in a 3DCSCS is carried out 

using a surface-bonded PTD actuator-sensor network, in accordance with the experiments to 

be conducted in the laboratory. The numerical simulation of PTD induced GW propagation in 

3DCSCS is challenging, as both the implicit and explicit time-stepping algorithms are required 

for the transient dynamic analysis. This is because only the implicit solver is not sufficient to 

accurately handle the simulation of wave propagation. Moreover, the piezoelectric elements 

are not available in the explicit code but it is available in the implicit code in ABAQUS [31]. 

Therefore, the 3DCSCS (500 mm × 500 mm× 7 mm) plate is modeled using the explicit code 

and the PTDs (10 mm diameter and 0.4 mm thin) are modeled using the implicit code. The 

ABAQUS ‘standard explicit co-simulation technique’ is applied to correlate the explicit and 

the implicit analysis of GW propagation in the 3DCSCS [39]. 

 

Fig. 7. Numerical model of experimental 3DCSCS. 

In the explicit modeling of 3DCSCS, the 8-noded C3D8R linear brick elements 

(hourglass control and reduced integration) are used. In order to model the BVLIDs, two zero-

volume circular BVLID regions (BVLID#1 and BVLID#2) with 15 mm diameter are modeled 

by de-merging element nodes (resembling debonding) at the adhesive-skin and core-adhesive 

interphase, as shown in Fig. 7. The layer-wise element sizes are considered as: 3D-core: 0.5 

mm × 0.5 mm × 0.25 mm, GFRC-skin: 0.5 mm × 0.5 mm × 0.245 mm and adhesive: 0.5 mm 

× 0.5 mm × 0.01 mm. Whereas, in the implicit modeling of PTDs (actuator/sensor), the 8-

noded standard C3D8E linear piezoelectric brick element with six degrees of freedoms (DOF) 

at each node is considered. The C3D8E elements have the potential to capture the 

electromechanical coupling mechanism of the PTDs, where the electrical voltage is assigned 

as the additional DOF in the coupling element. The selected user-defined input signal (voltage) 

is applied to the top-surface nodes of the actuator-PTDs, and zero voltage is assigned to the 

bottom-surface nodes of the actuator as well as sensor-PTDs to carry out the grounding 



operation. On the contrary, the output signal (voltage) is recorded at the top surface of the 

sensor-PTDs. In the numerical simulation, the NCE51 PTD material properties are assumed 

based on the manufacturer’s information as: 

  2

0 0 0 0 13.7 0

0 0 0 13.7 0 0 C/ m ,
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where [e] is the piezoelectric stress matrix, [ε] is the piezoelectric permittivity matrix and [c] 

represents the mechanical stiffness tensor. The density (ρ) of the piezoelectric material is 

assumed to be 7750 kg/m3. The numerical simulation is further broadened for the GW 

propagation in the 3DCSCS with a range of BVLID sizes, in order to study the influence of 

BVLID size on the propagating GW signals. 

 

4. Theoretical dispersion curve 

A global matrix method based 2D semi-analytical formulation is used to obtain the theoretical 

frequency versus group velocity dispersion curve for the 3DCSCS, which has proven its 

potential to accurately determine the dispersion characteristics of propagating GWs in a 

different type of sandwich composite structures. Detailed formulation of the 2D semi-analytical 

model for wave field calculations in a multi-layered honeycomb composite sandwich structure 

can be found in [38] and hence, the formulation will not be repeated here for brevity. The 

formulation for a triple-layered honeycomb composite sandwich structure was ultimately 

summarized in a global matrix form as: 

                                                                (1) 
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where the Q-matrix (12 × 12) is the global matrix obtained from a complex matrix formulation, 

the A-matrix (12 × 1) is the constant matrix and the F-matrix (12 × 1) is the excitation matrix. 

In order to plot the phase-velocity dispersion curves, the dispersion condition can be obtained 

from the solution of the determinant of the global matrix as:  

1( , ) 0G                                                                                                   (2) 

The values of wavenumber, 1 , can be determined for a range of values of frequency, , and 

the corresponding phase-velocity dispersion plots can be obtained by using 

1

pc



                                                                                                                      (3) 

where pc represent the phase-velocity of the guided Lamb wave modes.  

It should be noted that the propagating GWs in the plate are represented only by the real-roots 

of 1 . Whereas, the non-propagating wave modes that decay exponentially with propagation 

distance from the source are represented by the complex-roots of 1 . 

5. Results and discussion 

5.1. Dispersion curve and identification of GW modes 

In order to understand the dispersion phenomenon of propagating GWs in the 3DCSCS, the 

theoretical (Th.) dispersion curve (frequency versus group-velocity) is obtained using the real 

values of 1  from equation (3) and demonstrated in Fig. 8. The theoretically obtained group 

velocities are then compared with the numerical (Nu.) and experimental (Ex.) group velocities 

at different actuation frequencies (50 kHz, 75 kHz, 100 kHz, 125 kHz, 150 kHz, and 200 kHz). 

From the simulation and experiment, the healthy GW signals are recorded from the PTD at a 

distance of 220 mm distant (Δx)  PTD path#1-2 (actuator-sensor) and the time difference (Δt) 

between the peak of each envelope of a wave-group or wave-mode at both the reception points 

(PTD#1 and PTD#2) are determined. Once the time shift (Δt) for the different wave modes is 

determined, the corresponding group velocity (cg) can be determined as ,g

x
c

t





by employing 

a TOF analysis as referred in [17]. The group velocities of the experimental signals are 

represented with symbols on the theoretical dispersion curve, and a substantially good 

agreement is noticed between the experimental and theoretical group velocities (Fig. 8). 



Fig. 8. Group velocity dispersion curve for the 3DCSCS. 

It is clearly visible from the plots that the GW propagation in 3DCSCS is multi-modal 

in nature and there are four individual propagating wave modes at 100 kHz frequency. The 

anti-symmetric (A) and symmetric (S) wave modes are designated as A0, S0, A1, and S1 (Fig. 

8). 

5.2. Numerical and experimental study of GW propagation in the 3DCSCS 

The finite element simulation in ABAQUS also clearly indicates that the GW propagation in 

3DCSCS is multi-modal in nature, as shown in Fig. 9. The generation of multiple independent 

wave modes corresponding to in-plane displacement is shown in Fig. 9(a) and the propagation 

of multiple wave modes corresponding to out-of-plane displacement is shown in Fig. 9(b), due 

to the actuation of PTD#3 with the 5 cycle Hanning input pulse. 

Based on the dispersion characteristics in the Fig. 8, the presence of different wave modes (A0, 

S0, A1, and S1) are identified in the healthy simulated signal (Fig. 10(a)). The simulated signal 

(surface displacement) corresponding to the actuator-sensor path#1-2 (ref. Fig. 7) is considered 

as the healthy signal since this path is sufficiently away from the BVLID regions. 

In order to clearly understand the characteristics of different wave modes in the healthy 

numerical signal in frequency domain, the Wavelet transform (WT) is performed on the signal 

in Fig. 10(a) by using the standard 3D AGU-Vallen Wavelet window and presented in Fig. 



10(b). The WT coefficient magnitudes at 100 kHz frequency distinctly represent the 

characteristics of the four individual wave modes in the signal. 

(a)  

(b)  

Fig. 9. PTD#3 induced GW propagation in the 3DCSCS model showing the (a) generation of 

multiple 

The BVLID-influenced signal is also collected from the actuator-sensor path#3-4, which is 

across the BVLID#1. The BVLID signal is then compared with the healthy signal and the 

comparison shows a significant amplification of the fundamental anti-symmetric (A0) mode in 

the BVLID signal, as shown in Fig. 11. The major amplification in A0 mode amplitude may 

be happened due to the considerably lower propagation velocity and a less dispersion and 

attenuation in comparison with the other wave modes (S0, A1, S1) in the signal at 100 kHz 



frequency. Moreover, the propagation of primary anti-symmetric mode is highly sensitive to 

the presence of discontinuities along the thickness direction (out-of-plane). 
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(a)                                                                                  (b) 

Fig. 10. (a) Numerical received signal at a 220 mm distant sensor (path#1-2) on the 3DCSCS, (b) 3D 

representation of the healthy numerical signal in AGU-Vallen Wavelet window. 

Similarly, the experimental healthy signal (surface displacement) from PTD path#1-2 (ref. 

Fig. 1) is obtained from the laboratory experiment and compared with the healthy numerical
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Fig. 11. Comparison of healthy and BVLID sensor signals from numerical simulation. 

 signal, as shown in Fig. 12. The comparison shows a good agreement between the numerical 

simulation and the laboratory experiment. The experimental BVLID-influenced sensor signal 



is then captured from the actuator-sensor path#3-4, which is across the BVLID#1 in the 

sample 3DCSCS plate (ref. Figure 1). The comparison between the experimental healthy 
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Fig. 12. Comparison of numerical and experimental healthy time-history responses 

and BVLID signal is shown in Fig. 13(a), which implies that the presence of BVLID in the 

3DCSCS significantly influences the propagating GW signals, in terms of amplification of the 

A0 mode. The Hilbert transform (HT) of the experimental signals in the Fig. 13(a) is presented  
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Fig. 13. (a) Comparison of healthy and BVLID sensor signals from laboratory experiment, (b) Hilbert 

transform (HT) of experimental time-history responses for healthy and BVLID cases. 



 

in Fig. 13(b), which clearly represents a notable BVLID effect on the A0-mode amplitude. The 

modal group velocities along different propagation direction are also checked and the results 

for the A0 mode is presented in Fig. 14. No significant changes in the modal group velocity 

were observed from GW propagation along the different direction in the 3DCSCS (Fig. 14) 

which may due to the dominating twill GFRC face-sheet and due to the presence of a certain 

degree of homogeneity in the core. 

 

Fig. 14. Directional group velocities of A0 mode in the 3DCSCS at 100 kHz frequency. 

 

5.3. Sensitivity analysis of the BVLID effect  

A sensitivity analysis is carried out numerically for a range of BVLID sizes (diameter: 0 mm, 

15 mm, 17 mm, 19 mm, 21 mm, 23 mm and 25 mm) to further investigate the BVLID influence 

on the A0 mode amplitude in the GW signal, and the numerical results are also compared with 

the possible experimental results (Fig. 15). It is noticed that the increase in BVLID size leads 

to the increment in A0-mode amplitude, and a good agreement is observed between the 

numerical and the available experimental results. The increment in modal amplitude may have 

happened due to the lesser damping across the thickness, as in case of the BVLID region the 

wave mainly passes through the skin with comparatively higher energy and lesser damping. 

There is also a possibility of influence due to complex mode-conversion/reflection 

phenomenon at the BVLID region. 
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Fig. 15. BVLID size effect on the A0 mode amplitude in the propagating GW signals. 

5.4. Identification of BVLID regions in the 3DCSCS 

5.4.1. Identification of BVLIDs using CSD algorithm based SHM framework 

A CSD algorithm is applied to identify the unknown BVLID regions in the 3DCSCS. The HT 

of the experimental output signals in the time domain (e.g. Fig. 13(b)) are used for 

characterization of BVLID influences on the wave modes in the propagating GW signals. In 

order to capture the differential characteristics of BVLIDs, the CSDs are obtained by 

comparing the A0-mode amplitudes of the transformed time domain sensor signals. The 

BVLID probability distribution is computed to visualize the possible defect regions by 

applying the extracted CSDs as input at each pixel. The image quality is further improved by 

using an image-fusion technique. The BVLID localization indicator, dL of any arbitrary 

position (x, y) within the actuator-sensor network can be described as [40]- 

               1 1

1 1 1 1

( , )
( , ) ( , ) ( , )

1

ijN N N N

d i j i ij i j i ij

R x y
L x y B x y C x y





 

     

 
   

 
                (4) 

where, ( , )ijB x y is the BVLID distribution probability, measured from the actuator-sensor pair: 

i-j and ( , )ijC x y represents the signal difference coefficient, which is the difference in amplitude 

area between signals with BVLID and without BVLID (healthy) for a particular mode. The 

CSD is expressed as: 
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where, bs and hs represent the signals with and without BVLID, 1t  is the time of arrival of A0 

mode in the signal and  2t = ( 1t + temporal duration of the A0 mode), 
( , )
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elliptical contour-shaped spatial distribution function with non-negative values, where                                                                                      
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where, ijd  represents the distance between transmitter ‘i’ and sensor  ‘j’, and  is the scaling 

parameter, which reduces the size of the BVLID region and it is independent of propagating 

GW velocity. The magnitude of  is obtained empirically and in this study, it is assumed as 

1.05 [40].  

Based on the change in A0-mode amplitude due to the presence of BVLIDs, the CSD 

algorithm is applied to interrogate the unknown BVLID regions in the 3DCSCS, using 

MATLAB. The algorithm uses the HT of the sensor signals (e.g. Fig. 13(b)) collected 

experimentally from the PTD actuator-sensor network (ref. Fig. 1). The value of BVLID index 

(CSD magnitudes) at each pixel is determined by processing the sensor signals from the PTD 

path: 1-2, 3-4, 5-6, 7-8, 1-6, 2-5, 3-8, 4-7, and plotted in Fig. 16(a). The CSD map in Fig. 16(a) 

clearly represents the actual BVLID regions in the experimental 3DCSCS plate, corresponding 

to the higher CSD magnitudes. A 3D representation of the CSD map is shown in Fig. 16(b), 

which distinctly express the influence of BVLIDs on the CSD magnitudes. 

5.4.2. Identification of BVLIDs using scanning LDV 

This section is dedicated to the identification of BVLID regions in the 3DCSCS using a 

wavenumber-filtering algorithm, based on the out-of-plane displacement data acquired using 

the scanning LDV. The key element of the technique is a digital fingerprint of propagating 

wave in the target-structure captured by a filtering mask. The detailed formulation of the 

wavenumber-filtering algorithm can be found in [25] for which the excitation and registration 

of GWs are performed at a rectangular grid of points covering the inspected area on the plate 

surface. The selected registered 2D data set of propagating waves at an equally sampled time 



steps can be considered as is in the form of wavefield image. Transformation of each obtained 

wavefield image from spatial-domain (x,y) to wavenumber-domain (Kx,Ky) is then carried out 

using the 2D discrete Fourier transform 

 2 , ,(K ,K ) Fn x y D x y nw w                                                                        (8) 

 1

, , 2 (K ,K )x y n D n x yw F w                                                                        (9) 

In the formulation, all filtered images are combined by considering the energy dissipation and 

energy spread in the propagating signals through the 3DCSCS. For measurements with N 

number of time samples and finite number of measurement points, the energy-based root mean 

square index (ERMS) can be introduced at the point defined by coordinates x and y as- 
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where , ,x y nw  is filtered wavefield image in the spatial domain, 
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normalized discrete GW signal energy at a particular time sample n,  Pn is the propagating 

elastic wave perimeter for an anisotropic plate-like structure, which can be approximated as- 
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where 𝐴𝑛 and 𝐵𝑛 are the distances traveled by the GWs in in the 3DCSCS along horizontal and 

vertical direction, respectively. VH and VV are A0 mode velocities along horizontal and vertical 

directions. 

The ERMS is used as damage index and can be shown in the form of BVLID influence 

maps. Any GW disturbances due to the presence of BVLIDs appear as outliers in wavenumber 

domain outside of the filtering mask. The method presented has been applied to the 

experimentally obtained data without any additional processing. 

The specimen was placed on 50 mm thick polyurethane foam to reduce any external 

vibration and to ensure uniform support. The measurements were made in 321×321 equally 

spaced grid points covering whole specimen surface and were made from the opposite side 

with respect to the actuator. The damage index maps in Fig. 17 clearly show the location of 

BVLID regions in the sample 3DCSCS with good agreement with the proposed SHM-

framework. Thus the LDV based damage metric is used in this paper as a benchmark and for 

validation of the identified damage location using the improved CSD algorithm discussed 



earlier. The good agreement highlights the applicability and accuracy of the latter based on GW 

signal measurements using PDT actuator-sensor network. 

 

   

                        (a)                                                                                 (b)         

Fig. 16. (a) CSD map represents the exact location of BVLIDs, (b) 3D CSD map showing the BVLID 

effects on the CSD magnitudes. 

 

 

                                          (a)                                                                             (b) 



Fig. 17. Scanning LDV test obtained damage index maps for (a) 10 kHz and (b) 15 kHz input 

frequency, respectively.  

 

6. Concluding remarks 

Dispersion of the propagating GWs in the 3DCSCS is multi-modal in nature with the presence 

of four independent wave modes (A0, S0, A1, and S1) at 100 kHz frequency. It is observed 

that the presence of BVLIDs in the structure significantly amplifies the fundamental anti-

symmetric (A0) mode amongst the four wave modes in the GW signals. A good agreement is 

found between the theoretical, numerical, and experimental results in all the cases that have 

been studied here. The sensitivity analysis results have shown that the increase in BVLID size 

leads to an increase in the A0-mode mode amplitude. The proposed CSD algorithm based 

SHM-framework which works on the basis of change in modal amplitude of the experimental 

sensor signals has been demonstrated to efficiently localize the BVLID regions in the 3DCSCS 

within an organized actuator-sensor network of PTDs. From the comparison with LDV based 

analysis results, it can be clearly stated that the proposed SHM-framework has the potential to 

more easily and accurately identify the BVLID regions in the 3DCSCS. The proposed 

framework can be implemented as a robust SHM-framework for online monitoring of different 

type of sandwich composites, as it relies only on the real-time experimental signal data and this 

paper is a proof of such implementation.  However, it is expected that the baseline signal data 

can improve the inspection capability of this framework, and the application of this framework 

is limited to multilayered composite structures with limited wave attenuation and the inspection 

area is limited to the region inside the sensor-network, which can make this SHM-strategy more 

viable for practical industrial usage. The future research would involve the development of 

baseline free algorithms and the detection of delamination and debondings in composite panels 

using the developed SHM strategy. 
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