Session 23: Distributed Systems and Applications

Distributed M anagement with Mobile
Components

M. Feridun, W. Kasteleijn, J. Krause
IBM Research Division

Zurich Research Laboratory

8803 Rueschlikon

Switzerland

{fer, wka, jkr}@zurich.ibm.com

Abstract

The increasing importance of networks and the growing numbers of devices and
services that run on them necessitate effective network and systems management.
The traditional centralized management paradigm alone is no longer sufficient for
effective management solutions, primarily as it does not scale well. Distribution of
management tasks is a promising approach. The distributed management
framework (DMF) presented in this paper provides an environment which allows a
broad range of management tasks to move and run anywhere within the managed
system. In our approach, management tasks are lightweight applications that can be
dynamically configured and downloaded as required, reducing the load on managed
resources and simplifying the problem of management software updates. We
present an object-oriented, Java-based implementation of the DMF and describe
applications devel oped on this platform.

Keywords

distributed management, Java-based management, code mobility, mobile agents,
active network management

1. Introduction

Management of networks and systems consisting of large numbers of entities

requires extensive computing and networking capabilities. In a typical centralized

system, management data from managed entities are collected, consolidated and
analyzed at one or a few servers or ‘consoles’. There are a number of disadvantages
to this approach: first, the servers become bottlenecks as they process data from the
whole managed system. Second, the network can be overloaded as the management
traffic flows towards the server, creating a funnel. Scalability of management
solutions is a key issue.

(c) 1999 IFIP

Distributed Management with Mobile Components

The aternative to centralized management is the distribution of management
tasks across the managed system, with the goal of executing tasks as close to the
managed resources as possible. Executing management functions on or near
managed resources reduces the amount of management traffic as management data
is consolidated and refined at the source. The local execution of the management
tasks can be more efficient, and make aricher set of local functions available to the
tasks. Furthermore, in a distributed management system, dynamic configuration or
deployment of management tasks in response to the requirements of the problem at
hand is possible.

There are severa approaches for distributed management. In [1], an earlier
prototype of the DMF, a proprietary protocol is used to instantiate management
operations and code is downloaded via HTTP. The architecture allows remote
instantiation of management operations but no code movement. The management
by delegation approach presented in [2] accomplishes a hierarchy-based distributed
management by allowing extension of the server-side software using downloadable
code fragments. The paper also describes a framework able to support extensions
written in different programming languages. Reference [3] provides an in-depth
study of code mobility and itsimpact on network management, with suggestions for
applications that can benefit from the mobile agent based solutions. The work
described in [4] uses a mobile agent platform to extend the capabilities of a
centralized client-server architecture for network management. The architecture
presented in [5] uses the ‘plug and play’ paradigm for distributed management,
using server add-ons, delegated code as well as autonomous agents. Several
centralized security mechanisms are described, such as a ‘shield’ to protect the
local system from malicious agents, thereby restricting the capabilities of an agent
to access local resources. Legal agents also have a protection shield against
malicious agents.

The distributed management architecture presented in this paper provides an
environment which allows a broad range of management tasks to move and run
anywhere within the managed system. In our approach, management tasks are
lightweight applications that can be dynamically configured and downloaded as
required, reducing the load on managed resources and simplifying the problem of
management software updates. Management tasks are supported by a distributed
directory and secure communications. The architecture does not force the
programmer to design its management applications according to any given
programming paradigm. Rather, the programmer is free to use paradigms such as
client-server and cooperating peers. Mixed solutions are also possible.

Figure 1 shows an enterprise network which is partitioned into several
sub-networks (subnets). We assume that all relevant devices in the system support
our architecture. The goal of the example management application is to determine
the status of all available NFS daemons running in the enterprise network. The
application, running possibly as a background troubleshooter, does not have a
priori knowledge of the topology of the network or the location of the NFS servers.

(c) 1999 IFIP

Session 23: Distributed Systems and Applications

On initialization, it may be given the location of an IP router, or the application
may discover the router by looking at local machine settings, e.g., default route.

Figure 1: Distributed NFS Status Determination

The management application begins by creating and then sending a discovery
agent D to the IP router as shown in Figure 1 (1, 2). From the router configuration
data, agent D discovers the different subnets adjacent to the router. It then creates
an NFS query agent N per subnet (3). Each such agent visits all hosts on the
assigned subnet looking for NFS daemons and if one is present, collects status
information (4). Once the collection is complete, each NFS query agent returns to
the originating discovery agent D to deliver its consolidated data from the subnet
and terminates (5). Agent D waits until all NFS agents have reported back after
which it returns to the management application with the results (6, 7).

The simple example described above demonstrates a number of goals that we
want to achieve with our architecture:

e The execution of the three major tasks, topology discovery, NFS daemon
discovery and NFS status determination are distributed, carried out by
lightweight management tasks. There is no single processing bottleneck.

* Management tasks are executed close to the managed resources. Loca
consolidation of raw data results in reduced network management traffic on the
network.

e A management task is brought to the managed resource, adapted to run in the
environment of the resource and then executed, rather than requiring a large set
of pre-installed tools. Once the management task completes its assigned

3

(c) 1999 IFIP

Distributed Management with Mobile Components

objectives, it leaves the managed resource to continue its processing el sewhere
or terminates.

* Management tasks can be assigned some level of autonomy, so that functions
such as discovery can scale and adapt to the managed network without prior
configuration information. For example, if there are other subnets attached to
the discovered subnets, then the agent D can repeat the above steps (or clone
itself) to collect NFS daemon data.

In the next section, we present the Distributed Management Framework
(DMF), our architecture for roaming management applications. We then discuss
our implementation of this architecture, followed by an example of a prototype
management application using the DMF.

2. Distributed M anagement Framewor k

Distributed Management Framework (DMF) provides an object-oriented
architecture where lightweight, mobile management applications can be
dynamically deployed for distributed management. As shown in Figure 2, the DMF

Distributed
Management .
Components /§\ ‘{Dwectory
DMN
= DMF

Management Management

Components /§\ Components /§\

DMN DMN

DMF: Distributed Management Framework
DMN: Distributed Management Node
CCS: Code & Configuration Store

Figure 2: Distributed Management Framework

consists of a collection of distributed management nodes (DMNSs), where each
DMN provides the execution environment and supporting services for management
components (MCs), i.e., the management applications. The DMNs form a network
of peers over which hierarchies or cooperating sets of management components can
be run. A distributed directory, maintained by each DMN is used in locating
management components and services. Components and configuration of the DMF
are stored in a set of replicated code and configuration stores (CCSs), from where
they can be downloaded to the DMNSs as required. In the following, we describe
these components in detail.

(c) 1999 IFIP

Session 23: Distributed Systems and Applications

2.1 Management Components

Management components carry out management tasks of different levels of

complexity, executing within the DMF. The principal characteristics of an MC are:

* An MC is alightweight task, i.e. the resources it requires (e.g., memory) are
minimal, however it can be short term or along running task.

* An MC can be mobile, moving between DMNs if required.

* An MC can be composed on the fly, where its parts can be downloaded as
required by the management task. When its task is completed, the MC and its
constituent parts can be removed from the DMN.

* An MC can run on any DMN which is configured with the capability for that
MC. Each capability specifies key parameters for an MC such as the name of
the Java class to be invoked or whether the MC is to be initiated at DMN
startup. An initial set of capabilities is read from the configuration file at
initialization, and can be modified (additions, deletions) during run-time.

An MC may execute simple queries, for example use the interfaces to the local
file system to determine the available disk space and report the results back to
another MC. An MC may act as a management console, integrating management
functions provided by other MCs active within the DMF. A more sophisticated MC
may carry out a longer running task such as collecting traffic statistics. Another
type of MC can be an adaptive agent which travels to a DMN with an assigned
management task, discovers the management tools available at that DMN relevant
to its task, and then adapts and/or composes a solution strategy for the given
environment in order to efficiently carry out its task.

2.2 Distributed Management Node

Machines on which the MCs described above should be deployed need to be
instrumented with the appropriate execution environment. A Distributed
Management Node (DMN) provides this execution environment for MCs.

The components of the DMN are shown in Figure 3 and are described in this
section. Each of these components define functions which can be available at a
DMN but need not to be present at al times as they can be dynamicaly
downloaded and installed (or removed) when required.

Bootstrap

Bootstrap is the only component that needs to be installed on a managed resource
in order to support a DMN. Its purpose is to reduce the amount of DMN code that
has to be present on a given managed resource so that only the necessary
components are downloaded when required, reducing resource requirements on the
host and making it easier to update DMN code. On DMN initidization, the
minimal bootstrap mechanism reads a local configuration file to determine the
initial CCS to be used and the mode (secure, non-secure) in which the DMN will
run. It then loads the code for the DMN from the CCS using HTTP or FTP if the
DMN is non-secure, or HTTPS if operating in secure-mode and instantiates the

5

(c) 1999 IFIP

Distributed Management with Mobile Components

Management Components
Local Service
. Manager
Directory
Core Services
c
o 0
=l =] o]
©
s g g |8 e
c = b=
2|12 |2 |3 &
c| |E|l [» 3 £
S E — [}
= o <)
8 o I
g
=
Bootstrap

Figure 3: Architecture of the Distributed Management Node (DMN)

core services. The bootstrap mechanism next reads the configuration of the DMN
from the CCS to create and initialize the service manager.

Core Services

The core services component provides the essentia services for all components of
the DMN.

The transport service is responsible for moving MCs between DMNs. When
MCs are moved, they can keep their internal state including the results of the
completed management operations.

The communication service provides seamless remote and local
communication between the management components. Communication includes
not only messaging but also event forwarding, remote method invocation and
exception forwarding.

The persistence service allows storage of relevant DMN components into the
persistent storage and reload of stored components back into memory. The primary
use of this service isthe recovery from system crashes, where persistent parts of the
DMN can be reloaded into memory during reboot. Another possible use is to save
system resources, where components that are not in use are flushed into persistent
storage and reloaded again when they are needed.

The security service provides secure communication and transport between
DMNSs. It also protects different parts of the DMN by applying access control. This
helps to limit the damage misbehaving or error-prone MCs can cause.

M anagement Tools
The component management tools consists of service interfaces that enable access
to tools provided by the local operating system, e.g. ping and traceroute, or by

6

(c) 1999 IFIP

Session 23: Distributed Systems and Applications

other third party software packages that are available on a machine but are not
integrated with the DMN, e.g., a database. These services are registered with the
local directory by the service manager, and are available to the management
components through their service interfaces.

Service Manager

A very important part of the architecture is the service manager. It is responsible
for the dynamic installation, configuration and removal of service interfaces to
local management tools as well as MCs. The service manager also registers the
installed service interfaces and MCs with the local directory.

The service manager is created and initialized by the bootstrap service during
DMN initialization, and provided with an initial configuration. First, the service
manager creates the local directory and registers it as a subtree of the globa,
distributed directory. Second, different service interfaces and MCs are installed as
specified in the initial configuration file.

Installation of an MC by the service manager consists of a number of steps:

First, the service manager downloads the necessary code packages from the central

code store, which may be different from the one that was used for bootstrapping.
Second, the MC is created and initialized using the capabilities defined for that MC

in the local directory. Finally the service manager registers the MC as a
“component” with the distributed directory, making the MC and its services (if any)
available to other MCs within the DMF.

When loading the code required for an MC, the service manager uses the
services of the bootstrap component to mark them as “in use” by the MC. When the
MC terminates, any code that was downloaded, if not shared by other MCs, can
then be removed from the DMN to save resources.

Local Directory

The local directory tree is maintained by the service manager and is a part of the

distributed directory. It contains the following information:

* DMN static configuration, e.g., the location of the distributed directory root
node;

* DMN capabilities, e.g., the functions such as MC types or management tools
supported by this DMN; and

* DMN dynamic configuration, e.g., active MCs at this DMN and information
specific to the active MCs.

In order to facilitate the integration of information related to MCs into the
directory, the directory supports a special kind of node calleddtigeNode. An
ActiveNode acts as a bridge between normal directory operations (e.g., directory
guery) and the facilities in an MC that provide the corresponding operations. For
example, if an MC internally maintains its own directory structure, e.g., an LDAP
based directory, it can add itself into the directory as an ActiveNode, which is then
used as the translation interface to the MC internal directory. An ActiveNode can
also be used to provide dynamic information from an MC into the directory: if a
status parameter (e.g., number of active connections) of an MC is entered as an

7

(c) 1999 IFIP

Distributed Management with Mobile Components

ActiveNode in the local directory tree, then a query on that node is translated into a
component internal action to retrieve the status parameter and return it as response
to the query.

Distributed Directory

The local directory subtrees of all the DMNs constitute the distributed directory.
The main uses of the distributed directory are location of services and monitoring
the status of the components of the DMF.

A single DMN is configured to maintain the root of the distributed directory
tree; backup DMNs for this role are aso defined. On startup, each DMN constructs
itslocal directory tree, and attaches it to the (first available) root.

The directory provides an event notification service. A management component
can subscribe to this service in order to be notified when the subscribed event
occurs. Examples of events are addition/deletion of nodes, used in monitoring
status and location of management components.

The distributed directory supports generic search mechanism for locating
nodes. For example, it enables queries to search for all management components of
type “event filters”.

Our current approach to directory failures is very simple. Each DMN monitors
the distributed directory. If the DMN acting as the root of the directory fails, then
the DMNs attach directory subtrees to a pre-configured backup root (there can be
several). Failure of any other DMN results in the removal of the link to the
directory subtree from the root of the distributed directory. We are currently
developing more robust algorithms for handling failures.

3. DMF Implementation

The DMF is implemented using the Java language [6]. The key motivations for
using Java are its object-orientedness, platform independence, and networking
support including dynamic code downloads.

The DMF is based on the Objectspace Voy&dgalatform [7], which through
its ORB (object request broker) provides seamless remote communications
between objects, and a number of important services such as persistence and
directory. It is a Javarbased middleware for the development of distributed,
object-oriented applications.

Our implementation of the DMF uses and extends the capabilities of the
relevant Java APIs and the Voyager platform. In this section, we briefly discuss the
important aspects of these extensions.

3.1DMN

Bootstrap

The bootstrap package consists only of two classes, namely a network class |oader
and the bootstrap class itself. These two classes and the Java JDK are the only
installation requirements for the DMN.

(c) 1999 IFIP

Session 23: Distributed Systems and Applications

When a device comes up it automatically starts the bootstrap with a URL
specified in the local configuration file pointing to a CCS, e.g. an HTTP server,
from where a configuration file or object is loaded. The configuration specifies the
class that implements the DMN and the location of the CCS (typically the same
HTTP server as the one where the configuration was downloaded from) from
where the necessary packages can be loaded. After the bootstrap mechanism has
instantiated the downloaded classes, it initializes the DMN with the configuration
and startsiit.

Using our bootstrap mechanism, an administrator can install a new version of
the DMN once on the CCS and change the configuration used in the bootstrap
process there. Code or configuration changes to every device hosting DMNs are
not required, as the bootstrap process will automatically install new versions as
needed.

Core Services
The persistence and communication services of the DMF are directly based on
those provided by the Voyager platform.

The transportation service of Voyager provides object mobility. This permits
movement of MCs between DMNs. MCs can be moved by other MCs or they can
move themselves.

Voyager relies on the Java object serialization mechanism to transform objects
into byte streams. A proprietary protocol (layered on top of TCP) is used to
transport the serialized objects across the network. However custom transports can
be installed as well; we use this feature in implementing security enhancements,
i.e, a secure transport mechanism for moving objects and messages between
DMNs.

The Voyager platform includes a customized security manager which protects
(local) system resources similar to the Java Sandbox model. To protect transport of
MCs and communications between DMNs we modified Voyagers transport
mechanisms to support SSL (Secure Socket Layer). We aso changed class loading
to work with HTTPS (HTTP over SSL). Our current implementation assumes a
closed system and does not handle attacks such as a malicious MC locking
resources of aDMN.

3.2 Distributed Directory

The Voyager platform alows the registration of an object in a distributed
hierarchical directory structure provided by Voyager's Federated Directory
Service. Subtrees of this directory structure can be spread across different hosts, i.e.
DMNs in our architecture.

The objects registered in the directory can also be remote and mobile. This
allows us to keep track of MCs even after they have moved to a different DMN.
Our enhancements to the base directory services are the addition of search
facilities, support for ActiveNode functions as described in section 2 and an event
notification mechanism for alerting subscribers of changes in the directory.

(c) 1999 IFIP

Distributed Management with Mobile Components

4. Implementation Example: Enter prise Manager

In this section, we present a management application called EnterpriseM anager that
runs on our DMF implementation. EnterpriseManager is a management component
that runs on a DMN (DMN-ZRH), and is used to analyze IP traffic characteristics
when assigned performance thresholds are exceeded.

(2) move

move (5)
Tas

Service Service
Manager Dir €~~~ ~7""71 Dir Manager
Man.) Man.
Core Tools Core Tools)
Bootstraa Bootstraa
DMN ZRH DMN NYC

Figure 4: Enterprise Manager Scenario

In our scenario shown in Figure 4, the EnterpriseManager listens for “delay

threshold exceeded at LAN NYC” events from other MCs in the DMF. When it
receives such an event, the following set of actions will take place:

The EnterpriseManager creates/activates a TrafficAnalyzer MC which
monitors traffic on a LAN segment and measures IP traffic in terms of a
selected set of application protocols. The TrafficAnalyzer receives from the
Enterprise Manager a TaskDescription object (1). This TaskDescription
‘defines’ the task, which means that it specifies the subnet to monitor, types of
application protocols that need to be observed (e.g., HTTP, SMTP, FTP) and
the monitoring duration.

The TrafficAnalyzer MC now uses the Distributed Directory to find a DMN
that is capable of running a MonitoringService MC and can monitor traffic on
LAN NYC. It finds DMN NYC.

The TrafficAnalyzer moves itself to DMN NYC (2).

On arrival at DMN NYC, the TrafficAnalyzer starts the MonitoringService
MC and initializes it with the TaskDescription (3). The MonitoringService
initializes and starts monitoring using a set of management tools available at
the DMN. The monitoring process is explained in detail in the next
sub-section.

10

(c) 1999 IFIP

Session 23: Distributed Systems and Applications

* Asit receives the results from the subnet, the MonitoringService reports data
back to the TrafficAnalyzer which composes a report based on the collected
data (4).

* When the specified monitoring period ends, the MonitoringService stops
monitoring and terminates, i.e. removes itself (and the associated Java classes)
from the DMN.

* The TrafficAnalyzer moves back to the DMN ZRH (5), gives its report to the
EnterpriseManager and terminates (6).

4.1 Monitoring Tools

In order to monitor the traffic on a LAN segment, we need monitoring tools that
can capture I P traffic from the network and analyze them. In our implementation of
the scenario, we have used two such tools, and these are briefly described in this
section.

RMON

An RMON (Remote Monitoring) probe is a packet monitor/analyzer with an
SNMP agent supporting Internet standard MIBs. There are two versions. RMON
MIB [8] defines statistics for the lower protocol layers as well as configurable,
sophisticated filter mechanisms to count or capture specific packets; RMON2 MIB
[9] provides extensions to RMON by allowing application layer protocol statistics.

The only way to configure and get data from a typical, commercially available
RMON probe is through the SNMP protocol. In order to reduce the SNMP traffic
between the management components and the RMON probes, in our
implementation, RMON probes are aways local to (meaning on the same
host-machine) or at least on the same subnet as the management components.

Homegrown Packet Sniffer

The homegrown packet sniffer (HPS) consists simply of a C-based tool that
captures packets from a promiscuous network adapter, and passes it onto a Java

object that acts as a real-time ‘packet server’ for management components. HPS
captures IP packets.

Analysis of packets is done using ‘plug-in’ management components. The key
advantage of the HPC over RMON probes is that it does not require SNMP.
However, its functions are limited to packet capture, and does not include statistics.

4.2 The MonitoringService MC

The MonitoringService MC is responsible for selecting, configuring and collecting
data from a monitoring tool. Its key component is the TaskHandler which uses the
TaskDescription received from the TrafficAnalyzer to configure the monitoring
tool. As an example, assume that the task description specifies HTTP protocol as
the one to be observed (TCP port 80), and the monitoring tool is an RMON probe.
The TaskHandler creates a set of three Java objects, 2 filter objects representing
RMON filter and one for a RMOMhannel as shown in Figure 5. The filters are

11

(c) 1999 IFIP

Distributed Management with Mobile Components

configured to capture TCP packets with source or destination ports equal to 80
respectively.

‘ Task Handler ‘

Filter: Filter:
(protocol == IP && srcPort == 80) (protocol == IP && dstPort == 80)

‘ Channel ‘

L
SNMP

RMON Probe

filter.3
filter.4
channel . 8

Figure 5: Setting-up and RMON Probe

On creation, these Java objects send a set of SNMP set commands to the
RMON praobe to configure it by creating the equivalent RMON MIB table entries.
To collect data, the TaskHandler calls a method on the channel (getData) which
using an SNMP get, collects the value of the channelMatches field (number of
HTTP packets) from the RMON channel construct.

Software constructs such as the TaskDescription and the TaskHandler enable
us to dynamically create and configure management applications at any DMN. The
TaskDescription is a concise description of an management task; the TaskHandler
realizes thistask by pulling together the appropriate management components.

The Java objects created for the monitoring task, including the TaskHandler
can be dynamically downloaded when required, and removed (garbage collected)
when the monitoring is compl ete.

4.3 Implementation Experiences

We implemented the EnterpriseM anager application on our site network consisting
of 9 LAN segments distributed across two remote campuses. We installed DMNs at
a selected set of hosts (running AlX, Windows95, Windows NT and Linux) on the
network. The installation has been used to analyze traffic patterns for services such
asthe HTTP and Lotus Notes servers.

For the scenario described above, aDMN located on the same LAN segment as
the RMON capable of monitoring the campus HTTP traffic was selected. Figure 6
shows a browser window with a graph showing the HTTP traffic distribution over a
day on three local LAN segments at our site. This graph is generated in real-time
by the EnterpriseManager based on the reports received from the TrafficAnalyzer.
A set of management components are used as ‘plug and manage’ modules for the
TrafficAnalyzer in order to carry out different analysis functions.

12

(c) 1999 IFIP

Session 23: Distributed Systems and Applications

#r HTTI packeis NETTHE] - Kleicc s

[[2 Yow (o Cowwresos Heo

o« +« 3 % 2 € 5 & H
Bk Folond] Hoes Gosmoh Dise Pl - S0y
I_ J'Eﬂuﬂu £ Lmlﬂb-"\ﬂ—.w 1T TP RS _a b s hied d

Sirand Haisagm & imert § Loskip] Hewdled

HTTF traffic on server zrl on 30/0E3/9%

1.2 . 3. 4. 3. B . 0 B 8 10 1L 14, 1% 08 OT. 1IR3 L.

w20 w2l el 11

Figure 6: HTTP Traffic Distribution

Our experiences with the EnterprissManager implementation have been very
positive. Using the DMF, we can very easily move different management
components and therefore functions to a DMN to carry out a given task. For
applications where location dependent management tools such as RMON are not
needed, we are able to download al of the DMN including the bootstrap
component using a browser and Java applets.

5. Conclusion

The phenomenal growth in the size of networks and our increasing reliance on
them for services requires effective means of network and systems management.
The architecture presented in this paper is a step in this direction. The distributed
management framework (DMF) enables distribution of management tasks and
provides the ability to run these tasks practically anywhere in the managed system.
The DMF architecture is designed to run on various types of devices that range
from embedded systems to desktops.

Our current research effort is focused on two main directions. First, we are
developing a suite of management applications that benefit from the distributed
management approach. Second, we are looking at implementation options for an
“embedded” version of the DMF that can scale down to very small devices such as
handheld computers or printers. The overall goal is to investigate the distributed
management of environments consisting of huge numbers of (possibly mobile)

13

(c) 1999 IFIP

Distributed Management with Mobile Components

devices, working with Tivoli Systems, an IBM company, on the future generation
of Tivoli management products.

Acknowledgments

The authors acknowledge contributions of our colleagues (in aphabetical order),
A. Bussani, T. Gschwind, C. Hortnagl, W. Kleindder, R. Nielsen, S. Pleisch and S.
Rooney as well as the suggestions made by anonymous referees.

References

[1] F. Barillaud, L. Deri, and M. Feridun, “Network Management using Internet
Technologies,” Proc. ISINM’'97, May 1997, San Diego, USA.

[2] G. Goldszmidt and Y. Yemini, “Distributed Management by Delegation,”
Proc. ICDCS’95, June 1995, Vancouver, British Columbia, Canada.

[3] M. Baldi, S. Gai and G. Picco, “Exploiting Code Mobility in Decentralized and
Flexible Network Management,” Proc. MA'97, April 1997, Berlin, Germany.

[4] A. Sahai and Christine Morin, “Towards Distributed and Dynamic Network
Management,” Proc. NOMS’98, February 1998, New Orleans, Lousiana, USA.

[5] A. Bieszczad and B. Pagurek, “Towards Plug-and-Play Networks with Mobile
Code,” Proc. ICCC’97, November 1997, Cannes, France.

[6] K. Arnold and J. GoslingThe Java Programming Language, Addison Wesley,
1996.

[7] ObjectSpace,ObjectSpace Voyager Core Technology User Guide (V2.0),
1998.

[8] S. WaldbusserRemote Network Monitoring Management Information Base,
Internet RFC-1757, 1995.

[9] S. WaldbusserRemote Network Monitoring Management Information Base
Version 2 using SMIv2, Internet RFC-2021, 1997.

14

(c) 1999 IFIP

