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Abstract. In our previous article, we surveyed optical character recogni-
tion algorithms for medieval texts. However, accurate recognition remains
an open challenge. In this work, we develop eight preprocessing tech-
niques and we show that they improve OCR accuracy on medieval texts.
We also produce and publish an open dataset of 51,351 scanned images
and OCR texts with 120 human annotations for layout analysis and OCR
evaluation, and 122 human annotations for language identification.
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1 Introduction
The aim of the AHISTO project is to make documents from the Hussite era (1419–
1436) available to the general public through a web-hosted searchable database.
Although scanned images of letterpress reprints from the 19th and 20th cen-
tury are available, accurate optical character recognition (OCR) algorithms are
required to extract searchable text from the scanned images.

In our previous article [15], we have shown that the Tesseract 4 OCR algo-
rithm was the second fastest and the most accurate among five different OCR
algorithms. In this article, we investigate the impact of six preprocessing tech-
niques on the accuracy of Tesseract 4. Additionally, we compare Tesseract 4 with
three other OCR algorithms on the language identification task. Furthermore, we
publish an open dataset [16] of scanned images and OCR texts with human an-
notations for layout analysis, OCR evaluation, and language identification.

In Section 2, we describe the related work in OCR preprocessing. In Section 3,
we describe our three preprocessing techniques and our two evaluation tasks.
In Section 4, we discuss the results of our evaluation. In Section 5, we offer
concluding remarks and ideas for future work in the OCR of medieval texts.

2 Related Work
Today’s OCR algorithms use complex preprocessing pipelines that try to rid the
scanned images of artefacts introduced by the printing process, the aging and
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degradation of the paper, and the scanning process. In our work, we introduce
eight additional preprocessing techniques based on layout analysis, language
detection, and image super-resolution. In this section, we discuss the related
work in each of these three areas.

2.1 Layout Analysis

In OCR preprocessing, layout analysis is one of the first steps, where the page is
divided into areas of text and non-text. Two main types of methods exist:
1. Bottom-up methods either classify small patches of the scanned images and

cluster patches of the same class into larger areas [26,17,7,3,4] or analyze
whitespace to detect boundaries between areas [1,19,2]. They can adapt to
non-rectangular areas but they often miss the global structure of the page.

2. Top-down methods [27,11,12] slice the page recursively into horizontal and
vertical strips. They can discover large rectangular areas such as headings,
columns, and paragraphs, but may fail to segment non-rectangular areas.

Tesseract 4 uses a hybrid technique [23] that first uses bottom-up techniques to
detect the smaller areas in the page and then uses top-down techniques to group
the smaller areas and decide their reading order.

2.2 Language Identification

In order to improve their accuracy, OCR algorithms need to identify the language
of the text, so that they can use dictionaries and language models to narrow
down the number of possible readings of the text.

Tesseract optimizes character segmentation and languagemodeling3 [22,10].
The hypothesis with the highest combined score determines the language
of a word. Older versions of Tesseract used separate models for character
segmentation and languagemodeling and only combined their scores. Tesseract
4 uses a LSTM model that jointly optimizes both criteria.4

2.3 Image Super-Resolution

Traditionally, OCR engines used simple rule-based methods to maximize the
signal-to-noise ratio in scanned images. Recent results show that image super-
resolution techniques based on deep neural networks such as SRCNN [5] and
the more advanced SRGAN [9] can be used as a preprocessing technique that
improves OCR accuracy [8,13,24,14,6,20]. For more information about image
super-resolution techniques, see another article from these proceedings on
page 11.

3 https://tesseract-ocr.github.io/docs/das_tutorial2016/4CharSegmentation.pdf
4 https://tesseract-ocr.github.io/docs/das_tutorial2016/7Building%20a%
20Multi-Lingual%20OCR%20Engine.pdf
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3 Methods
In this section, we describe the OCR algorithms that we use in our experiments.
We also describe our preprocessing techniques and how we evaluate them. Our
experimental code is available online.5

3.1 Optical Character Recognition
Besides Tesseract 4, we also use Tesseract 3, Tesseract 3+4, and Google Vision AI
in our language identification experiments. We also use Google Vision AI in our
image super-resolution experiments. For more information about the different
OCR algorithms, see our previous article [15, Section 2].

3.2 Scanned Image Dataset
In our previous article, we developed a dataset [15, Section 3.1] of 65,348
scanned image pairs in both low resolution (150 DPI) and high resolution (400
DPI).

To make it easy for others to reproduce and build upon our work, we use
a subset of 51,351 scanned images (79%) from public-domain books in our
experiments and we publicly release our dataset [16].

3.3 Preprocessing
In this section, we describe our eight preprocessing techniques: two based on
layout analysis, two based on layout identification techniques, and four based
on image super-resolution.

Layout Analysis In our previous article, we showed that Google Vision AI [15,
Section 4.2] is accurate but can fail to properly segment multi-column pages
where Tesseract 4 does not.

We developed two layout analysis techniques based on computational geom-
etry (see Algorithm 1) and machine learning (see Algorithm 2). We use our
techniques to decide whether a page is single- or multi-column. Single-column
pages are processed by Google Vision AI andmulti-column pages by Tesseract 4.

5 http://gitlab.fi.muni.cz/xnovot32/ahisto-ocr, file when-tesseract-brings-friends.ipynb

Algorithm 1: Layout analysis using computational geometry
Result: Whether the page contains a single column of text or multiple
Shoot seven horizontal rays in uniform vertical intervals over the page height;
Compute how many lines 𝑙𝑖 in OCR output each ray 𝑖 intersects;
if median𝑖∈{2,3,…,6}𝑙𝑖 ≤ 1 then

The page contains a single column of text;
else

The page contains multiple columns of text;
end
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Algorithm 2: Layout analysis using machine learning
Result: Whether the page contains a single column of text or multiple
Collect the 𝑥-coordinates of left and right boundaries of all lines in OCR output;
Combine the collected left and right boundaries into a set 𝐵 of all boundaries;
Use sklearn.svm.OneClassSVM to remove outliers from 𝐵;
Find the best number 𝑘 ∈ {0, 1, … ,min(10, |𝐵|)} of 𝑘-means clusters of 𝐵 by
maximizing the Silhouette score;

if 𝑘 ≤ 2 then
The page contains a single column of text;

else
The page contains multiple columns of text;

end

Algorithm 3: Language identification based on paragraph languages
Result: Probability distribution Pr(𝑙) over the languages 𝑙 of the page
foreach candidate language 𝑙 do

count𝑙 ← 0;
end
foreach paragraph 𝑝 with language 𝑙 from the set of candidate languages do

count𝑙 ← count𝑙 + length of paragraph 𝑝 in characters;
end
foreach candidate language 𝑙 do

Pr(𝑙) ← count𝑙/ ∑𝑙′count𝑙′ ;
end

Language Identification In 2006, Panák [18, Section 4.4] showed that using two-
pass processing, where we first identify languages and then use the OCR algo-
rithm with the identified languages can improve OCR accuracy. We developed
two techniques for identifying page language using the languages of paragraphs
(see Algorithm 3) and words (see Algorithm 4) in the OCR output of Tesseract 4.

In the first pass, we identified page languages using Tesseract 4 with two
different sets of candidate languages based on the most frequent languages in
our dataset: three (Czech, German, and Latin) and nine (Czech, German, Latin,
Polish, French, English, Russian, Italian, and Slovak) candidate languages.

In the second pass, we use Tesseract 4 with languages 𝑙 that were detected
(Pr(𝑙) > 0%) and that satisfied Pr(𝑙) ≥ 𝑡 for a number of different thresholds
𝑡 ∈ {0%, 25%, 50%, 75%, 100%}. If none, then an empty OCR output is produced.

Image Super-Resolution The scanned images in the AHISTO project are often
only available in the low resolution of 150 DPI. We use image super-resolution
techniques to jointly upscale and reconstruct the images.

As our baseline preprocessing techniques,we use the original low-resolution
and high-resolution images, and low-resolution images that were upscaled 2×
using either bilinear interpolation or the Potrace vectorizer [21].
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Algorithm 4: Language identification based on word languages
Result: Probability distribution Pr(𝑙) over the languages 𝑙 of the page
foreach candidate language 𝑙 do

count𝑙 ← 0;
end
foreach paragraph 𝑝 with language 𝑙 from the set of candidate languages do

count𝑙 ← count𝑙 + length of paragraph 𝑝 in characters;
foreach word 𝑤 ∈ 𝑝 with language 𝑙′ from the set of candidate languages do

count𝑙 ← count𝑙 − length of word 𝑤 in characters;
count𝑙′ ← count𝑙′ + length of word 𝑤 in characters;

end
end
foreach candidate language 𝑙 do

Pr(𝑙) ← count𝑙/ ∑𝑙′count𝑙′ ;
end

As our actual preprocessing techniques, we use low-resolution images up-
scaled either 2× using SRCNN or 4× using SRGAN. For SRCNN, we use two pub-
lic SRCNN models6 (further known as Waifu2x) that were pre-trained on drawn
mange images with two different levels of noise removal: low (noise0) and high
(noise3). For SRGAN, we use two models that we trained on the scanned images
in our dataset and the born-digital PDF version of tome six of the book Codex
Diplomaticus et Epistolaris Regni Bohemiae (further known as CDB VI) [25].

3.4 Evaluation

We evaluate our preprocessing techniques both intrinsically on the layout
analysis and language detection tasks, and extrinsically on the OCR accuracy.

Layout Analysis For layout analysis, we report confusion matrices for the binary
classification of pages as either single-column or multi-column. As our ground
truth, we use 120 human-annotated pages that we publicly release in our
dataset.

Language Identification For language identification, we report the percentage of
pages (further known asAccuracy@1) wherewe correctly identified the primary
language in the first pass. As our ground truth, we use 122 human-annotated
pages7 that we publicly release in our dataset.

Optical Character Recognition For OCR accuracy, we report the word error rate
(further known as WER) [15, Section 3.2]. As our ground truth, we use 120
human-annotated pages that we publicly release in our dataset.

6 https://github.com/nagadomi/waifu2x/tree/master/models/cunet/art
7 https://gitlab.fi.muni.cz/nlp/ahisto-language-detection
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4 Results

In this section, we report the results of our evaluation andwe discuss the corpus
of OCR texts that we created with our most successful preprocessing techniques,

4.1 Layout Analysis

Figure 1 shows that our simpler layout analysis technique that used computa-
tional geometry performed better on the intrinsic classification task and mis-
classified only two out of 120 (1.6%) pages. Our machine learning technique
misclassified 31 out of 103 (30.1%) single-column pages as multi-column pages.

Actually single

Actually multi

Predicted single

Predicted multi

103 2

0 15

Actually single

Actually multi

Predicted single

Predicted multi

72 1

31 16

Fig. 1: Confusion matrices of computational geometry (left) and machine learn-
ing (right) layout analysis techniques

Figure 2 confirms our observation that although Google Vision AI performs
generally worse than Tesseract 4, it performs significantly better on single-
column pages and fails catastrophically on multi-column pages. By combining
Google Vision AI and Tesseract 4 with our layout analysis technique usinf com-
putational geometry, we receive significant improvements to the OCR accuracy.

4.2 Language Identification

Figure 3 shows that Google Vision AI performs significantly better than Tesseract
on the intrinsic page language identification task. For Tesseract, using nine can-
didate languages with the word language identification technique consistently
outperformed other configurations.

Figure 4 shows that using two-pass processing with nine candidate lan-
guages, the paragraph language identification technique that limits the number
of detected languages, and the 0% threshold that only removes candidate lan-
guages that weren’t at all detected can improve the OCR accuracy of Tesseract 4.
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Fig. 2: OCR accuracies of Google Vision AI and Tesseract 4 alone and combined
using two different layout analysis techniques (computational geometry and
machine learning) on different subsets of pages. The best technique is bold.

4.3 Super-Resolution

Figure 5 shows that Google Vision AI does not particularly benefit from image
super-resolution techniques. In contrast, Tesseract 4 always achieves better OCR
accuracywith super-resolution techniques thanwith low-resolution images and
outperforms even high-resolution images with the Waifu2x and SRGAN image
super-resolution techniques. The pre-trained Waifu2x models outperform our
SRGAN models, which may indicate a lack of training data.

4.4 Text Corpus

We combined our most successful preprocessing techniques: layout detection
using computational geometry, two-pass processing with 0% threshold, nine
candidate languages, and paragraph language identification technique, and the
Waifu2x image super-resolution technique with high noise removal.

With the combined techniques, we achieved 5.42% WER compared to 8.74%
with no preprocessing. Additionally, we also produced 51,351 OCR texts that we
include in our dataset.
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Fig. 3: Language identification accuracies of four different OCR engines using
two different sets of candidate languages (three and nine) and two different
language identification techniques (paragraph and word). The best OCR engine
is bold.

5 Conclusion and Future Work

The OCR of scanned images for contemporary printed texts is widely considered
a solved problem. However, the OCR of early printed books and reprints of me-
dieval texts remains an open challenge. In our work, we developed eight prepro-
cessing techniques in three different areas andwe showed that they can improve
the OCR accuracy on medieval texts. We also published an open dataset [16] of
51,351 scanned images and OCR texts with 120 annotations for layout analysis
and OCR evaluation and 122 annotations for language identification.

In our work, we only used language identification preprocessing techniques
based on language identification for individual pages. However, in printed col-
lections of multilingual texts, OCR accuracy may be improved by processing
smaller areas of the page separately. Additionally, we would produce an empty
OCR output when no languages were detected or passed the confidence thresh-
old, Just disabling the language models in Tesseract may give better results.
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TAČR Éta, project number TL03000365. The first author’s work was also funded
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Fig. 4: OCR accuracies of Tesseract 4 using two different sets of candidate lan-
guages (three and nine) and two different page language identification tech-
niques (paragraph and word). The best technique is bold.
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