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Abstract  

Mountain plants are considered among the species most vulnerable to climate change, 

especially at high latitudes where there is little potential for poleward or uphill dispersal. 

Satellite monitoring can reveal spatio-temporal variation in vegetation activity, offering a 

largely unexploited potential for studying responses of montane ecosystems to temperature 

and predicting phenological shifts driven by climate change. Here, a novel remote sensing 

phenology approach is developed that advances existing techniques by considering variation 

in vegetation activity across the whole year, rather than just focusing on event dates (e.g. start 

and end of season). Time series of two vegetation indices (NDVI and EVI) were obtained 

from the MODIS satellite for 2786 Scottish mountain summits (600-1344 m elevation) in the 

years 2000-2011. NDVI and EVI time series were temporally interpolated to derive values on 

the first day of each month, for comparison with gridded monthly temperatures from the 

preceding period. These were regressed against temperature in the previous months, elevation 

and their interaction, showing significant variation in temperature sensitivity between 

months. Warm years were associated with high NDVI and EVI in spring and summer, while 

there was little effect of temperature in autumn and a negative effect in winter. Elevation was 

shown to mediate phenological change via a magnification of temperature responses on the 

highest mountains. Together, these predict that climate change will drive substantial changes 

in mountain summit phenology, especially by advancing spring growth at high elevations. 

The phenological plasticity underlying these temperature responses may allow long-lived 

alpine plants to acclimate to warmer temperatures. Conversely, longer growing seasons may 

facilitate colonisation and competitive exclusion by species currently restricted to lower 

elevations. In either case, these results show previously unreported seasonal and elevational 

variation in the temperature sensitivity of mountain vegetation activity. 
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Introduction 

Changes to species’ phenology (the seasonality of ecological processes) and their aggregate 

effects at ecosystem levels are among the clearest documented impacts of recent rapid 

climate change (Cleland et al., 2007, Walther et al., 2002). Across a large range of taxa, a 

general pattern of phenological shifting in response to warming has emerged, with advancing 

early and mid-season events (leafing, flowering and fruiting) and less predictable but often 

delayed late-season events (leaf senescence) (Menzel et al., 2006, Thackeray et al., 2010). 

Large-scale coherent phenological shifts could have many important consequences. Altered 

synchrony of intra- or interspecific interactions may affect individual fitness and population 

dynamics (Miller-Rushing et al., 2010). Longer growing season lengths are likely to relax 

constraints on species distributions, promote range expansion and drive changes in 

community composition (Morin et al., 2008). At the ecosystem level, altered seasonality of 

respiration and photosynthesis is affecting the global carbon cycle (Keeling et al., 1996). 

Therefore, understanding phenological shifts and predicting future trajectories of change are 

very important goals for ecological research. 

This is perhaps especially true in mountain ecosystems where growing seasons are short and 

sharply demarcated by cold winters (Körner, 2003). Many studies emphasise that dates of 

mountain plant spring growth and flowering respond to temperature and other climate-related 

drivers such as snow cover (Aldridge et al., 2011, Inouye et al., 2002, Totland &  Alatalo, 

2002, Wipf &  Rixen, 2010). Although it seems clear that warming is affecting the timing of 

these individual events, a broader consideration of how climatic variation affects phenology 

of the whole vegetation community across the whole of the year, and how this varies 

geographically, e.g. with elevation, is lacking. Recently, uphill migration of low-elevation 

species and large changes in species richness on mountain summits have been associated with 

warming (Gottfried et al., 2012, Pauli et al., 2012). Because these changes in species 



4 
 

composition are likely facilitated by longer growing seasons and may lead to different 

phenological patterns at the community scale, there is strong motivation for assessing the 

current-day link between temperature and phenology on mountain summits, and using this to 

predict future vegetation phenology. 

Remote sensing of vegetation activity may provide a standardised avenue for enquiry into 

mountain phenology across multiple years and locations (Pettorelli et al., 2005, Qiu et al., 

2012). Satellites including MODIS (Moderate Resolution Imaging Spectroradiometer) 

provide vegetation indices (VI) such as the normalised difference VI (NDVI) and enhanced 

VI (EVI) at reasonably high spatial and temporal resolutions (Huete et al., 2002). NDVI 

correlates well with vegetation productivity so is useful for characterising the phenology of 

vegetation activity. EVI provides complementary information but suffers less from 

atmospheric and soil effects and is more strongly related to vegetation canopy cover, 

especially in high biomass environments such as forests (Huete et al., 2002). Traditionally, 

phenology studies have processed time series of remote sensed VIs to compute calendar day-

based estimates of phenological events, such as dates of green-up, peak growth, and 

senescence (Pettorelli et al., 2005, Wu &  Liu, 2012). This approach has demonstrated trends 

for earlier and longer growing seasons at continental scales (Stöckli &  Vidale, 2004). 

However, a weakness of the method is that the temporal resolutions of VI time series are 

generally orders of magnitude greater than typical known rates of change in event dates (< 1 

day per year; Menzel et al., 2006, Thackeray et al., 2010). Furthermore, phenological studies 

would benefit from considering the full seasonal activity pattern of the focal species or 

ecosystem, rather than just the dates of a small set of events (Hodgson et al., 2011, Post et al., 

2008). 

In this study, a novel technique for analysing phenological change from VI time series is used 

to assess elevational patterns of vegetation seasonality and their sensitivity to temperature on 



5 
 

the summits of 2766 mountains in Scotland. Instead of estimating phenology event dates, the 

full seasonal pattern of VI variation is considered. To achieve this, temporal interpolation 

with regression splines is used to approximate VI values on fixed days, chosen here to fall on 

the first day of each month for congruence with monthly temperature data. Each month’s 

first-day VIs are analysed against mean temperatures in the preceding months to assess their 

climatic sensitivity. Between-month variation in temperature sensitivity allows the 

forecasting of shifts in the VI phenology curves (at monthly resolution) for climate change 

scenarios. The analysis also considers interactions between temperature and elevation to test 

the hypothesis that phenological change in montane ecosystems is mediated by elevation. 
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Materials and Methods 

Study area and data sources 

The location and elevation of every mountain summit (hill top ≥600 m above sea level) in 

Scotland were extracted from the Database of British and Irish Hills (Jackson et al., 2012) 

(Fig. 1). The database contained 2857 such summits, with a maximum elevation of 1344 m. 

Of these 91 were excluded as having a higher peak within 354 m, meaning they may share 

the same 250x250 m MODIS pixel (see below). Summits were used in the study as a way of 

roughly standardising topography, compared to using pixels from slopes of varying aspect. In 

Scotland, 600 m is generally interpreted as being the upper limit of the tree line, 900m is the 

upper limit of the sub-alpine zone and 1200 m is the upper limit of the low-alpine zone (Coll 

et al., 2010). The climate is highly oceanic (especially in the west) with intermittent snow 

cover during winter, except on the highest mountains. 

Remote-sensed data from the 250x250 m and 16-day MOD13Q1 composite product of the 

MODIS satellite (NASA Land Processes Distributed Active Archive Center, 2013) were 

acquired for each summit between day 49 in 2000 (the earliest date at which MODIS data are 

available – other satellites provide earlier NDVI but at much coarser resolution) to the end of 

2012. Two VIs (NDVI and EVI) were extracted from MOD13Q1. These are normalised to a 

nadir view and standard solar angular geometry using the bidirectional reflectance 

distribution function of each pixel (Huete et al., 2002). As a result, seasonal variation in view 

and solar zenith angles of the MODIS satellite will not affect the seasonal pattern of VI 

variation. Also obtained from MOD13Q1 were a data quality flag and the exact acquisition 

days for each 16-day compositing period (Huete et al., 2002). The data quality flag indicates 

whether the satellite had a clear view of the land or was observing snow or cloud.  
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As a variable to investigate climatic effects on vegetation phenology, regional monthly 

gridded mean temperatures up to the end of 2011 were obtained from the CRU TS3.2 dataset 

(University of East Anglia Climatic Research Unit, 2012) at a resolution of 0.5° longitude 

and latitude (Fig. 1). From CRU TS3.2, mean temperatures for the whole region (not the 

summits) in February and July were 1.9 °C and 12.8 °C, respectively, over the period of 

study. Even though temperature data were only available to the end of 2011, MODIS VI data 

were obtained up to the end of 2012, to avoid edge effects in the phenological modelling (see 

below). 

Pre-processing of the MODIS VI data 

Before phenological analysis, I identified and removed unreliable VI observations from the 

data. First, the data quality flag was used to exclude snow and cloud observations, because 

they obscure the vegetation (Fig. 2a). Some of the remaining observations were also 

considered unreliable because of inaccuracy in sensor calibration, atmospheric correction and 

cloud and snow masking (Huete et al., 2002, Pettorelli et al., 2005). These were identified as 

being outliers from the long-term average seasonal VI trend, after flagged snow and cloud 

were removed. Seasonal VI trends were estimated by fitting circular cubic regression splines 

with the ‘mgcv’ R package (Wood, 2003) where VI is modelled as a function of the day of 

the year (Fig. 2b). The circular nature of the spline ensured a seamless wrapping of the 

seasonal curve. Spline smoothness is controlled by the number of degrees of freedom, of 

which I allowed five. Outliers were classified from the residuals of the spline if they were 

outside of the range [Q1-(Q3-Q1), Q3+(Q3-Q1)] where Q1 and Q3 are the first and third 

quartiles of the residuals (Chambers et al., 1983). Most outliers were negative residuals (i.e. 

unusually low VI observations), reflecting the downwards biasing of VI measures by 

atmospheric contamination (Pettorelli et al., 2005, Zhang et al., 2003). Because large 

negative residuals will affect least squares fitting, two iterations of the spline and outlier 
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identification algorithm were applied, with the second iteration being performed on the subset 

of data remaining after the first (Fig. 2b).  

Interpolation of first-of-month VI 

Because the temperature data were monthly, first-of-month VI values were estimated by a 

temporal interpolation, where data permitted. After exclusion of cloud, snow and outliers, 

non-circular cubic regression splines were fitted to the multi-year time series (Hodgson et al., 

2011) with mgcv (Wood, 2003) (Fig. 2c). To represent seasonal oscillations, splines were 

specified with 65 degrees of freedom (five per year). Interpolated VI values from the spline 

curve were calculated for the first day of each month between 2000 and 2011, for use as 

response variables in the modelling of temperature effects on VI. To ensure interpolation was 

reliable, I did not interpolate first-of-month VI if fewer than three valid VI observations were 

within ±30 days of the first-of-month day (Fig. 2c). 

Analysis of VI variation 

Bayesian generalised linear mixed models (GLMMs) were used to test the sensitivity of 

interpolated first-of-month NDVI and EVI in each calendar month to variation in mean 

temperature of the previous months. The GLMMs for each month were specified to contain 

fixed effects of temperature, elevation (log10-transformed to improve conformance to 

normality, see Fig. 1 inset) and their interaction. A random effect of the summit identity was 

included to account for repeat sampling from the same mountains and to accommodate the 

difference between the average temperature in the CRU TS3.2 grid cell and that experienced 

on the mountain summit. 

Separate models were fitted for each month of the year, since it may be expected that all fixed 

and random effects may vary seasonally. Theoretically, it may have been possible to fit a 
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single model in which month interacted with all fixed and random effects, but I found it 

simpler and more tractable to work with a set of monthly models. Models were also fitted 

with alternative temperature variables, based on means over the previous one to six months. 

The optimal temperature averaging period was selected based on minimising the summed 

deviance information criteria (DIC) of the GLMMs for each of the 12 months. 

GLMMs were estimated through a Bayesian procedure using the Markov Chain Monte Carlo 

(MCMC) algorithm as implemented by the R package ‘MCMCglmm’ (Hadfield, 2010) to 

sample from the posterior distributions. GLMMs were specified with a Gaussian error 

structure, uninformative priors, burn-in of 3,000 MCMC iterations followed by 500,000 

iterations to sample posterior distributions with a thinning interval of 10 iterations. More 

iterations were not used because of computational effort and the large number of individual 

models to fit. From the fixed effect posterior samples, I calculated posterior means, 95% 

highest posterior density (HPD) intervals and two-tailed P values (twice the proportion of the 

posterior sample that was of opposite sign to the posterior mean). Fixed effect pseudo-R
2
 

values were calculated from the squared correlation between the observed VIs and values 

calculated from the posterior mean fixed effects (i.e. ignoring variation explained by the 

random effect). 

Projection of VI in the 2050s 

To illustrate the potential for future climate change to drive shifts in ecosystem phenology, I 

used monthly mean temperatures predicted for the 2050s by the HadCM3 climate model 

(Johns et al., 2003) assuming three SRES emissions scenarios (A1b, A2a and B2). The A 

scenarios project less effort to reduce greenhouse gas emissions than the B scenario, while 

the ‘1’ scenarios assume greater globalisation than the ‘2’ scenarios. HadCM3 projections in 

the 2050s for these scenarios were obtained at a 1/24° resolution and were aggregated to the 
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CRU TS3.2 grid by taking means. Compared to observed annual mean temperatures from 

2000-2011, the model predicts that by the 2050s the annual mean temperature of the study 

region will warm by an average of 1.4 °C for A1b, 0.3 °C for A2a and 0.1 °C for B2. 

However summer warming is projected to be greater (for July 2.1 °C, 0.8 °C and 0.7 °C 

respectively). To estimate potential phenological shifts driven by these temperature changes, 

the posterior mean fixed effects of the GLMMs developed above were used to calculate first-

of-month VI profiles for the 2050s temperatures. These were contrasted with the current-day 

first-of-month VI profiles calculated from the 2000-2011 temperatures. 
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Results 

Pre-processing and temporal interpolation 

An example of the pre-processing and interpolation for NDVI is shown in Fig. 2. Across all 

summits, the median percentage of MODIS observations excluded because of cloud or snow 

was 32.5% (95
th

 percentile range = 17.2-58.1%). Both cloud and snow cover were more 

prevalent at higher elevations (Pearson’s r = 0.798 and 0.697, respectively, both P < 0.001). 

The percentages of non-obscured MODIS observations identified as outliers from the long-

term average seasonal VI curves (probably representing undiagnosed problems with sensor 

calibration, instrument noise, atmospheric correction or cloud and snow masking) were 

18.7% for NDVI (95
th

 percentile range = 8.8-26.5%) and 15.1% for EVI (95
th

 percentile 

range = 4.6-24.2%). There were weak but significant tendencies for fewer outliers to be 

identified on the higher summits (r = -0.188 for NDVI and r = -0.303 for EVI, both P < 

0.001). After exclusion of cloud, snow and outliers, the long-term average seasonal VI curves 

(Fig. 3) showed a clear seasonal oscillation indicating that they are useful for phenological 

studies. The average seasonal patterns were more asymmetrical for NDVI than EVI. Both VIs 

were also depressed at higher elevations, probably because of reduced vegetation productivity 

and cover. However, the timing of the average phenological peaks was not noticeably 

affected by elevation (Fig. 3). 

According to the data quality criteria established in the Materials and Methods, spline 

interpolation of first-of-month VIs (Fig. 2c-d) was possible in 38.2% of cases for NDVI and 

40.7% for EVI, giving respective sample sizes for the subsequent analyses of 153,879 and 

162,763. Because of greater cloud and snow cover, there was a strong decline in the 

proportion of months where interpolation was possible with increasing elevation (r = -0.766 

for NDVI and r = -0.732 for EVI, both P < 0.001) and more interpolations were possible in 
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summer than in winter (Fig. 4). Nevertheless reasonable sample sizes for analysis were 

obtained throughout the year at elevations below 1100 m (Fig. 4). 

VI sensitivity to temperature 

Bayesian GLMMs were fitted separately for each calendar month and VI to model 

interpolated first-of-month values as a function of interactions between regional mean 

temperature in the previous months and elevation. Comparing models for average 

temperatures over the previous one to six months, the strongest temperature effect (lowest 

DIC) was obtained by averaging over three months (ΔDIC > 200 for all alternative averaging 

windows). Overall pseudo-R
2
 values calculated from the posterior mean fixed effects (i.e. 

ignoring variation explained by the random effects) were 0.562 for NDVI and 0.402 for EVI. 

Mean pseudo-R
2
s for individual months were 0.233 for NDVI (range 0.138-0.325) and 0.120 

for EVI (range 0.036-0.251), in both cases peaking in March and being lowest in December 

and January. 

Samples from the GLMM fixed effect posterior distributions showed that elevation had a 

significant (P < 0.05) negative effect on VI in 21 of 24 cases (see Table S1). Temperature 

main effects were statistically significant in 17 cases, and there were significant interactions 

between temperature and elevation in 19 cases (Table S1). As shown in Fig. 5, these 

interactions exhibited a strong coherence in temperature sensitivity between months, which 

was not specified in the models fitted independently for each calendar month. At the lowest 

elevations, first-of-month VIs were relatively insensitive to temperature but exhibited small 

positive effects during spring and summer (Fig. 5). At higher elevations, there were strong 

positive effects of warm temperature in spring and summer, peaking on 1
st
 May. There was 

also a strong negative association between high temperatures and VIs in winter (1
st
 December 
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to 1
st
 March) at high elevations. These patterns did not qualitatively depend on the choice of a 

3-month temperature averaging window (Fig. S1). 

Modelled future phenological shifts 

VIs predicted for the projected mean temperatures in the 2050s under emissions scenario A1b 

substantially differed from those observed in 2000-2011 (Fig. 6). Warming was predicted to 

drive reductions in VI during winter (1
st
 December to 1

st
 March) and increase VI in spring 

and summer (especially on 1
st
 May and 1

st
 June) with the greatest changes predicted for the 

higher summits. The large increases in spring VI and slight increase in late summer can 

reasonably be interpreted as leading to an earlier and longer growing season (though I did not 

attempt to estimate season start and end days). The highest summits also increased in 

phenological amplitude (difference between maximum and minimum VI). Qualitatively 

similar results were obtained for two other emissions scenarios (A2a and B2; see Figs. S2 and 

3), though these predict less warming in Scotland and so the changes were smaller. 
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Discussion 

This study is the first to quantify large-scale elevational gradients in the sensitivity of 

phenology to climate in alpine ecosystems. Because alpine species cannot readily disperse to 

track the shifting climate space, especially in Scotland where there is no currently-

unvegetated nival belt to colonise, gaining a better understanding of how montane 

ecosystems and species respond to climate change is very important for their conservation. 

This analysis of two complementary remote-sensed vegetation indices shows that over the 

past decade, warmer years have been associated with increased vegetation activity in spring 

and summer, little change in autumn, and reduced activity in winter. This signals a 

temperature-driven phenological shift towards earlier and longer growing seasons with 

increased phenological amplitude. Furthermore, the analysis demonstrates that climatic 

effects on phenology are mediated by elevation, with more pronounced temperature 

sensitivity on higher summits than at the lower end of the alpine zone. 

The finding that warm years are associated with earlier green-up of the vegetation (increased 

VI in spring months) mirrors conclusions from multi-species meta-analyses (Menzel et al., 

2006, Thackeray et al., 2010), studies of individual montane plants (Aldridge et al., 2011, 

Inouye et al., 2002, Totland &  Alatalo, 2002, Wipf &  Rixen, 2010) and patterns found for 

start-of-spring indicators inferred from remote sensing (Fisher et al., 2006, Stöckli &  Vidale, 

2004). However, this analysis considers temperature effects on the full seasonal pattern of 

vegetation activity and not just dates for specific phenological events. Between-month 

differences in temperature sensitivity (Figs. 5 and 6) show that the advance in the early 

growing season occurs via a fairly uniform leftwards shifting of the phenology curve during 

spring and early summer (April to July), without much change to the pattern of senescence in 

autumn. The lack of temperature sensitivity towards the end of the growing season perhaps 

reflects photoperiodic controls on senescence, which may be adapted to pre-empt winter 
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frosts (Körner, 2003). Predictions for the 2050s (Fig. 6) suggest that at the resolution of this 

study (months) the timing of the phenological peak will not change because of warming. 

However, based on the projected changes it seems likely that a sub-month advance in the 

peak would occur, especially at higher elevations and for EVI (Fig. 6). 

The seasonal pattern of temperature sensitivity uncovered in the analysis is consistent with 

the majority of individuals and species opportunistically starting to grow earlier and then 

maintaining activity for longer during warm years. If only a small subset of species 

responded in this way, then the VI phenology curve would retain the same peak, but be 

increasingly skewed to the left rather than uniformly shifted. If all species started to grow 

earlier but also senesced earlier, the whole curve and its peak would shift to the left. If only a 

subset of species did this, then the curve would form a secondary bimodal early-season peak, 

as has been observed for sub-alpine flowering phenology (Aldridge et al., 2011). This 

argument highlights the increased understanding of phenological change that can be gained 

from studying the whole seasonal curve rather than just the dates of selected events (Hodgson 

et al., 2011, Post et al., 2008). 

An interesting and previously unreported pattern arising from this study was a negative 

association between high temperature and both VIs in winter (December to March), which 

was again significantly greater at high elevations. This effect is large enough for climate 

change to potentially cause large decreases in winter VI on the highest summits (Fig. 6). I 

suggest that this result should be accepted with caution as the sample size of valid 

observations in winter and at high elevations was low (Fig. 4). Furthermore, if warmer 

winters allowed observation of summits normally covered in snow and these had lower 

winter VIs than those summits with less snow cover, then it is possible that a spurious 

negative correlation between temperature and VI may have been introduced. However, a 

plausible biological explanation is that in the oceanic climate of Scotland, mild periods in 
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winter will melt lying snow and encourage premature carbohydrate mobilisation and plant 

growth when there is still a risk of frost damage (Crawford, 2000) which could reduce VI. 

Unfortunately I was unable to investigate snowmelt effects on VI explicitly in this analysis 

because snowmelt was estimated very imprecisely from the snow cover flag due to cloud 

cover and the coarse temporal resolution of the data. Nevertheless, the results suggest that 

winter temperature rises could play an important role in Scottish alpine species’ and 

community responses to warming. Impacts of winter climate change are less commonly 

studied than those of summer warming and so I suggest further studies, including snow 

removal (Wipf &  Rixen, 2010) and artificial warming (Saavedra et al., 2003) experiments, 

should explicitly test this on Scotland’s oceanic mountains. 

The statistical models of first-of-month VI were used to project future changes in vegetation 

phenology curves for climate change scenarios. The greatest change was predicted for the 

higher hills, consistent with the previously discussed elevational variation in temperature 

sensitivity. There was no way to test whether the models were capable of predicting long-

term phenological change, as has been done for single-species models (Hodgson et al., 2011), 

so these projections should also be accepted with caution. There are at least two reasons why 

the use of recent responses to climate may not accurately predict the long-term trajectory of 

change. First, the analysis conflates within-population (i.e. temporal) and between-population 

(i.e. spatial) effects of temperature. Sophisticated analyses beyond the scope of this paper are 

required to separate robustly both components of temperature responses and their interactions 

with elevation (Phillimore et al., 2012). However, individual summits did vary considerably 

between years in line with regional temperatures (Fig. S4) indicating significant within-

summit temporal responses to annual meteorological variation. Second, in the long-term the 

plant community at a given elevation may well come to resemble that currently found at 

lower elevations because of uphill species migration (Gottfried et al., 2012). Phenological 
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responses currently observed at high elevation, may therefore become similar to those 

currently observed on lower summits. The results here suggest that for Scottish mountains, 

this may reduce phenological sensitivity to temperature at high elevations. This emphasises a 

need to integrate modelling species and community distributions with that of phenology 

(Morin et al., 2008) to make robust predictions of the impact of climate change on vegetation 

phenology. 

Montane plants tend to be slow-growing and long-lived, so low temporal turnover might be 

expected in their populations and communities. As such, between-year phenological change 

in response to temperature may indicate a high degree of phenotypic plasticity among alpine 

plants. Phenological plasticity could enhance the resilience of alpine ecosystems to climate 

change, especially if replicated across other demographic traits (Doak &  Morris, 2010). 

Nevertheless, recent re-surveys have shown that over roughly the same period as this study, 

species richness on Scottish mountain summits has increased (Pauli et al., 2012) through 

‘thermophilization’ (i.e. uphill migration; Gottfried et al., 2012). Indeed, of 17 European 

mountain ranges assessed, Scotland’s mountains experienced the greatest thermophilization 

and the second greatest summer temperature increase (Gottfried et al., 2012). The strong 

links between temperature, elevation and vegetation phenology demonstrated here suggest a 

causal link between phenological change and community change. Earlier and longer potential 

growing seasons may facilitate uphill expansion of sub-alpine species and the altered 

community composition may then affect the pattern of vegetation phenology. This two-way 

feedback suggests a complex pattern of responses to climate change in alpine ecosystems. 

Future studies should explore the implications of this for species persistence during a period 

of rapid global change. 
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Supporting Information legends 

Table S1. Full details of the Bayesian GLMMs for NDVI and EVI in each month. 

Figure S1. Equivalent of Fig. 5 but for alternative temperature averaging periods. 

Figure S2. Equivalent of Fig. 6 but for SRES emissions scenario A2a. 

Figure S3. Equivalent of Fig. 6 but for SRES emissions scenario B2. 

Figure S4. Within-summit responses to between-year temperature variation. 
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Figures 

Figure 1. Map with points showing the locations of summits ≥600 m in elevation in 

Scotland. The inset histogram shows the distribution of their elevations. The map is 

superimposed with the 0.5° monthly temperature grid. 
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Figure 2. Data pre-processing and temporal interpolation of NDVI for an example mountain 

– Sgiath Chuil East Top (883 m elevation). (a) Part of the raw time series showing the 

distinction between observations of land, cloud and snow. (b) After exclusion of cloud and 

snow, outliers from the average seasonal trend were identified and removed using a circular 

regression spline to represent seasonal variation. The lines show three iterations of the outlier 

exclusion algorithm, indicating that the two iterations used in the full analysis were sufficient 

(negligible difference between iterations 2 and 3). (c) The time series after cloud, snow and 

outliers are removed. The solid line is the fitted regression spline from which first-of-month 

NDVI estimates were interpolated. Grey vertical lines mark occasions when observations 

were close enough to the first day of the month to allow interpolation. (d) Boxplot showing 

the interpolated first-of-month NDVI values across all years (boxes show median and 

interquartile range, whiskers span the range [Q1-1.5(Q3-Q1), Q3+1.5(Q3-Q1)], where Q1 and 

Q3 are the first and third quartiles, and points show data outside that range). Some months are 

missing due to lack of interpolated data from that summit. 
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Figure 3. Median seasonal (a) NDVI and (b) EVI curves for summits in different elevational 

ranges, estimated from seasonal splines fitted to each summit after outlier exclusion (‘Fit 3’ 

in Fig. 2b). Points mark the median VI peak day. Internal x-axis ticks show the monthly 

division of the year. 

 

  



27 
 

Figure 4. Sample sizes for the analysis of interpolated first-of-month NDVI for each month 

and 50 m elevation bins, after pre-processing (Fig. 2). Shading and contours indicate the 

number of interpolated values obtained. EVI showed a very similar pattern, but with slightly 

higher sample sizes. 
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Figure 5. The estimated temperature sensitivity of interpolated first-of-month (a) NDVI and 

(b) EVI at different elevations and months. Shading and contours indicate the expected 

change in VI for a 1 °C increase in the mean temperature of the previous three months, as 

estimated from the posterior means of the Bayesian GLMMs. Asterisks label months in 

which the posterior distributions indicated a statistically significant interaction between 

elevation and temperature (P < 0.05). 
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Figure 6. Expected change in first-of-month (a-b) NDVI and (c-d) EVI caused by warming 

up to the 2050s predicted under SRES scenario A1b by the HadCM3 climate model. Black 

lines and symbols show the median VIs predicted for the 2050s, according to the modelled 

temperature-sensitivities (Fig. 5). In the left-hand panel, grey lines show median fitted VI 

values for summits grouped by elevation over the current day period of study. For 

comparability, VIs for both periods are calculated from posterior mean fixed effects only. In 

(b) and (d), barplots show the median predicted regional warming in the previous three 

months (secondary axis). The small difference between barplots is due to the different subsets 

of valid data used in the analyses of NDVI and EVI. 

 



30 
 

Supporting Information 

Table S1. Fixed effects from the Bayesian GLMMs fitted to first-of-month vegetation indices 

in each calendar month (sample sizes given), given as the posterior means, 95% highest 

posterior density intervals (HPD) and two-tailed P values estimated from 5x10
5
 MCMC 

iterations. 

Vegetation index Month Fixed effect Posterior mean 95% HPD P 

NDVI 1 (n=2083) Intercept 1.263 0.241-2.269 0.015 

  log10-Elevation -0.269 -0.623-0.095 0.138 

  Temperature 0.372 0.177-0.560 <0.001 

  Temperature x log10-Elevation -0.132 -0.198--0.063 <0.001 

 2 (n=1621) Intercept 3.184 2.562-3.816 <0.001 

  log10-Elevation -0.955 -1.175--0.733 <0.001 

  Temperature 0.224 0.070-0.377 0.004 

  Temperature x log10-Elevation -0.080 -0.132--0.024 0.004 

 3 (n=3613) Intercept 3.270 2.945-3.613 <0.001 

  log10-Elevation -0.991 -1.111--0.876 <0.001 

  Temperature 0.268 0.155-0.379 <0.001 

  Temperature x log10-Elevation -0.094 -0.134--0.055 <0.001 

 4 (n=10396) Intercept 3.014 2.809-3.222 <0.001 

  log10-Elevation -0.907 -0.979--0.835 <0.001 

  Temperature -0.020 -0.084-0.043 0.544 

  Temperature x log10-Elevation 0.012 -0.011-0.034 0.307 

 5 (n=21351) Intercept 3.749 3.596-3.898 <0.001 

  log10-Elevation -1.174 -1.226--1.122 <0.001 

  Temperature -0.271 -0.297--0.245 <0.001 

  Temperature x log10-Elevation 0.103 0.094-0.112 <0.001 

 6 (n=21821) Intercept 3.015 2.819-3.210 <0.001 

  log10-Elevation -0.894 -0.962--0.827 <0.001 

  Temperature -0.084 -0.113--0.057 <0.001 

  Temperature x log10-Elevation 0.036 0.027-0.046 <0.001 

 7 (n=17202) Intercept 3.355 3.012-3.691 <0.001 

  log10-Elevation -0.962 -1.084--0.849 <0.001 

  Temperature -0.115 -0.152--0.077 <0.001 

  Temperature x log10-Elevation 0.043 0.030-0.056 <0.001 

 8 (n=15552) Intercept 3.455 3.019-3.917 <0.001 

  log10-Elevation -1.003 -1.166--0.855 <0.001 

  Temperature -0.108 -0.147--0.069 <0.001 

  Temperature x log10-Elevation 0.042 0.028-0.055 <0.001 

 9 (n=19679) Intercept 3.011 2.631-3.359 <0.001 

  log10-Elevation -0.807 -0.927--0.676 <0.001 

  Temperature -0.042 -0.069--0.014 0.002 

  Temperature x log10-Elevation 0.014 0.005-0.024 0.004 

 10 (n=21134) Intercept 4.198 3.803-4.600 <0.001 

  log10-Elevation -1.240 -1.377--1.101 <0.001 

  Temperature -0.143 -0.174--0.112 <0.001 

  Temperature x log10-Elevation 0.050 0.039-0.060 <0.001 

 11 (n=12386) Intercept 3.235 2.506-3.951 <0.001 

  log10-Elevation -0.947 -1.196--0.691 <0.001 

  Temperature -0.067 -0.135-0.003 0.052 

  Temperature x log10-Elevation 0.025 0.001-0.049 0.034 
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Vegetation index Month Fixed effect Posterior mean 95% HPD P 

 12 (n=7041) Intercept 1.533 0.801-2.304 <0.001 

  log10-Elevation -0.344 -0.614--0.084 0.011 

  Temperature 0.152 0.057-0.249 0.002 

  Temperature x log10-Elevation -0.055 -0.088--0.021 0.002 

EVI 1 (n=2612) Intercept 0.326 -0.555-1.277 0.484 

  log10-Elevation -0.013 -0.350-0.296 0.930 

  Temperature 0.195 0.023-0.369 0.026 

  Temperature x log10-Elevation -0.070 -0.130--0.008 0.024 

 2 (n=2738) Intercept 1.889 1.487-2.315 <0.001 

  log10-Elevation -0.570 -0.721--0.429 <0.001 

  Temperature 0.091 -0.018-0.191 0.087 

  Temperature x log10-Elevation -0.033 -0.068-0.005 0.080 

 3 (n=5663) Intercept 1.803 1.577-2.010 <0.001 

  log10-Elevation -0.546 -0.618--0.466 <0.001 

  Temperature 0.199 0.126-0.274 <0.001 

  Temperature x log10-Elevation -0.070 -0.096--0.044 <0.001 

 4 (n=12600) Intercept 1.477 1.332-1.603 <0.001 

  log10-Elevation -0.436 -0.480--0.385 <0.001 

  Temperature 0.014 -0.031-0.058 0.553 

  Temperature x log10-Elevation -0.002 -0.017-0.014 0.783 

 5 (n=23777) Intercept 1.843 1.729-1.951 <0.001 

  log10-Elevation -0.570 -0.607--0.531 <0.001 

  Temperature -0.123 -0.142--0.101 <0.001 

  Temperature x log10-Elevation 0.049 0.041-0.055 <0.001 

 6 (n=23521) Intercept 1.541 1.370-1.713 <0.001 

  log10-Elevation -0.458 -0.517--0.398 <0.001 

  Temperature -0.021 -0.046-0.002 0.080 

  Temperature x log10-Elevation 0.014 0.006-0.022 <0.001 

 7 (n=17880) Intercept 2.077 1.769-2.410 <0.001 

  log10-Elevation -0.608 -0.723--0.501 <0.001 

  Temperature -0.062 -0.095--0.024 0.002 

  Temperature x log10-Elevation 0.024 0.012-0.037 <0.001 

 8 (n=15747) Intercept 2.352 1.889-2.808 <0.001 

  log10-Elevation -0.673 -0.826--0.509 <0.001 

  Temperature -0.057 -0.096--0.017 0.004 

  Temperature x log10-Elevation 0.020 0.006-0.034 0.003 

 9 (n=18930) Intercept 2.375 1.977-2.757 <0.001 

  log10-Elevation -0.674 -0.805--0.536 <0.001 

  Temperature -0.052 -0.084--0.024 0.001 

  Temperature x log10-Elevation 0.017 0.007-0.028 0.002 

 10 (n=20005) Intercept 2.810 2.389-3.235 <0.001 

  log10-Elevation -0.843 -0.991--0.699 <0.001 

  Temperature -0.097 -0.130--0.063 <0.001 

  Temperature x log10-Elevation 0.033 0.021-0.044 <0.001 

 11 (n=12023) Intercept 1.478 0.694-2.187 <0.001 

  log10-Elevation -0.404 -0.651--0.127 0.002 

  Temperature 0.018 -0.054-0.089 0.632 

  Temperature x log10-Elevation -0.007 -0.032-0.018 0.603 

 12 (n=7267) Intercept 0.762 0.026-1.473 0.044 

  log10-Elevation -0.164 -0.422-0.087 0.200 

  Temperature 0.078 -0.014-0.171 0.100 

  Temperature x log10-Elevation -0.028 -0.059-0.006 0.096 
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Figure S1. Equivalent of Fig. 5 but for alternative temperature averaging periods (left-hand 

labels). 
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Figure S2. Equivalent of Fig. 6 but for SRES emissions scenario A2a. 
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Figure S3. Equivalent of Fig. 6 but for SRES emissions scenario B2. 
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Figure S4. Within-summit responses to between-year temperature variation. Plots show 

median within-summit Pearson’s correlation coefficients between temperature in the previous 

three months and first-of-month (a) NDVI and (b) EVI for groups of mountains at different 

elevations. Correlations were only calculated for summit-month combinations with at least 

six interpolated VI values, so values are missing where no summits met this requirement. The 

strong positive correlations in spring show that local vegetation activity varied in response to 

between-year variation in temperature. 
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