

NASA SDS Product Specification

Level-1 Range Doppler UnWrapped Interferogram

L1_RUNW

Rev D

JPL D-102271

May 30, 2024, Version 1.1.2

Authors: Virginia Brancato, Jungkyo Jung, and Xiaodong Huang

Copies of this document obtained outside of JPL's Product Lifecycle Management (PLM) tool may not be current. Please contact Heresh Fattahi (<u>heresh.fattahi@jpl.nasa.gov</u>) to determine if a more recent revision is available.

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

SIGNATURE PAGE

Prepared by:

<u>Electronic Signature on File</u> Virginia Brancato, NISAR ADT Engineer

<u>Email Approval on File</u> Jungkyo Jung, NISAR ADT Engineer

<u>Email Approval on File</u> Xiaodong Huang, NISAR ADT Engineer

Approved by:

<u>Electronic Signature on File</u> Ana Maria Guerrero, NISAR Mission System Manager

<u>Electronic Signature on File</u> Chuck Baker, NISAR Mission System Engineer

<u>Electronic Signature on File</u> Paul Rosen, NISAR Project Scientist

<u>Electronic Signature on File</u> Cecilia Cheng, NISAR SDS Manager

<u>Electronic Signature on File</u> Heresh Fattahi, NISAR ADT Lead

<u>Electronic Signature on File</u> Helen Mortensen, NISAR SDS Lead System Engineer <u>02-Jul-2024</u> Date

<u>02-Jul-2024</u> Date

<u>02-Jul-2024</u> Date

<u>02-Jul-2024</u> Date

<u>08-Jul-2024</u> Date

<u>09-Jul-2024</u> Date

<u>02-Jul-2024</u> Date

<u>02-Jul-2024</u> Date

<u>08-Jul-2024</u> Date

EPDM ELECTRONIC SIGNATURES

User-Group/Role	Decision	Comments	Date
Cheng, Cecilia S (cecilia)-JPL Consumer/Project Con	Approve		02-Jul-2024 13:24
Baker, Charles J (cjbaker)-JPL Author/JPL Author	Approve		08-Jul-2024 11:46
Fattahi, Heresh (fattahi)-JPL Author/JPL Author WIP	Approve		02-Jul-2024 12:42
Guerrero, Ana Maria P (ana)-JPL Author/JPL Author	Approve		02-Jul-2024 14:36
Brancato, Virginia (vbrancat)-JPL Consumer/Project	Approve		02-Jul-2024 12:27
Mortensen, Helen B (hbmorten)-JPL Consumer/Proj	Approve		08-Jul-2024 08:41
Rosen, Paul A (parosen)-JPL Consumer/Project Cons	Approve		09-Jul-2024 05:54

ACKNOWLEDGEMENT

The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004).

© 2024 California Institute of Technology. Government sponsorship acknowledged.

DOCUMENT CHANGE LOG

Revision	Cover Date	Sections Changed	ECR #	Reason, ECR Title, LRS #*
Preliminary		All	N/A	New document LRR044775 for ISRO LRR044776 for JPL Sharma LRR044777 for JPL Brancato and Shiroma
Draft for ER 1.1	December 7, 2020	None	N/A	Regenerated for R1.1 Engineering Release
Rev A (R1.1) Working Version	February 5, 2021	All	N/A	For Release 1.1. LRR054212 for NISAR Science Team
Rev A (ER2.0) Working Version 2	May 13, 2021	Sec 1.2, Sec 2.1, Sec 2.2, Sec 6	N/A	Merged info from Product Description Document (PDD). Removed reference to PDD. Added Section 6 on metadata cubes. LRR056763 for NISAR Science team LRR056770 for ISRO
Rev A (R2) Working Version 2	July 15, 2021	Sec 6.1	N/A	Updated metadata cubes formula
Rev B (R2) Working Version 2	July 15, 2021	All	N/A	Removed LRR number in the footer. Updated list of TBD items table. Updated coordinate vector units in Table 5-7.
Rev A (ER 3.0) Working Version	December 10, 2021	Sec 3.2.3	N/A	For Engineering Release ER 3.0.
Rev A (R3) Working Version	March 04, 2022	Sec 1.3, Sec 2.1, Table 2.1, Figure 2.1, Appendix A, TBD table.	N/A	Updated Docushare link in Sec. 1.3. Added description of offset products in Table 2.1. Updated product dependency Figure 2.1. Update Sec 2.1 to include offset blending. Removed item from TBD table. Added missing and new acronyms in Appendix A.
Rev A (R3.1) Working Version	August 05, 2022	Front page, Sec. 2.1	N/A	Updated NISAR ADT Lead; Updated product dependency figure
Rev A (R3.1) Working Version	August 05, 2022	Cover. TBD, TBC tables, Acronym List	N/A	Requested fixes. LRR067549
Rev A (R3.2) Working Version	January 27, 2023	All	N/A	Revised for R3.2 release.
Rev A (R3.3)	June 6, 2023	All	N/A	Revised for R3.3 release. URS CL# 23-3140

Rev B (R3.4)	November 9, 2023	Cover page, Sec. 1.3, Sec. 2.2, Sec. 3.2.2, Sec 4.3; Sections 5.2, 5.3, 5.4, 5.5, 5.6	N/A	Modified date on cover page; Updated reference to RSLC product specification and NISAR products filename convention documents; Deleted link to EPDM; Added reference to SDS ATBD in text; Mentioned the ionosphere phase estimation uncertainty; Modified Table 3.4 to reflect information in product XML specifications; Corrected misspelling in Sec. 4.3; Resolved TBD in Table 5.7. Updated Sections 5.2, 5.3, 5.4, 5.5, 5.6.
Rev C (R4.0)	February 07, 2024	Cover page, Sec. 1.3, Figure 2-1, Table 2-1, Table 2-2, Sec. 2-2, Table 3-5; Sec. 3.7, Sec. 4.3, Sec. 4.4.2.2; Sec. 4.4.3	N/A	Added version number to cover page; Updated AD and AR; Updated Fig. 2-1; Revised RIFG, RUNW, GUNW description in Table 2-1; Revised product level description in Table 2-2; Clarified use of offset blending algorithm in Sec. 2.2; Removed unused attributes in Table 3-5; Updated product output grid features in Sec. 3.7; Revised and improved readability of Sec. 4.3; Added subsection on attitude state vectors; Improved description of geolocation grid Datasets in Sec. 4.4.3.
Rev D (R4.0.2)	May 30, 2024	Cover page, Table 2-3, Sec. 3.3, Sec. 4.2.1	N/A	Updated revision and date on cover page; Updated number of range and azimuth looks in Table 2-3; Added Section 3.3 on product cloud optimization properties; Added Section 4.2.1 on CRID. Sec. 5.2: Added or updated boundingPolygon, compositeReleaseId. Sec. 5.3: Added or updated centerFrequency, sceneCenterAlongTrackSpacing, sceneCenterGroundRangeSpacing, connectedComponents. Sec. 5.4: Added slantRangeStart, numberOfRangeSamples, numberOfAzimuthLines, zeroDopplerStartTime. Sec. 5.5: Updated interpMethod, time, position, velocity, orbitType, quaternions, eulerAngles, attitudeType. Sec. 5.6: Updated parallelBaseline, perpendicularBaseline. Cleared for public release. URS CL#24-3371.

* Include the JPL Limited Release System (LRS) clearance number for each revision to be shared with foreign partners.

TABLE OF CONTENTS

Tab	ole of	Tablesvii
Tab	ole of	Figures viii
List	t of T	BC Itemsix
List	t of T	BD Itemsix
1	Intro	duction1
	1.1	Purpose of Description
	1.2	Document Organization
	1.3	Applicable and Reference Documents
2	Produ	uct Overview
	2.1	Product Background
	2.2	RUNW Product Overview
3	Produ	uct Organization7
	3.1	File Format7
		3.1.1 HDF5 File
		3.1.2 HDF5 Group
		3.1.3 HDF5 Dataset
		3.1.4 HDF5 Datatype
		3.1.5 HDF5 Attribute
	3.2	NISAR File Organization
		3.2.1 Groups
		3.2.2 File Level Metadata
		3.2.3 Variable Metadata (HDF5 Attributes)
	3.3	Cloud Optimization
	3.4	Granule Definition
	3.5	File Naming Convention
	3.6	Temporal Organization
	3.7	Spatial Organization
	3.8	Spatial Sampling and Resolution
		3.8.1 Along Track Mosaicking
		3.8.2 Partially compressed SLC data
4	Leve	1 1 Unwrapped Interferogram Product15
	4.1	Shapes and Dimensions of Data
	4.2	Product Identification

		4.2.1 0	Composite Release Identifier	15
	4.3	Radar Im	nagery	16
	4.4	Radar Me	etadata	16
		4.4.1 F	Processing Information	17
		4.4.2 0	Other Radar Metadata	
		4.4.3	Geolocation Grid	
5	Prod	uct Speci	ification	20
	5.1	Dimensio	ons and Shapes	
	5.2	Product I	Identification	
	5.3	Radar Im	nagery	
	5.4	Processin	ng Information	
	5.5	Other Ra	dar Metadata	
	5.6	Geolocat	ion Grid	
6	Meta	data Cub	эе	41
	6.1	Metadata	Cube Interpolation Example	
	6.2	Metadata	a Cube Usage Note	
7	Appe	endix A:	Acronyms	44

TABLE OF TABLES

Table 2-1. Key to product dependency diagram.	
Table 2-2 NISAR product level descriptions defined by Science.	
Table 2-3 Averaging window size for RUNW products.	6
Table 3-1. HDF5 Atomic Datatypes.	
Table 3-2 NISAR HDF5 Derived and Compound Datatypes	9
Table 3-3 Group organization at the top level of a NISAR HDF5 File	
Table 3-4 Global Attributes of RUNW	
Table 3-5. Statistical attributes for real-valued HDF5 datasets.	
Table 3-6. Statistical Attributes for complex-valued HDF5 datasets.	
Table 3-7. RUNW HDF5 Datasets populated with statistical Attributes	
Table 5-1 Table of dimensions and shapes in RUNW product	
Table 5-2 NISAR HDF5 variables used for product identification.	
Table 5-3 NISAR HDF5 variables related to SAR imagery	
Table 5-4 NISAR HDF5 variables related to processing parameters	
Table 5-5 NISAR HDF5 variables related to useful radar metadata.	
Table 5-6 NISAR HDF5 variables related to metadata cube	

Table 6-1	Example metadata cube	properties4	2
-----------	-----------------------	-------------	---

TABLE OF FIGURES

Figure 2-1 I	Product dependency.	3
Figure 6-1. I	Metadata cube layer schematic 4	1

LIST OF TBC ITEMS

These items are to be completed when document is ready to enter configuration control.

Page	Section	Date / Release

LIST OF TBD ITEMS

These items are to be completed when document is ready to enter configuration control.

Page	Section	Date / Release

1 INTRODUCTION

1.1 Purpose of Description

This document provides a specification of the NASA-ISRO Synthetic Aperture Radar (NISAR) L-SAR Level-1 (L1) Range Doppler Unwrapped Interferogram product to be generated by the NASA Science Data System (SDS) and provided to the Alaska Satellite Facility (ASF) Distributed Active Archive Center (DAAC). This data product is referenced by the short name RUNW.

1.2 Document Organization

Section 2 provides an overview of the product, including its purpose, and latency.

Section 3 provides the structure of the product, including granule definition, file organization, spatial resolution, temporal and spatial organization of the content.

Section 4 provides qualitative descriptions of the information provided in the product.

Section 5 provides a detailed identification of the individual fields within the RUNW product, including for example their units, size, coordinates, etc.

Section 6 provides a description of the metadata cube representation.

Appendix A provides a listing of the acronyms used in this document.

1.3 Applicable and Reference Documents

Applicable documents levy requirements on areas addressed in this document. Reference documents are cited to provide additional information to readers. In case of conflict between the applicable documents and this document, the Project shall review the conflict to find the most effective resolution.

Applicable Documents

NISAR NASA SDS Level 4 Requirements, JPL D-95655, Rev A, [AD1] February 06, 2024 NISAR NASA SDS Algorithm Development Plan, JPL D-95678, Initial, [AD2] September 12, 2019 [AD3] NISAR Science Data Management and Archive Plan, JPL D-80828, June 1, 2016 [AD4] NISAR Science Management Plan, JPL D-76340, Rev A, August 14, 2018 NISAR SDS ADT Calibration and Validation Plan, JPL D-102256, Rev A, [AD5] November 20, 2023 NISAR NASA SDS L4 Software Management Plan (SMP), JPL D-95656, [AD6] Rev A, September 19, 2019 ISO-19115-2, https://www.iso.org/obp/ui/#iso:std:iso:19115:-2:ed-2:v1:en [AD7]

Reference Documents

- [RD1] NISAR NASA SDS Algorithm Theoretical Basis Document, JPL D-95677, Rev A, November 12, 2023
- [RD2] EOSDIS Handbook, July 2016, retrieved from https://cdn.earthdata.nasa.gov/conduit/upload/5980/EOSDISHandbookWebFinaL 2.pdf
- [RD3] NISAR SDS L-SAR File Naming Conventions, JPL D-102255, Rev B, April 28, 2023
- [RD4] NISAR L1_RSLC Product Specification Document, J JPL D-102268, Rev C, February 07, 2024
- [RD5] HDF5 documentation at https://portal.hdfgroup.org/display/HDF5/HDF5
- [RD6] Eineder, M. (2003), Efficient simulation of SAR interferograms of large areas and of rugged terrain, IEEE Transactions on Geoscience and Remote Sensing, 41(6), 1415-1427

2 PRODUCT OVERVIEW

2.1 Product Background

Each NASA SDS L0-L2 L-band product (Figure 2-1 and **Error! Reference source not found.** Product dependency) is distributed as a single HDF5 granule. All the metadata and imagery data are packaged in clearly defined sub-groups within the granule in compliance with the HDF5 specification. The NISAR product level definitions are given in **Error! Reference source not found.**

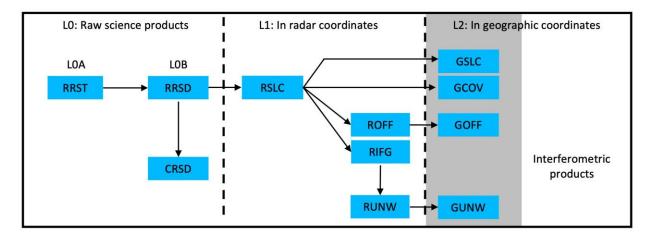


Figure 2-1 Product dependency.

L0 Product	Scope	Description	Granule Size
Radar Raw Science Telemetry (RRST)	Global	This L0A product contains the raw downlinked data delivered to SDS	By downlinked files
Radar Raw Signal Data (RRSD)	Global	pulse data derived from the RRST products and	By radar observation, i.e., continuous data collected in a single radar mode
Calibration Raw Signal Data (CRSD)	Global	calibration data	By radar datatake, i.e., a sequence of observations for one radar-on period

Table 2-1. Key to product dependency diagram.

L1 Product	Scope	Description	Granule Size
Range-Doppler Single Look Complex (RSLC)		The L1 RSLC product contains focused SAR images in range-Doppler coordinates. The RSLC is input to other L1 and L2 products	On pre-defined track/frame. High-resolution modes will have a high-res RSLC product and a background resolution RSLC product
Range-Doppler Nearest- Time Interferogram (RIFG)	Antarctica, Greenland, and selected mountain glaciers. Nearest pair in time and co- pol channels only	Multi-looked interferogram in range-Doppler coordinates, ellipsoid and topographic phase flattened and formed with precise coregistration using geometrical offsets and high-resolution pixel offsets obtained from incoherent cross- correlation	On pre-defined track/frame
Range-Doppler Nearest- Time Pixel Offsets (ROFF)	Antarctica, Greenland, and selected mountain glaciers. Nearest pair in time and co- pol channels only	Unfiltered and unculled layers of pixel offsets in range-Doppler coordinates with different resolutions obtained from incoherent cross-correlation	On pre-defined track/frame
Range-Doppler Nearest- Time Unwrapped Interferogram (RUNW)	Antarctica, Greenland, and selected mountain glaciers. Nearest pair in time and co- pol channels only	Multi-looked unwrapped interferogram in range- Doppler coordinates, ellipsoid- and topography- flattened	On pre-defined track/frame

L2 Product	Scope	Description	Granule Size
Geocoded SLC (GSLC)		Single Look Complex SAR image on geocoded map coordinate system	On pre-defined track/frame
Geocoded Nearest-Time Pixel Offsets (GOFF)	selected mountain	Unfiltered and unculled layers of pixel offsets with different resolutions obtained from incoherent cross-correlation and geocoded on map coordinate system	On pre-defined track/frame
Geocoded Nearest-Time Unwrapped Interferogram (GUNW)	Global. Nearest pair in time and co-pol channels only	Geocoded, multi-looked, ellipsoid and topography flattened unwrapped interferogram	On pre-defined track/frame

L2 Product	Scope	Description	Granule Size
Covariance Matrix (GCOV)		Geocoded, multi-looked polarimetric covariance matrix	On pre-defined track/frame

Table 2-2 NISAR product level descriptions defined by Science.

Product Level	Description
Level 0A	Unprocessed instrument data with all communications artifacts removed, but without reconstruction of missing data and sorting of samples from the instrument. May still contain bit errors and missing data that needs reconstruction
Level 0B	Reconstructed, time ordered, unprocessed instrument data at original resolution
Level 1	Processed instrument data, focused to full resolution complex images or derived radar parameters including interferometric phase and pixel offsets, in native radar coordinate system
Level 2	Focused radar imagery or derived radar parameters projected to a map coordinate system
Level 3	Derived geophysical parameters on a geocoded grids with the same or coarser posting as the Level 1 or Level 2 products

2.2 RUNW Product Overview

The RUNW product represents the unwrapped, ellipsoid- and topography-flattened, multi-looked interferogram generated from two L1 Range Doppler Single Look Complex (RSLC) products in the range-Doppler geometry of the earlier ("reference") acquisition. The RUNW product is with a nominal posting of 80 meters on the ground irrespective of the slant range bandwidth (see Table 2-3).

The product contains raster layers representing single precision floating point unwrapped and normalized interferometric coherence magnitude. The product includes the connected component mask, a mask layer identifying invalid pixels (i.e., pixels affected by geometric distorsions), and the slant range and along track offsets obtained from incoherent cross-correlation. Lookup tables for parallel and perpendicular baseline components are also included. The RUNW product also includes an ionospheric phase screen layer and a layer quantifying its uncertainty. The ionospheric phase screen is estimated from the two spectral bands "frequencyA" and "frequencyB" wherever possible. In the case of mode transitions where continuity of spectral bands is impacted, a split spectrum ionospheric phase estimate and an estimate of its standard deviation is derived from the main imaging band ("frequencyA"). The estimated ionospheric

phase screen is included as a layer in the product but not applied to the data layers within RUNW by default.

The RUNW product includes the slant range and along-track sub-pixel offsets obtained from incoherent cross-correlation and used to generate the complex wrapped interferogram. If an offset product in range-Doppler coordinates (e.g., ROFF) is available for the processed frame, the sub-pixel offset layers included in RUNW are obtained by optimally blending the multiresolution offset layers included in ROFF [RD1]. The application of the offset layers blending algorithm is indicated by setting the Boolean flat in "/science/LSAR/RUNW/metadata/processingInformation/parameters/pixelOffsets/frequencyA/is OffsetsBlendingApplied" to "True". Conversely, if this Boolean flag is set to "False", the offset blending algorithm is not applied, and the sub-pixel offset layers included in RUNW are obtained by simply running incoherent cross-correlation on a coarser radar grid. The pixel offset layers in RUNW may be subject to several post-processing operations (e.g., outlier removal, no-data filling, noise reduction) [RD1].

The variables with their basic properties are given in Section 4**Error! Reference source not found.**. The details of the data elements are given in Section 5. Metadata cubes are discussed in Section 6.

Range Bandwidth (MHz)	Ground Range Resolution Mid- Swath (m)	Nominal Posting (m)	Averaging Window Size in Range (pixels)	Averaging Window Size in Azimuth (pixels)
20	~11.8	80	7	16
40	~5.9	80	13	16
80	~3.1	80	26	16

Table 2-3	Averaging	window	size for	RUNW	products.
-----------	-----------	--------	----------	------	-----------

3 PRODUCT ORGANIZATION

3.1 File Format

All NISAR standard products are in the HDF5 [RD5]. HDF5 is a general-purpose file format and programming library for storing scientific data. The National Center for Supercomputing Applications (NCSA) at the University of Illinois developed HDF to help scientists share data more easily. Use of the HDF library enables users to read HDF files regardless of the underlying computing environments. HDF files are equally accessible in Fortran, C/C++, and other high-level computation packages such as IDL, MATLAB or Python.

The HDF Group, a spin-off organization of the NCSA, is responsible for development and maintenance of HDF. Users should reference The HDF Group website at https://portal.hdfgroup.org/display/HDF5/HDF5 [RD5] to download HDF software and documentation.

HDF5 represents a significant departure from the conventions of previous versions of HDF. The changes that appear in HDF5 provide flexibility to overcome many of the limitations of previous releases. The basic building blocks have been largely redefined and are more powerful but less numerous. The key concepts of the HDF5 Abstract Data Model are Files, Groups, Datasets, Datatypes, Attributes, and Property Lists. The following sections provide a brief description of each of these key HDF5 concepts.

3.1.1 HDF5 File

A File is the abstract representation of a physical data file. Files are containers for HDF5 Objects. These Objects include Groups, Datasets, and named Datatypes.

3.1.2 HDF5 Group

Groups provide a means to organize the HDF5 Objects in HDF5 Files. Groups are containers for other Objects, including other Groups. In that sense, Groups are analogous to directories that are used to categorize and classify files in standard operating systems.

Groups and their nested objects can be accessed using a path-like notation, akin to the notation employed for accessing Unix directories. The root Group is "/". A Group contained in root might be called "/myGroup".

3.1.3 HDF5 Dataset

The Dataset is the HDF5 component that stores user data. Each Dataset associates with a Dataspace that describes the data dimensions, as well as a Datatype that describes the basic unit of storage element. A Dataset can also have Attributes.

3.1.4 HDF5 Datatype

A Datatype describes a unit of data storage for Datasets and Attributes. Datatypes are subdivided into Atomic and Composite Types.

Atomic Datatypes are analogous to simple basic types in most programming languages. HDF5 Atomic Datatypes include Time, Bitfield, String, Reference, Opaque, Integer, and Float. Each atomic type has a specific set of properties. Examples of the properties associated with Atomic Datatypes are:

- Integers are assigned size, precision, offset, pad byte order, and are designated as signed or unsigned.
- Strings can be fixed or variable length and may or may not be null-terminated.
- References are constructs within HDF5 Files that point to other HDF5 Objects in the same file.

HDF5 provides a large set of predefined Atomic Datatypes. Table 3-1 lists the Atomic Datatypes that are used in NISAR data products.

HDF5 Atomic Datatypes	Description
H5T_STD_U8LE	unsigned, 8-bit, little-endian integer
H5T_STD_U16LE	unsigned, 16-bit, little-endian integer
H5T_STD_U32LE	unsigned, 32-bit, little-endian integer
H5T_STD_U64LE	unsigned, 64-bit, little-endian integer
H5T_STD_I8LE	signed, 8-bit, little-endian integer
H5T_STD_I16LE	signed, 16-bit, little-endian integer
H5T_STD_I32LE	signed, 32-bit, little-endian integer
H5T_STD_I64LE	signed, 64-bit, little-endian integer
H5T_IEEE_F32LE	32-bit, little-endian, IEEE floating point
H5T_IEEE_F64LE	64-bit, little-endian, IEEE floating point
H5T_C_S1	character string made up of one or more bytes

Derived Datatypes are user-defined variants of predefined Atomic Datatypes where the data organization has been modified at the bit-level. Derived data types are particularly useful for representing custom N-bit integers and floating-point numbers.

Composite Datatypes incorporate sets of Atomic Datatypes. Composite Datatypes include Array, Enumeration, Variable Length and Compound.

• The Array Datatype defines a multi-dimensional array that can be accessed atomically.

- Variable Length presents a 1-D array element of variable length. Variable Length Datatypes are useful as building blocks of ragged arrays.
- Compound Datatypes are composed of named fields, each of which may be dissimilar Datatypes. Compound Datatypes are conceptually equivalent to structures in the C programming language.

Named Datatypes are explicitly stored as Objects within an HDF5 File. Named Datatypes provide a means to share Datatypes among Objects. Datatypes that are not explicitly stored as Named Datatypes are stored implicitly. They are stored separately for each Dataset or Attribute they describe.

The Derived and Compound Datatypes used in NISAR products are reported in Table 3-2.

Description	Comments
16-bit little-endian floating point	"binary16" half precision type in IEEE 754-2008 standard. Matches numpy.float16 type in Python. We will refer to this type as H5T_IEEE_F16LE or Float16 in our documents.
H5T_COMPOUND { 16-bit little-endian floating-point "r"; 16-bit little-endian floating-point "i"; }	Complex numbers made up of two half precision floating point numbers.
H5T_COMPOUND { 32-bit little-endian floating-point "r"; 32-bit little-endian floating-point "i"; }	Complex numbers made of two single precision floating point numbers.
H5T_COMPOUND { 64-bit little-endian floating-point "r"; 64-bit little-endian floating-point "i"; }	Complex numbers made of two double precision floating point numbers.

Table 3-2 NISAR HDF5 Derived and Compound Datatypes.

3.1.5 HDF5 Attribute

An Attribute is a small aggregate of data that describes Groups or Datasets. Like Datasets, Attributes are also associated with a particular Dataspace and Datatype. Attributes cannot be subsetted or extended. Attributes themselves cannot have Attributes.

3.2 NISAR File Organization

3.2.1 Groups

All NISAR HDF5 files are organized within a hierarchy of Groups, with no actual data at the root("/") level. Table 3-3 shows the general layout of the HDF5 files that are generated by the NISAR SDS.

Group Name	Description
/science/LSAR/	All science data from the L-SAR instrument is organized under this group
/science/SSAR/	All science data from the S-SAR instrument is organized under this group
/science/[L/S]SAR/identification/	File level metadata for cataloging, archiving the particular granule

Table 3-3 Group organization at the top level of a NISAR HDF5 File.

In the nominal baseline, L-SAR and S-SAR data will not appear in the same granule, even if they cover the same geographic area. Data structure described below the primary groups ("/science/LSAR/" for L-SAR and "/science/SSAR/" for S-SAR) will be the same for L-SAR and S-SAR products. The rest of the document from this point on describes the layout of the product containing L-SAR data. The specification for equivalent S-SAR data products will be the same except for the substitution of "LSAR" by "SSAR" in the dataset paths in the HDF5 granule.

3.2.2 File Level Metadata

Global metadata at the file level are currently given as Global Attributes shown in Table 3-4.

Metadata regarding the data in the particular granule are given in "/science/LSAR/identification/". These data are described further in Section 4.2 and Section **Error! Reference source not found.**

Attribute	Format	Description	Value
Conventions	string	NetCDF-4 conventions adopted in this product	CF-1.7
title	string	Product title	NISAR L1 RUNW product
institution	string	Name of producing agency	NASA JPL
mission_name	string	Mission name	NISAR
reference_document	string	Name and version of Product Description Document to use as reference for product	D-102271 NISAR NASA SDS Product Specification L1 Range Doppler UnWrapped Interferogram

Table 3-4 Global Attributes of RUNW.

contact	string	Contact information for producer of	nisar-sds-
		product	ops@jpl.nasa.gov

3.2.3 Variable Metadata (HDF5 Attributes)

NISAR standards incorporate additional metadata that describe each HDF5 Dataset within the HDF5 file. Each of these metadata elements appear in an HDF5 Attribute that is directly associated with the HDF5 Dataset. Wherever possible, these HDF5 Attributes employ names that conform to the Climate and Forecast (CF) conventions.

Table 3-5 lists the CF names for the HDF5 Attributes that NISAR products typically employ.

Tuble 5.5. Common variable ratioues in fibr 5 file.			
Description			
The value used to represent missing or undefined data			
Miscellaneous information about the data or the methods to generate it			
A descriptive variable name that indicates its content.			
Names of variable quality flag(s) that are associated with this variable to indicate			
its quality			
Unit of data			
Maximum theoretical value of the variable			
Minimum theoretical value of the variable			

Table 3-5. Common variable Attributes in HDI	75 file.
--	----------

Some HDF5 datasets are populated with statistical attributes. Table 3-5 and Table 3-6 describe statistical Attributes added to real- and complex-valued HDF5 Datasets, respectively. The list of real- and complex-valued HDF5 datasets for the standard RUNW product is given in Table 3-7.

Table 3-5. Statistical	attributes for r	eal-valued HDF5	5 datasets.

Attribute	Description
min_value	Minimum value of a real-valued HDF5 Dataset
mean_value	Mean value of a real-valued HDF5 Dataset
max_value	Maximum value of a real-valued HDF5 Dataset
sample_stddev	Sample standard deviation of a real-valued HDF5 Dataset

Table 3-6. Statistical Attributes for complex-valued HDF5 datasets.

Attribute	Description
min_real_value	Minimum value of the real part of a complex-valued HDF5
	Dataset
mean_real_value	Mean value of the real part of a complex-valued HDF5 Dataset
max_real_value	Maximum value of the real part of a complex-valued HDF5
	Dataset
sample_stddev_real	Sample standard deviation of the real part of a complex-valued
	HDF5 Dataset
min_imag_value	Minimum value of the imaginary part of a complex-valued
	HDF5 Dataset

mean_imag_value	Mean value of the imaginary part of a complex-valued HDF5 dataset
max_imag_value	Maximum value of the imaginary part of a complex-valued HDF5 dataset
sample_stddev_imag	Sample standard deviation of the imaginary part of a complex- valued HDF5 dataset

HDF5 Group	HDF5 Datasets	Dataset type
/science/LSAR/RUNW/swaths/frequencyA /interferogram/[HH/VV]/	unwrappedPhase, coherenceMagnitude, ionospherePhaseScreen	Real-valued
/science/LSAR/RUNW/swaths/frequencyA/pixelOffset s/[HH/VV]/	alongTrackOffset, slantRangeOffset	Real-valued
/science/LSAR/RUNW/metadata/geolocationGrid/	parallelBaseline, perpendicularBaseline	Real-valued

3.3 Cloud Optimization

NISAR science data products utilize several special features of the HDF5 format to optimize file sizes and enable high-performance read access in a cloud environment. A key challenge of cloud data access is the latency associated with calls to the cloud storage Application Programming Interface (API), so the following strategies are used to minimize the number of cloud API calls needed per byte of data read:

- Chunks: Large datasets within the products use <u>chunked storage</u>. Every read operation thus fetches at least one entire chunk of data. The chunk size is nominally 512x512 pixels, though the precise chunk dimensions should be obtained using the <u>H5Pget_chunk</u> method of the HDF5 C API (or its equivalent in other language bindings).
- Compression: Data are written using a compression filter, minimizing the amount of data stored and hence transferred over the network. The HDF5 API handles decompression automatically.
- Paging: Files are created with the "paged" file space strategy (<u>H5F_FSPACE_STRATEGY_PAGE</u> in the HDF5 C API). These pages serve as the basic unit of allocation within the file. The page size is chosen larger than the chunk size so that both a chunk of data and its HDF5-internal metadata can be read in a single cloud API call. This parameter may be queried using the <u>H5Pget_file_space_page_size</u> method of the HDF5 C API.

Software that reads NISAR products stored on the cloud should take heed of the following recommendations:

• Set the page buffer size to a multiple of the file space page size using <u>H5Pset page buffer size</u> in the HDF5 C API. This enables caching logic that reduces the number of cloud API calls in the file driver.

- Implement chunk-aligned data access patterns. Reads in multiples of the chunk size (and aligned with chunk boundaries) are most efficient.
- If other access patterns are desired, try setting the read cache large enough to hold all the chunks that may be re-read. For example, line-by-line access can still be efficient if the read cache is large enough to hold N lines, where N is the chunk dimension. That way lines can be read from the cache instead of fetching the same set of chunks N times over the network. The cache size may be set globally using the <u>H5Pset_cache</u> or locally with the <u>H5Pset_chunk_cache</u> methods of the HDF5 C API.

Note that, in general, these optimizations require knowledge of the file contents. Therefore, the most robust approach is to open the file, inspect the contents (e.g., chunk size, page size, and dataset dimensions) and then re-open the file with optimal parameters.

3.4 Granule Definition

NISAR RUNW granules will conform to the Tiling Scheme being developed for the mission and are expected to have a ground footprint of 240 km x 240 km.

3.5 File Naming Convention

NISAR RUNW Granule names will conform to the Standard Product File Naming Scheme [RD3].

3.6 Temporal Organization

The RUNW data are arranged on a uniformly spaced, increasing zero-Doppler azimuth time grid. Using row-major order convention of representing 2D raster arrays, zero-Doppler azimuth time is represented by the row direction or the slowest changing dimension.

3.7 Spatial Organization

The RUNW data are arranged on a uniformly spaced, increasing zero-Doppler azimuth time in the row direction and increasing slant range grid in the column direction following the row-major order convention of representing 2D raster arrays.

3.8 Spatial Sampling and Resolution

NISAR mission uses a non-uniformly spaced sequence of pulses in SweepSAR mode to collect radar data, to overcome the limitations imposed by transmit gaps affecting the wide imaging swath [RD1]. Processing software accounts for the non-uniform sampling to generate the final RUNW product on a uniform grid. Some salient features of the output grid for the RUNW product are:

- 1. The center of the top-left pixel of all the data layers within the "/science/LSAR/RUNW/swaths/frequencyA/interferogram/" Group correspond to the same zero-Doppler azimuth time and slant range for all imagery layers in an L-SAR RUNW product.
- The center of the top-left pixel of all the data layers within the "/science/LSAR/RUNW/swaths/frequencyA/pixelOffsets/" group correspond to the same zero-Doppler azimuth time and slant range for all imagery layers in an L-SAR RUNW product.
- 3. The main imaging band (frequencyA) is spatially averaged to the same posting, irrespective of the imaging mode (Table 2-3). This allows for spatial mosaicking operations across instrument mode changes.

3.8.1 Along Track Mosaicking

The spatial sampling of the output grid has also been designed to facilitate along-track mosaicking of contiguous RUNW product granules if the user desires. The following features simplify the implementation of along-track mosaicking

- 1. The slow time sampling frequency (inverse of the zero Doppler time spacing between consecutive lines) will be chosen to be an integer, to allow synchronization between adjacent granules at integer second boundaries without the need for resampling in the azimuth time direction.
- 2. The slant range to the first pixel will be a multiple of the lowest sampling frequency (corresponding to 5 MHz) to enable concatenation of adjacent granules with simple integer shifts of imagery in the slant range direction.

Since the RUNW product represents unwrapped phase in radians, these quantities need to be transformed to two-way displacement using the wavelength information to mosaic products in the along-track direction.

3.8.2 Partially compressed SLC data

Partially compressed data in RSLC files will not be used to produce RUNW products. Spatially averaged pixels with any partially compressed or missing data in the RSLCs will be set to the value specified by _FillValue attribute.

4 LEVEL 1 UNWRAPPED INTERFEROGRAM PRODUCT

In this section, we will describe the layout of RUNW data and associated metadata within the NISAR HDF5 file. Detailed description of Group and Dataset names can be found in Section 5. In this section, we focus on the organization of L-SAR instrument data within the file under the Group name "/science/LSAR/".

4.1 Shapes and Dimensions of Data

Information on the shapes and dimensions of the data items in various data tables are described as part of the metadata (Section 5.1). This information is useful both as part of the product identification and for setting up further processing, i.e., dimensioning arrays.

4.2 Product Identification

Information needed to identify this product is given under the Group

"/science/LSAR/identification/" (Section **Error! Reference source not found.**). This includes information such as orbit, cycle, track, and frame numbers, acquisition times, a polygon representing the bounding box of the included imagery in geographic coordinates, product version, and product specification version (i.e., the version number of this document).

4.2.1 Composite Release Identifier

The Composite Release Identifier (CRID) is a global version identifier documenting the algorithms and the overall status of the science data system used to generate the product. The CRID follows the format *EPMMmp* where:

- **E** (**Environment**): a single character representing the environment or the venue where the product was generated. It can assume the values:
 - A: if the product was generated in the Algorithm Development environment
 - *D*: if the product was generated in the Development environment
 - *P*: if the product was generated in the Production environment
 - \circ T: if the product was generated in the Integration and Test (I&T) environment
- **P** (**Mission Phase**): a single numerical digit indicating the mission phase in which the product was generated. It can assume the following values:
 - \circ 0: for pre-launch (Phase D)
 - *1*: for primary science phase operations (Phase E)
 - 2: extended mission (Phase E)
 - 3: post-operations (Phase F), decommissioning, end of mission processing
- **MM** (**Major Release**): two numeric digits monotonically increasing between 0 and 99. The Major Release resets to zero upon a change in the Mission Phase identifier. A change in the Major Release indicates a major change in the products i.e., a change to one or

more algorithms or to the processing rules having a significant impact on the science content of the product. The Major Release stands as a composite of the versions of all the algorithms used in the science data production systems. Individual algorithm versions are allocated in the product metadata.

- **m** (**Minor Release**): a single numeric digit increasing monotonically between 0 and 1 indicating a minor update to the product and/or the data system. A change in the Minor Release identifier indicates minor algorithm changes (e.g., bug fixes, small functional updates) that do not have a significant impact on the product. The Minor Release identifier resets to zero upon every update to the Major Release identifier
- **P** (**Patch Release**): a single numerical digit monotonically increasing between 0 and 1. A change in the Patch Release identifier indicates an update to the science data system software that has undergone the System Deployment Review to fix a critical bug. The Patch Release resets to zero upon updates to the Major Release or Minor Release identifiers.

4.3 Radar Imagery

The RUNW product's imagery layers and associated datasets are initially organized based on the center frequency within the Group "/science/LSAR/RUNW/swaths/frequencyA/". Only the main NISAR imaging band ("frequencyA") will be processed for RUNW products. Imagery data is further categorized by their type. The Wrapped Interferogram layer and associated Datasets are located under the Group "/science/LSAR/RUNW/swaths/frequencyA/interferogram/". The cross-correlation sub-pixel offsets are located under the Group

"/science/LSAR/RUNW/swaths/frequencyA/pixelOffsets/". Each of these Groups is further organized by polarization (TxRx), and by a final grouping. For example, the Interferogram group could contain the Group "/science/LSAR/RUNW/swaths/frequencyA/interferogram/HH/". The imagery Datasets reside within these polarization Groups. As an example, the Dataset "/science/LSAR/RUNW/swaths/frequencyA/interferogram/HH/unwrappedPhase" corresponds to the unwrapped phase derived from the "frequencyA" and "HH" polarization imagery layers within the reference and secondary input RSLCs.

The details of the data elements are given in Section **Error! Reference source not found.**. The resolution of data elements is discussed in Section 2.2.

4.4 Radar Metadata

The Group "/science/LSAR/RUNW/metadata/" includes a list of miscellaneous metadata needed to interpret the geolocation and the imagery (e.g., unwrapped interferometric phase, normalized interferometric coherence magnitude, slant range and along-track pixel offsets) included in the RUNW product.

4.4.1 Processing Information

The Group "/science/LSAR/RUNW/metadata/processingInformation/" includes the processing parameters used to generate the RUNW product. This group also include a list of the used algorithms and the input granules used to produce RUNW. For a complete description of this group, refer to Section 5.4.

4.4.1.1 Parameters

The Group "/science/LSAR/RUNW/metadata/processingInformation/parameters/" is further organized in six Groups:

- 1. *common*: organized by frequency, and including the parameters derived by combining the information from the reference and secondary RSLC e.g., Doppler centroid and the Doppler bandwidth
- 2. *reference*: including the reference terrain height of the reference RSLC and flags to indicate if the reference RSLC is the result of mixed mode processing or if it has been corrected for RFI. This Group is further organized by frequency and includes some relevant parameters of the reference RSLC such as the slant range and zero Doppler time spacings, the slant range and the azimuth bandwidth, and the Doppler centroid
- 3. *secondary*: this Group follows the same organization of *reference* but includes the corresponding metadata for the secondary RSLC
- 4. *interferogram*: including the parameters used to generate the complex wrapped interferogram and the normalized interferometric correlation e.g., the common slant range and azimuth bandwidth and the slant range and azimuth number of looks
- 5. *pixelOffsets*: including the parameters (e.g., window size, search windows) used to generate the along-track and slant range dense pixel offsets layers used during the fine coregistration of the reference and secondary RSLCs
- 6. *ionosphere*: including the parameters used to generate the ionosphere phase screen e.g., the bandwidth of the low and high sub-images used in the ionosphere phase estimation with the range split spectrum technique

The Group *parameters* also contains the Dataset *runConfigurationContents* which includes a copy of the run configuration used for processing populated with all the processing options, parameters values, and input files.

4.4.1.2 Algorithms

The Group "/science/LSAR/RUNW/metadata/processingInformation/algorithms/" includes the name and the version of the software used to generate the product. The Group is further organized by distinct Groups identifying the processing steps used to generate the RUNW product:

- 1. *coregistration*: including the algorithms used to perform the coarse and fine coregistration of the reference and secondary RSLCs (e.g., geometry coregistration, cross-correlation algorithm).
- 2. *interferogramFormation*: including the algorithms used to form the complex wrapped interferogram and the normalized interferometric correlation (e.g., flattening method)
- 3. *unwrapping*: including the algorithms used to perform phase unwrapping (e.g., unwrapping algorithm, unwrapping initializer, type of performed preprocessing of the wrapped interferometric phase).
- 4. *ionosphereEstimation*: including the algorithm used to perform the estimation of the ionosphere phase screen (e.g., outlier estimation and filling, unwrapping error correction).

4.4.1.3 Input Files

The Group "/science/LSAR/RUNW/metadata/processingInformation/inputs/" includes the filenames of the input RSLC granules, configuration files, orbit files, and a description of the DEM used for processing.

4.4.2 Other Radar Metadata

4.4.2.1 Orbit

The reference RSLC orbit ephemeris used for generating the RUNW product is provided under the Group "/science/LSAR/RUNW/metadata metadata/orbit/" and further detailed in Section 5.5. This group includes time-tagged antenna phase center position and velocity vectors in Earth Centered Earth Fixed (ECEF) Cartesian coordinates and information on the used orbit fidelity (e.g., Medium Orbit Ephemeris).

4.4.2.2 Attitude

The attitude state vectors of the reference RSLC used for generating the RUNW product can be found under the Group "/science/LSAR/RUNW/metadata/attitude/". This group includes time-tagged quaternions and Euler angles representing the slant range plane from the antenna phase center in an ECEF Cartesian system.

4.4.3 Geolocation Grid

The Group "/science/LSAR/RUNW/metadata/geolocationGrid/" contains information on the radar geometry of the reference RSLC. The Datasets within this Group (i.e., the geolocation grid cubes) are referenced over the radar-grid which is defined by the coordinate vectors "slantRange", "zeroDopplerTime", and "heightAboveEllipsoid". Normals are with respect to the WGS84 ellipsoid.

The "geolocationGrid" Group also include the Datasets:

- 1. "coordinateX" and "coordinateY" containing the mapping of the zero-Doppler grid to the geographic grid in the units defined by the Dataset "epsg" within the same Group
- "losUnitVectorX" and "losUnitVectorY" identifying the East and North components of the Line-Of-Sight (LOS) unit vector (i.e., the vector from the target to the sensor) in the East-North-Up (ENU) coordinate system for each point of the geographic grid. The Up component LOS unit vector can be simply derived from the East and North components as:

$$losUnitVectorZ = \sqrt{1 - losUnitVectorX^2 - losUnitVectorY^2}$$

- 3. "alongTrackUnitVectorX" and "alongTrackUnitVectorY" containing the East and North components of the along-track unit vector (i.e., the projection of the along-track vector at the ground height) in UTM coordinates
- 4. "incidenceAngle containing the incidence angle, i.e., the angle between the LOS vector and the normal to the ellipsoid at the target height
- 5. "elevationAngle" containing the elevation angle i.e., the angle between the LOS vector and the normal to the ellipsoid at the sensor
- 6. "groundTrackVelocity" containing the ground track velocity i.e., the absolute value of the platform velocity scaled at the target height
- 7. "perpendicularBaseline" and "parallelBaseline" containing the perpendicular and parallel component of the baseline between the reference and secondary RSLCs. The baseline components are only computed for the bottom and top heights of the geolocation grid cubes

5 PRODUCT SPECIFICATION

5.1 Dimensions and Shapes

To simplify the description of the layout of data within the HDF5 file, we will use a table of dimensions and shapes to represent the relationship between similarly sized datasets. The entries in this table do not present actual Datasets in the HDF5. This table is meant to be a guide to interpreting the shapes of the Datasets in subsequent subsections.

Name	Shape	Description
scalar	scalar	Scalar values
numberOfDatatakes	scalar	Number of datatakes in product
numberOfObservations	scalar	Number of observations in product
numberOfFrequencies	scalar	Number of L-SAR frequencies in product
numberOfFrequencyAPolarizations	scalar	Number of polarization layers associated with L-SAR frequencyA
frequencyASlantRangeWidth	scalar	Number of pixels in all L-SAR frequencyA imagery datasets
frequencyAZeroDopplerTimeLength	scalar	Number of lines in all L-SAR frequencyA imagery datasets
realDataFrequencyAShape	(frequencyAZeroDopplerTimeLength, frequencyASlantRangeWidth)	Shape associated with L-SAR frequencyA imagery interferometric dataset
offsetDataShape	(offsetZeroDopplerTimeLength, offsetSlantRangeWidth)	Shape associated with Pixel Offset layers
offsetSlantRangeWidth	scalar	Number of pixels in Pixel Offset layers
offsetZeroDopplerTimeLength	scalar	Number of lines in all L-SAR frequencyA imagery datasets
validSamplesShapeFrequencyA	(frequencyAZeroDopplerTimeLength, 2)	Shape associated with L-SAR frequencyA valid samples dataset
geolocationCubeShape	(geolocationCubeHeight, geolocationCubeLength, geolocationCubeWidth)	Shape associated with metadata cubes
twoLayersCubeShape	(geolocationCubeWidth, geolocationCubeLength, twoLayersCubeHeight)	Shape associated with baseline metadata cubes
geolocationCubeHeight	scalar	Height dimension of the metadata cube
geolocationCubeLength	scalar	Length dimension of the metadata cube
geolocationCubeWidth	scalar	Width dimension of the metadata cube
twoLayersCubeHeight	scalar	Height dimension of the baseline metadata cube
dopplerCentroidTimeLength	scalar	Length dimension of Doppler centroid grid
dopplerCentroidSlantRangeWidth	scalar	Length dimension of Doppler centroid grid
dopplerCentroidShape	(dopplerCentroidTimeLength, dopplerCentroidSlantRangeWidth)	Shape of the Doppler centroid grid
orbitListLength	scalar	Number of orbit state vectors
orbitShape	(orbitListLength, 3)	Shape of orbit state vector triplets dataset
attitudeListLength	scalar	Number of attitude state vectors

Table 5-1 Table of dimensions and shapes in RUNW product.

attitudeQuaternionShape	(attitudeListLength, 4)	Shape of attitude quaternion dataset
attitudeShape	(attitudeListLength, 3)	Shape of attitude Euler angle triplets dataset
numberOfInputL1Files	scalar	Number of input L1 granules
numberOfInputConfigFiles	scalar	Number of input configuration files
numberOfInputOrbitFiles	scalar	Number of input orbit files

5.2 Product Identification

Table 5-2 NISAR HDF5 variables used for product identification.

Product identification variables		
/science/LSAR/identification/absoluteOrbitM	lumber	
Type: UInt32	Shape: scalar	
Description: Absolute orbit number		
units	1	
/science/LSAR/identification/trackNumber		
Type: UByte	Shape: scalar	
Description: Track number		
units	1	
/science/LSAR/identification/frameNumber		
Type: UInt16	Shape: scalar	
Description: Frame number		
units	1	
/science/LSAR/identification/missionId		
Type: string	Shape: scalar	
Description: Mission identifier		
/science/LSAR/identification/processingCer	nter	
Type: string	Shape: scalar	
Description: Data processing center		
/science/LSAR/identification/productType		
Type: string	Shape: scalar	
Description: Product type		
/science/LSAR/identification/granuleld		
Type: string	Shape: scalar	
Description: Unique granule identification nam		
/science/LSAR/identification/productVersion		
Type: string	Shape: scalar	
	s the structure of the product and the science content governed by the algorithm,	
input data, and processing parameters		
/science/LSAR/identification/productSpecifi		
Type: string	Shape: scalar	
Description: Product specification version whi	ch represents the schema of this product	
/science/LSAR/identification/lookDirection		
Type: string	Shape: scalar	
Description: Look direction, either "Left" or "R		
/science/LSAR/identification/orbitPassDirec		
	Shape: scalar	
Description: Orbit direction, either "Ascending		
/science/LSAR/identification/referenceZerol		
Type: string	Shape: scalar	
Description: Azimuth start time of reference R		
/science/LSAR/identification/secondaryZero		
Type: string	Shape: scalar	
Description: Azimuth start time of secondary RSLC product		
/science/LSAR/identification/referenceZerol	JoppierEna i ime	

· ·	
Type: string	Shape: scalar
Description: Azimuth stop time of reference R	
/science/LSAR/identification/secondaryZero	
Type: string	Shape: scalar
Description: Azimuth stop time of secondary F	
/science/LSAR/identification/plannedDatata	
Type: string	Shape: (numberOfDatatakes)
Description: List of planned datatakes include	
/science/LSAR/identification/plannedObserv	
Type: string	Shape: (numberOfObservations)
Description: List of planned observations inclu	
/science/LSAR/identification/isUrgentObser	vation
Type: string	Shape: scalar
Description: Flag indicating if observation is n	ominal ("False") or urgent ("True")
/science/LSAR/identification/listOfFrequence	ies
Type: string	Shape: (numberOfFrequencies)
Description: List of frequency layers available	in the product
/science/LSAR/identification/diagnosticMod	
Type: UByte	Shape: scalar
	ode is a diagnostic mode (1-2) or DBFed science (0): 0, 1, or 2
/science/LSAR/identification/productLevel	
Type: string	Shape: scalar
	instrument data; L0B: Reformatted, unprocessed instrument data; L1: Processed
	nd L2: Processed instrument data in geocoded coordinates system
/science/LSAR/identification/isGeocoded	
Type: string	Shape: scalar
	a is in the radar geometry ("False") or in the map geometry ("True")
/science/LSAR/identification/boundingPolyg	
Type: string	Shape: scalar
	ng the bounding polygon of the image. Horizontal coordinates are WGS84 longitude
	vertical coordinate is the height above the WGS84 ellipsoid in meters. The first point
	coordinate, and the perimeter is traversed in counterclockwise order on the map.
	ates differs for left-looking and right-looking sensors. The polygon includes the four
	f points distributed evenly in radar coordinates along each edge
ogr_geometry	polygon
epsg	4326
/science/LSAR/identification/processingDat	
Type: string	Shape: scalar
Description: Processing UTC date and time in	
/science/LSAR/identification/radarBand	
Type: string	Shape: scalar
Description: Acquired frequency band, either	
/science/LSAR/identification/instrumentNan	
Type: string	Shape: scalar
	collect the remote sensing data provided in this product
/science/LSAR/identification/processingTyp	
Type: string	Shape: scalar
Description: Nominal (or) Urgent (or) Custom	
/science/LSAR/identification/isDithered	
	Shape: scalar
Type: string	ied (dithered) during acquisition "False" otherwise
Description: "True" if the pulse timing was var	ied (dithered) during acquisition, "False" otherwise
	ied (dithered) during acquisition, "False" otherwise Shape: scalar

Description: "True" if this product is generated from reference and secondary RSLCs with different range bandwidths, "False" otherwise

/science/LSAR/identification/compositeReleaseId	
Type: string Shape: scalar	
Description: Unique version identifier of the science data production system	

5.3 Radar Imagery

Table 5-3 NISAR HDF5 variables related to SAR imagery.

Product imagery variables		
/science/LSAR/RUNW/swaths/frequencyA/list	OfPolarizations	
Type: string	Shape: (numberOfFrequencyAPolarizations)	
Description: List of processed polarization layers		
/science/LSAR/RUNW/swaths/frequencyA/cen		
Type: Float64	Shape: scalar	
Description: Center frequency of the processed	image in hertz	
units	hertz	
/science/LSAR/RUNW/swaths/frequencyA/inte	erferogram/sceneCenterAlongTrackSpacing	
Type: Float64	Shape: scalar	
Description: Nominal along-track spacing in met	ers between consecutive lines near mid-swath of the product images	
units	meters	
/science/LSAR/RUNW/swaths/frequencyA/inte	erferogram/sceneCenterGroundRangeSpacing	
Type: Float64	Shape: scalar	
Description: Nominal ground range spacing in m	neters between consecutive pixels near mid-swath of the product images	
units	meters	
/science/LSAR/RUNW/swaths/frequencyA/inte		
Type: Float64	Shape: scalar	
Description: Slant range spacing of grid. Same a	as difference between consecutive samples in slantRange array	
units	meters	
/science/LSAR/RUNW/swaths/frequencyA/inte		
Type: Float64	Shape: scalar	
	ction for raster layers. This is same as the spacing between consecutive entries in	
the zeroDopplerTime array		
units	seconds	
/science/LSAR/RUNW/swaths/frequencyA/inte		
Type: Float64	Shape: (frequencyASlantRangeWidth)	
Description: Slant range vector		
units	meters	
/science/LSAR/RUNW/swaths/frequencyA/inte		
Type: Float64	Shape: (frequencyAZeroDopplerTimeLength)	
Description: Zero Doppler azimuth time vector		
units	seconds since YYYY-mm-ddTHH:MM:SS	
/science/LSAR/RUNW/swaths/frequencyA/inte		
Type: Float32	Shape: (frequencyAZeroDopplerTimeLength, frequencyASlantRangeWidth)	
Description: Unwrapped interferogram between		
	nan	
mean_value	Arithmetic average of the numeric data points	
min_value	Minimum value of the numeric data points	
max_value	Maximum value of the numeric data points	
sample_stddev	Standard deviation of the numeric data points	
units	radians	
/science/LSAR/RUNW/swaths/frequencyA/interferogram/HH/coherenceMagnitude		
Type: Float32 Shape: (frequencyAZeroDopplerTimeLength, frequencyASlantRangeWidth)		
Description: Coherence magnitude between HH	layers	

	_FillValue	nan
	mean_value	Arithmetic average of the numeric data points
	min_value	Minimum value of the numeric data points
	 max_value	Maximum value of the numeric data points
	sample_stddev	Standard deviation of the numeric data points
	units	1
/science	/LSAR/RUNW/swaths/frequencyA/int	erferogram/HH/connectedComponents
Type: UI		Shape: (frequencyAZeroDopplerTimeLength, frequencyASlantRangeWidth)
Descript	ion: Connected components for HH lay	
	_FillValue	65535
	units	1
/science	/LSAR/RUNW/swaths/frequencyA/int	erferogram/HH/ionospherePhaseScreen
Type: Fl	oat32	Shape: (frequencyAZeroDopplerTimeLength, frequencyASlantRangeWidth)
Descript	ion: lonosphere phase screen	
	_FillValue	nan
	mean_value	Arithmetic average of the numeric data points
	min_value	Minimum value of the numeric data points
	 max_value	Maximum value of the numeric data points
	sample_stddev	Standard deviation of the numeric data points
	units	radians
/science		erferogram/HH/ionospherePhaseScreenUncertainty
Type: Fl		Shape: (frequencyAZeroDopplerTimeLength, frequencyASlantRangeWidth)
	ion: Uncertainty of the ionosphere phase	
	_FillValue	nan
	mean_value	Arithmetic average of the numeric data points
	min_value	Minimum value of the numeric data points
	max_value	Maximum value of the numeric data points
	sample_stddev	Standard deviation of the numeric data points
	units	radians
/science	/LSAR/RUNW/swaths/frequencyA/int	erferogram/VV/unwrappedPhase
Type: Fl		Shape: (frequencyAZeroDopplerTimeLength, frequencyASlantRangeWidth)
Descript	ion: Unwrapped interferogram betweer	
	_FillValue	nan
	mean_value	Arithmetic average of the numeric data points
	min_value	Minimum value of the numeric data points
	max_value	Maximum value of the numeric data points
	sample_stddev	Standard deviation of the numeric data points
	units	radians
/science	/LSAR/RUNW/swaths/frequencyA/int	erferogram/VV/coherenceMagnitude
Type: Fl	oat32	Shape: (frequencyAZeroDopplerTimeLength, frequencyASlantRangeWidth)
Descript	ion: Coherence magnitude between VV	/ layers
	_FillValue	nan
	mean_value	Arithmetic average of the numeric data points
	min_value	Minimum value of the numeric data points
	max_value	Maximum value of the numeric data points
	sample_stddev	Standard deviation of the numeric data points
	units	1
/science	/LSAR/RUNW/swaths/frequencyA/int	erferogram/VV/connectedComponents
	Type: UInt16 Shape: (frequencyAZeroDopplerTimeLength, frequencyASlantRangeWid	
	ion: Connected components for VV lay	
	_FillValue	65535
	units	1
		erferogram/VV/ionospherePhaseScreen

Type: Float32	Shape: (frequencyAZeroDopplerTimeLength, frequencyASlantRangeWidth)
Description: lonosphere phase screen	
_FillValue	255
mean_value	Arithmetic average of the numeric data points
min_value	Minimum value of the numeric data points
max_value	Maximum value of the numeric data points
sample_stddev	Standard deviation of the numeric data points
units	radians
/science/LSAR/RUNW/swaths/frequencyA/int	terferogram/VV/ionospherePhaseScreenUncertainty
Type: Float32	Shape: (frequencyAZeroDopplerTimeLength, frequencyASlantRangeWidth)
Description: Uncertainty of the ionosphere pha	
FillValue	nan
mean_value	Arithmetic average of the numeric data points
min_value	Minimum value of the numeric data points
max_value	Maximum value of the numeric data points
sample_stddev	Standard deviation of the numeric data points
units	radians
/science/LSAR/RUNW/swaths/frequencyA/nu	
Type: UByte	Shape: scalar
Description: Number of swaths of continuous in	nagery, due to transmit gaps
/science/LSAR/RUNW/swaths/frequencyA/va	
Type: UInt32	Shape: (frequencyAZeroDopplerTimeLength, firstLastPair)
Description: First and last valid sample in each	line of 1st subswath
units	1
/science/LSAR/RUNW/swaths/frequencyA/va	
Type: UInt32	Shape: (frequencyAZeroDopplerTimeLength, firstLastPair)
Description: First and last valid sample in each	line of 2nd subswath
units	1
/science/LSAR/RUNW/swaths/frequencyA/va	lidSamplesSubSwath3
Type: UInt32	Shape: (frequencyAZeroDopplerTimeLength, firstLastPair)
Description: First and last valid sample in each	line of 3rd subswath
units	1
/science/LSAR/RUNW/swaths/frequencyA/va	lidSamplesSubSwath4
Type: UInt32	Shape: (frequencyAZeroDopplerTimeLength, firstLastPair)
Description: First and last valid sample in each	
units	1
/science/LSAR/RUNW/swaths/frequencyA/va	lidSamplesSubSwath5
Type: UInt32	Shape: (frequencyAZeroDopplerTimeLength, firstLastPair)
Description: First and last valid sample in each	
units	
/science/LSAR/RUNW/swaths/frequencyA/pix	velOffeete/sceneCenterAlongTrackSnacing
Type: Float64	Shape: scalar
	eters between consecutive lines near mid-swath of the product images
	meters
	xelOffsets/sceneCenterGroundRangeSpacing
Type: Float64	Shape: scalar
	meters between consecutive pixels near mid-swath of the product images
units	meters
/science/LSAR/RUNW/swaths/frequencyA/pix	
Type: Float64	Shape: scalar
Description: Slant range spacing of the offset g	jrid
units	meters

/science/LSAR/RUNW/swaths/free	uencyA/pixelOffsets/zeroDopplerTimeSpacing
Type: Float64	Shape: scalar
Description: Along-track spacing of	
units	seconds
/science/LSAR/RUNW/swaths/free	uencyA/pixelOffsets/HH/slantRangeOffset
Type: Float32	Shape: (offsetZeroDopplerTimeLength, offsetSlantRangeWidth)
Description: Slant range offset	
FillValue	nan
mean_value	Arithmetic average of the numeric data points
min_value	Minimum value of the numeric data points
max_value	Maximum value of the numeric data points
sample_stddev	Standard deviation of the numeric data points
units	meters
	uencyA/pixelOffsets/HH/alongTrackOffset
Type: Float32	Shape: (offsetZeroDopplerTimeLength, offsetSlantRangeWidth)
Description: Along-track offset	
FillValue	nan
mean_value	Arithmetic average of the numeric data points
min_value	Minimum value of the numeric data points
max_value	Maximum value of the numeric data points
sample_stddev	Standard deviation of the numeric data points
units	meters
	uencyA/pixelOffsets/HH/correlationSurfacePeak
Type: Float32	Shape: (offsetZeroDopplerTimeLength, offsetSlantRangeWidth)
Description: Normalized correlation	
FillValue	nan
units	
	uencyA/pixelOffsets/VV/slantRangeOffset
Type: Float32	Shape: (offsetZeroDopplerTimeLength, offsetSlantRangeWidth)
Description: Slant range offset	
FillValue	nan Arithmatia avanaga of the generatia data pointe
mean_value	Arithmetic average of the numeric data points
min_value	Minimum value of the numeric data points
max_value	Maximum value of the numeric data points
sample_stddev	Standard deviation of the numeric data points
units	uencyA/pixelOffsets/VV/alongTrackOffset
Type: Float32	Shape: (offsetZeroDopplerTimeLength, offsetSlantRangeWidth)
Description: Along-track offset	
FillValue	nan
mean_value	Arithmetic average of the numeric data points
min_value	Minimum value of the numeric data points
max value	Maximum value of the numeric data points
sample_stddev	Standard deviation of the numeric data points
units	meters
	uencyA/pixelOffsets/VV/correlationSurfacePeak
Type: Float32	Shape: (offsetZeroDopplerTimeLength, offsetSlantRangeWidth)
Description: Normalized correlation	
FillValue	nan
	1
/science/LSAR/RUNW/swaths/fred	
Type: Float64	Shape: (offsetSlantRangeWidth)
Description: Slant range vector	

units	meters	
/science/LSAR/RUNW/swaths/frequencyA/pixelOffsets/zeroDopplerTime		
Type: Float64 Shape: (offsetZeroDopplerTimeLength)		
Description: Zero Doppler azimuth time vector		
units	seconds since YYYY-mm-ddTHH:MM:SS	

5.4 Processing Information

Table 5-4 NISAR HDF5 variables related to processing parameters.

Processing-related variables	
/science/LSAR/RUNW/metadata/processingli	nformation/parameters/runConfigurationContents
Type: string	Shape: scalar
Description: Contents of the run configuration f	file with parameters used for processing
/science/LSAR/RUNW/metadata/processingli	nformation/parameters/reference/rfiCorrectionApplied
Type: string	Shape: scalar
Description: Flag to indicate if RFI correction h	
/science/LSAR/RUNW/metadata/processingli	nformation/parameters/reference/isMixedMode
Type: string	Shape: scalar
	posite of data collected in multiple radar modes, "False" otherwise
	nformation/parameters/reference/referenceTerrainHeight
Type: Float32	Shape: (dopplerCentroidTimeLength)
Description: Reference Terrain Height as a fun	ction of time for reference RSLC
units	meters
	nformation/parameters/reference/frequencyA/slantRangeStart
Type: Float64	Shape: scalar
Description: Slant range start distance for the r	eference RSLC
units	meters
/science/LSAR/RUNW/metadata/processingli	nformation/parameters/reference/frequencyA/numberOfRangeSamples
Type: UInt64	Shape: scalar
Description: Number of slant range samples for	r each azimuth line within the reference RSLC
units	1
	nformation/parameters/reference/frequencyA/numberOfAzimuthLines
Type: UInt64	Shape: scalar
Description: Number of azimuth lines within the	e reference RSLC
units	1
	nformation/parameters/reference/frequencyA/slantRangeSpacing
Type: Float64	Shape: scalar
Description: Slant range spacing of reference I	
units	meters
	nformation/parameters/reference/frequencyA/zeroDopplerStartTime
Type: string	Shape: scalar
Description: Azimuth start time of the reference	
	nformation/parameters/reference/frequencyA/zeroDopplerTimeSpacing
Type: Float64	Shape: scalar
Description: Time interval in the along-track dir	
units	
	nformation/parameters/reference/frequencyA/rangeBandwidth
Type: Float64	Shape: scalar
Description: Processed slant range bandwidth	
units	hertz
· · · ·	nformation/parameters/reference/frequencyA/azimuthBandwidth
Type: Float64	Shape: scalar
Description: Processed azimuth bandwidth for	
units	hertz

logiones/I CAD/DUNIA/metodoto/processingl	uformation (nonemators) (noforma office success). A laboration (or function)
	nformation/parameters/reference/frequencyA/dopplerCentroid
Type: Float64	Shape: (dopplerCentroidTimeLength, dopplerCentroidSlantRangeWidth)
Description: 2D LUT of Doppler centroid for fre	
units	hertz
	nformation/parameters/secondary/referenceTerrainHeight Shape: (dopplerCentroidTimeLength)
Type: Float32 Description: Reference Terrain Height as a fur	
	meters
units	nformation/parameters/secondary/rfiCorrectionApplied
Type: string	Shape: scalar
Description: Flag to indicate if RFI correction h	
	nformation/parameters/secondary/isMixedMode
Type: string	Shape: scalar
	nposite of data collected in multiple radar modes, "False" otherwise
	nformation/parameters/secondary/frequencyA/slantRangeStart
Type: Float64	Shape: scalar
Description: Slant range start distance for the	
units	meters
	nformation/parameters/secondary/frequencyA/numberOfRangeSamples
Type: UInt64	Shape: scalar
21	or each azimuth line within the secondary RSLC
units	
	nformation/parameters/secondary/frequencyA/numberOfAzimuthLines
Type: UInt64	Shape: scalar
Description: Number of azimuth lines within th	
	nformation/parameters/secondary/frequencyA/slantRangeSpacing
Type: Float64	Shape: scalar
Description: Slant range spacing of secondary	
units	meters
/science/LSAR/RUNW/metadata/processing	nformation/parameters/secondary/frequencyA/zeroDopplerStartTime
Type: string	Shape: scalar
Description: Azimuth start time of the seconda	
	nformation/parameters/secondary/frequencyA/zeroDopplerTimeSpacing
Type: Float64	Shape: scalar
Description: Time interval in the along-track di	rection for secondary RSLC raster layers
units	seconds
/science/LSAR/RUNW/metadata/processingl	nformation/parameters/secondary/frequencyA/rangeBandwidth
Type: Float64	Shape: scalar
Description: Processed slant range bandwidth	for secondary RSLC
units	hertz
/science/LSAR/RUNW/metadata/processingl	nformation/parameters/secondary/frequencyA/azimuthBandwidth
Type: Float64	Shape: scalar
Description: Processed azimuth bandwidth for	secondary RSLC
units	hertz
	nformation/parameters/secondary/frequencyA/dopplerCentroid
Type: Float64	Shape: (dopplerCentroidTimeLength, dopplerCentroidSlantRangeWidth)
Description: 2D LUT of Doppler centroid for free	equency A
units	hertz
	nformation/parameters/common/frequencyA/dopplerCentroid
Type: Float64	Shape: (dopplerCentroidTimeLength, dopplerCentroidSlantRangeWidth)
Description: Common Doppler centroid used f	
units	hertz

legionee/I SAD/DUNN//wastadata/www.sasimul	nfermation/nevernationa/annon/fragmanau/A/damatanDanduidth
	nformation/parameters/common/frequencyA/dopplerBandwidth
Type: Float64	Shape: scalar
Description: Common Doppler Bandwidth use	
units	hertz
	nformation/parameters/interferogram/frequencyA/rangeBandwidth
Type: Float64	Shape: scalar
Description: Processed slant range bandwidth	
units	hertz
	nformation/parameters/interferogram/frequencyA/azimuthBandwidth
Type: Float64	Shape: scalar
Description: Processed azimuth bandwidth for	frequency A interferometric layers
units	hertz
/science/LSAR/RUNW/metadata/processingl	nformation/parameters/interferogram/frequencyA/numberOfRangeLooks
Type: UInt32	Shape: scalar
Description: Number of looks applied in the sla	ant range direction to form the wrapped interferogram
units	1
/science/LSAR/RUNW/metadata/processingl	nformation/parameters/interferogram/frequencyA/numberOfAzimuthLooks
Type: UInt32	Shape: scalar
	ong-track direction to form the wrapped interferogram
units	1
/science/LSAR/RUNW/metadata/processingl	nformation/parameters/interferogram/frequencyA/commonBandRangeFilterApplied
Type: string	Shape: scalar
Description: Flag to indicate if common band r	
	nformation/parameters/interferogram/frequencyA/commonBandAzimuthFilterApplied
Type: string	Shape: scalar
Description: Flag to indicate if common band a	
	nformation/parameters/interferogram/frequencyA/ellipsoidalFlatteningApplied
Type: string	Shape: scalar
	ric phase has been flattened with respect to a zero height ellipsoid
	nformation/parameters/interferogram/frequencyA/topographicFlatteningApplied
Type: string	Shape: scalar
	ric phase has been flattened with respect to topographic height using a DEM
	nformation/parameters/ionosphere/lowBandBandwidth
Type: Float32	Shape: scalar
Description: Slant range bandwidth of the low	
units	hertz
	nformation/parameters/ionosphere/highBandBandwidth
Type: Float32	Shape: scalar
Description: Slant range bandwidth of the high	
units	hertz
· · · · · · · · · · · · · · · · · · ·	nformation/parameters/pixelOffsets/frequencyA/alongTrackWindowSize
Type: UInt32	Shape: scalar
Description: Along-track cross-correlation wind	dow size in pixels
units	1
· · · ·	nformation/parameters/pixelOffsets/frequencyA/slantRangeWindowSize
Type: UInt32	Shape: scalar
Description: Slant range cross-correlation wind	dow size in pixels
units	1
/science/LSAR/RUNW/metadata/processingl	nformation/parameters/pixelOffsets/frequencyA/alongTrackSearchWindowSize
Type: UInt32	Shape: scalar
Description: Along-track cross-correlation sea	
units	1
	nformation/parameters/pixelOffsets/frequencyA/slantRangeSearchWindowSize
, seren a la l	

Type: Illet22	Shano: coalar
Type: Ulnt32	Shape: scalar
Description: Slant range cross-correlation sea	
units]
	Information/parameters/pixelOffsets/frequencyA/alongTrackSkipWindowSize
Type: UInt32	Shape: scalar
Description: Along-track cross-correlation skip) window size in pixels
units	
	Information/parameters/pixelOffsets/frequencyA/slantRangeSkipWindowSize
Type: UInt32	Shape: scalar
Description: Slant range cross-correlation skip	o window size in pixels
units	
	Information/parameters/pixelOffsets/frequencyA/correlationSurfaceOversampling
Type: UInt32	Shape: scalar
Description: Oversampling factor of the cross	-correlation surface
units	
	Information/parameters/pixelOffsets/frequencyA/isOffsetsBlendingApplied
Type: string	Shape: scalar
	e the results of blending multi-resolution layers of pixel offsets
/science/LSAR/RUNW/metadata/processing	
Type: string	Shape: scalar
Description: Software version used for proces	
	Information/algorithms/coregistration/coregistrationMethod
Type: string	Shape: scalar
Description: RSLC coregistration method	
algorithm_type	RSLC coregistration
	Information/algorithms/coregistration/geometryCoregistration
Type: string	Shape: scalar
Description: Geometry coregistration algorithm	
algorithm_type	RSLC coregistration
	Information/algorithms/coregistration/crossCorrelation
Type: string	Shape: scalar
Description: Cross-correlation algorithm for su	
algorithm_type	RSLC coregistration
	Information/algorithms/coregistration/resampling
Type: string	Shape: scalar
Description: Secondary RSLC resampling alg	
algorithm_type	RSLC coregistration
	Information/algorithms/coregistration/crossCorrelationOutliers
Type: string	Shape: scalar
Description: Outliers identification algorithm	
algorithm_type	RSLC coregistration
	Information/algorithms/coregistration/crossCorrelationFilling
Type: string	Shape: scalar
Description: Outliers data filling algorithm for o	
algorithm_type	RSLC coregistration
	Information/algorithms/coregistration/crossCorrelationFilterKernel
Type: string	Shape: scalar
Description: Filtering algorithm for cross-corre	
algorithm_type	RSLC coregistration
/science/LSAR/RUNW/metadata/processing	Information/algorithms/interferogramFormation/multilooking
Type: string	Shape: scalar
Description: Multilooking algorithm	
algorithm_type	Interferogram formation
· · · · · · · · · · · · · · · · · · ·	

science/LSAP/PLINW/metadata/processingly	nformation/algorithms/interferogramFormation/wrappedInterferogramFiltering
Type: string	Shape: scalar
Description: Algorithm used to filter the wrappe	
algorithm_type	Interferogram formation
algorithm_type	nformation/algorithms/interferogramFormation/flatteningMethod
	Shape: scalar
Type: string	
Description: Algorithm used to flatten the wrap	
algorithm_type	Interferogram formation
	nformation/algorithms/unwrapping/unwrappingAlgorithm
Type: string	Shape: scalar
Description: Algorithm used for phase unwrapp	
algorithm_type	Unwrapping
	nformation/algorithms/unwrapping/unwrappinglnitializer
Type: string	Shape: scalar
Description: Algorithm used to initialize phase	
algorithm_type	Unwrapping
	nformation/algorithms/unwrapping/costMode
Type: string	Shape: scalar
Description: Cost mode algorithm for phase un	
algorithm_type	Unwrapping
	nformation/algorithms/unwrapping/preprocessing/wrappedPhaseOutliers
Type: string	Shape: scalar
Description: Algorithm identifying outliers in the	
algorithm_type	Unwrapping
/science/LSAR/RUNW/metadata/processingle	nformation/algorithms/unwrapping/preprocessing/wrappedPhaseFilling
Type: string	Shape: scalar
Description: Outliers data filling algorithm for p	hase unwrapping preprocessing
algorithm_type	Unwrapping
/science/LSAR/RUNW/metadata/processingle	nformation/algorithms/ionosphereEstimation/ionosphereAlgorithm
Type: string	Shape: scalar
Description: Algorithm used to estimate ionosp	here phase screen
algorithm_type	lonosphere estimation
/science/LSAR/RUNW/metadata/processingli	nformation/algorithms/ionosphereEstimation/ionosphereOutliers
Type: string	Shape: scalar
Description: Algorithm identifying outliers in un	filtered ionosphere phase screen
algorithm_type	Ionosphere estimation
	nformation/algorithms/ionosphereEstimation/ionosphereFilling
Type: string	Shape: scalar
Description: Outliers data filling algorithm for ic	
algorithm_type	Ionosphere estimation
	nformation/algorithms/ionosphereEstimation/ionosphereFiltering
Type: string	Shape: scalar
Description: Filtering algorithm for ionosphere	
algorithm_type	lonosphere estimation
	nformation/algorithms/ionosphereEstimation/unwrappingErrorCorrection
Type: string	Shape: scalar
Description: Algorithm correcting unwrapping e	
algorithm_type	Ionosphere estimation
/science/LSAR/RUNW/metadata/processingle	
Type: string	Shape: (numberOfInputL1Files)
Description: List of input reference L1 RSLC pr	
/science/LSAR/RUNW/metadata/processingle	
Type: string	Shape: (numberOfInputL1Files)
iype, suniy	

Description: List of input secondary L1 RSLC products used		
/science/LSAR/RUNW/metadata/processingInformation/inputs/configFiles		
Type: string	Shape: (numberOfInputConfigFiles)	
Description: List of input config files used		
/science/LSAR/RUNW/metadata/processingInformation/inputs/demSource		
Type: string	Shape: scalar	
Description: Description of the input digital elevation model (DEM)		
/science/LSAR/RUNW/metadata/processingInformation/inputs/orbitFiles		
Type: string Shape: (numberOfInputOrbitFiles)		
Description: List of input orbit files used		

5.5 Other Radar Metadata

Table 5-5 NISAR HDF5 variables related to useful radar metadata.

Calibration-related variables	
/science/LSAR/RUNW/metadata/orbit/r	eference/interpMethod
Type: string	Shape: scalar
Description: Orbit interpolation method,	
/science/LSAR/RUNW/metadata/orbit/r	
Type: Float64	Shape: (orbitListLength)
	cord contains the time corresponding to position and velocity records
units	seconds since YYYY-mm-ddTHH:MM:SS
/science/LSAR/RUNW/metadata/orbit/r	
Type: Float64	Shape: (orbitListLength, tripletxyz)
	record contains the platform position data with respect to WGS84 G1762 reference frame
units	meters
/science/LSAR/RUNW/metadata/orbit/r	
Type: Float64	Shape: (orbitListLength, tripletxyz)
	record contains the platform velocity data with respect to WGS84 G1762 reference frame
units	meters / second
/science/LSAR/RUNW/metadata/orbit/r	
Type: string	Shape: scalar
	OE", "NOE", "MOE", "POE", or "Custom", where "FOE" stands for Forecast Orbit
	Ephemeris, "MOE, MOE, or Otation, where role stands of rolecast orbit
Ephemeris	
/science/LSAR/RUNW/metadata/orbit/s	econdary/interpMethod
Type: string	Shape: scalar
Description: Orbit interpolation method,	
/science/LSAR/RUNW/metadata/orbit/s	
Type: Float64	Shape: (orbitListLength)
	cord contains the time corresponding to position and velocity records
units	seconds since YYYY-mm-ddTHH:MM:SS
/science/LSAR/RUNW/metadata/orbit/s	
Type: Float64	Shape: (orbitListLength, tripletxyz)
	record contains the platform position data with respect to WGS84 G1762 reference frame
units	meters
/science/LSAR/RUNW/metadata/orbit/s	
Type: Float64	Shape: (orbitListLength, tripletxyz)
	record contains the platform velocity data with respect to WGS84 G1762 reference frame
· · ·	
units /science/LSAR/RUNW/metadata/orbit/s	meters / second
Type: string	Shape: scalar
	OE", "NOE", "MOE", "POE", or "Custom", where "FOE" stands for Forecast Orbit
	Ephemeris, "MOE" is Medium precision Orbit Ephemeris, and "POE" is Precise Orbit
Ephemeris /science/LSAR/RUNW/metadata/attitude/reference/time	
	Shape: (orbitListLength)
Type: Float64	
	cord contains the time corresponding to attitude and quaternion records
units	seconds since YYYY-mm-ddTHH:MM:SS
/science/LSAR/RUNW/metadata/attitud	e/reterence/quaternions

Type: Float64	Shape: (attitudeListLength, quaternions)
Description: Attitude quaternions (q0, q1,	q2, q3)
units	1
/science/LSAR/RUNW/metadata/attitude	/reference/eulerAngles
Type: Float64	Shape: (attitudeListLength, tripletxyz)
Description: Attitude Euler angles (roll, pit	tch, yaw)
units	degrees
/science/LSAR/RUNW/metadata/attitude	/reference/attitudeType
Type: string	Shape: scalar
	NRP", "PRP, or "Custom", where "FRP" stands for Forecast Radar Pointing, "NRP" is
Near Real-time Pointing, and "PRP" is Pre	cise Radar Pointing
/science/LSAR/RUNW/metadata/attitude	/secondary/time
Type: Float64	Shape: (orbitListLength)
Description: Time vector record. This record	ord contains the time corresponding to attitude and quaternion records
units	seconds since YYYY-mm-ddTHH:MM:SS
/science/LSAR/RUNW/metadata/attitude	/secondary/quaternions
Type: Float64	Shape: (attitudeListLength, quaternions)
Description: Attitude quaternions (q0, q1,	q2, q3)
units	1
/science/LSAR/RUNW/metadata/attitude	/secondary/eulerAngles
Type: Float64	Shape: (attitudeListLength, tripletxyz)
Description: Attitude Euler angles (roll, pit	tch, yaw)
units	degrees
/science/LSAR/RUNW/metadata/attitude	/secondary/attitudeType
Type: string	Shape: scalar
	NRP", "PRP, or "Custom", where "FRP" stands for Forecast Radar Pointing, "NRP" is
Near Real-time Pointing, and "PRP" is Pre	cise Radar Pointing

5.6 Geolocation Grid

Table 5-6 NISAR HDF5 variables related to metadata cube.

Metadata cube-related variables	2
/science/LSAR/RUNW/metadata/geolo	
Type: Int32	Shape: scalar
	to the coordinate system used for representing the geolocation grid
long_name	EPSG code
units	1
/science/LSAR/RUNW/metadata/geolo	cationGrid/coordinateY
Type: Float64	Shape: (geolocationCubeHeight, geolocationCubeLength, geolocationCubeWidth)
Description: Y coordinates in specified I	
FillValue	nan
grid_mapping	projection
long_name	Coordinate Y
units	meters
/science/LSAR/RUNW/metadata/geolo	
Type: Float64	Shape: (geolocationCubeHeight, geolocationCubeLength, geolocationCubeWidth)
Description: X coordinates in specified I	
_FillValue	nan
grid_mapping	projection
long_name	Coordinate X
units	meters
/science/LSAR/RUNW/metadata/geolo	cationGrid/incidenceAngle
Type: Float32	Shape: (geolocationCubeHeight, geolocationCubeLength,
	geolocationCubeWidth)
Description: Incidence angle is defined height	as the angle between the LOS vector and the normal to the ellipsoid at the target
valid_max	90.0
valid_min	0.0
_FillValue	nan
grid_mapping	projection
long_name	Incidence angle
units	degrees
/science/LSAR/RUNW/metadata/geolo	
Type: Float32	Shape: (geolocationCubeHeight, geolocationCubeLength, geolocationCubeWidth)
Description: East component of unit vec	ctor of LOS from target to sensor
valid_max	1.0
valid_min	-1.0
_FillValue	nan
grid_mapping	projection
long_name	LOS unit vector X
units	1
/science/LSAR/RUNW/metadata/geolo	cationGrid/losUnitVectorY
Type: Float32	Shape: (geolocationCubeHeight, geolocationCubeLength, geolocationCubeWidth)

Descript	ion. North component of unit ve	ator of LOC from torrat to concor
Descript	valid_max	ector of LOS from target to sensor
		1.0 -1.0
	valid_min	
	_FillValue	nan
	grid_mapping	projection
	long_name	LOS unit vector Y
	units	
		cationGrid/alongTrackUnitVectorX
Type: Flo	oat32	Shape: (geolocationCubeHeight, geolocationCubeLength,
Descript	ion: East component of unit vec	geolocationCubeWidth)
Descript	valid_max	
		-1.0
	valid_min	
	_FillValue	nan
	grid_mapping	projection
	long_name	Along-track unit vector X
1	units	
		cationGrid/alongTrackUnitVectorY
Type: Flo		Shape: (geolocationCubeHeight, geolocationCubeLength, geolocationCubeWidth)
Descript	ion: North component of unit ve	
	valid_max	1.0
	valid_min	-1.0
	_FillValue	nan
	grid_mapping	projection
	long_name	Along-track unit vector Y
	units	1
/science	/LSAR/RUNW/metadata/geolo	
Type: Flo	oat32	Shape: (geolocationCubeHeight, geolocationCubeLength, geolocationCubeWidth)
Descript	ion: Elevation angle is defined a	as the angle between the LOS vector and the normal to the ellipsoid at the sensor
i	valid max	 90.0
	valid_min	0.0
	FillValue	nan
	 grid_mapping	projection
	long_name	Elevation angle
	units	degrees
/science	/LSAR/RUNW/metadata/geolo	0
Type: Flo		Shape: (geolocationCubeWidth, geolocationCubeLength, twoLayersCubeHeight)
Descript	ion: Parallel component of the I	
20001101	mean_value	Arithmetic average of the numeric data points
	min_value	Minimum value of the numeric data points
	max_value	Maximum value of the numeric data points
	sample_stddev	Standard deviation of the numeric data points
	long_name	Parallel baseline
	units	meters
/science		cationGrid/perpendicularBaseline
JUGILLE		Shape: (geolocationCubeWidth, geolocationCubeLength,
	09137	
Type: Flo		twoLayersCubeHeight)
Type: Flo	ion: Perpendicular component of	twoLayersCubeHeight) of the InSAR baseline
Type: Flo		twoLayersCubeHeight)

max_value		Maximum value of the numeric data points		
sample_stddev		Standard deviation of the numeric data points		
long_name		Perpendicular baseline		
units		meters		
/science/LSAR/RUNW/metadata/geolocationGrid/slantRange				
Type: Float64	Shape:	(geolocationCubeWidth)		
Description: Slant range values corresponding to the geolocation grid				
long_name		Slant range		
units		meters		
/science/LSAR/RUNW/metadata/geolocationGrid/zeroDopplerTime				
Type: Float64		(geolocationCubeWidth)		
Description: Zero Doppler time values c	orrespon			
long_name		Zero-Doppler time		
units		seconds since YYYY-mm-ddTHH:MM:SS		
/science/LSAR/RUNW/metadata/geolog	/science/LSAR/RUNW/metadata/geolocationGrid/groundTrackVelocity			
Type: Float64		(geolocationCubeWidth)		
Description: Absolute value of the platform velocity scaled at the target height				
FillValue		nan		
grid_mapping		projection		
long_name		Ground-track velocity		
units		meters / second		
/science/LSAR/RUNW/metadata/geolocationGrid/heightAboveEllipsoid				
Type: Float64 Shape		(geolocationCubeHeight)		
Description: Height values above WGS84 Ellipsoid corresponding to the location grid				
standard_name		height_above_reference_ellipsoid		
units		meters		

6 METADATA CUBE

In this section, we provide an overview of the metadata cubes used to store spatially-varying ancillary data in the secondary layers of the NISAR L-SAR product HDF5 granules. Note that this sparse representation is to assist users in ingesting and analyzing NISAR products within existing GIS software and is not meant to replace traditional representations of SAR data within the product granules or traditional processing approaches with radar geometry-aware software.

Metadata cubes are represented as three-dimensional arrays in the NISAR product HDF5 modules (Figure 6-1). The axes of the array are interpreted as (height, increasing azimuth time, and increasing slant range) in case of radar geometry products and as (height, decreasing northing, and increasing easting) in case of geocoded products. The data is organized with height as the first axis, as this allows one to directly ingest data as GCPs or rasters into existing GIS software. Each height layer is the same size. Metadata cubes will have fixed grid spacing (3 km in azimuth/northing x 1 km in slant range/easting x 0.5 km in height and will allow for easy merging when multiple products along the same imaging track are to be concatenated. The metadata fields on this coarse resolution grid will be evaluated using traditional radar processing approaches without approximations. The metadata cube will also span a field slightly larger than the original image product to allow users to interpolate data without introducing edge effects. Such low-resolution representation of slowly varying parameters has been demonstrated for InSAR products and processing **Error! Reference source not found.**.

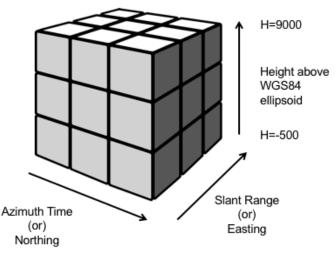


Figure 6-1. Metadata cube layer schematic

6.1 Metadata Cube Interpolation Example

We provide here a conceptual example of how these metadata cubes can be used within an existing GIS framework. Let us consider a GUNW product on a UTM Zone 10 grid (**Error!**

Reference source not found.). We use a geocoded product for the demonstration but the presented approach can be easily extended to radar coordinate products by replacing northing axis by azimuth time and easting axis by slant range.

Name	Value	Description			
Primary la	Primary layer properties				
xmin	100000.0	Easting of the first column (m)			
xmax	340000.0	Easting of the last column (m)			
dx	30.0	Column spacing in Easting (m)			
Nx	8001	Number of columns			
ymax	570000.0	Northing of first row (m)			
ymin	330000.0	Northing of last row (m)			
dy	-30.0	Row spacing in Northing (m). Negative to emphasize North-up imagery in geocoded products			
Ny	8001	Number of rows			
Metadata cube properties					
Cxmin	97000.0	Easting of first column (m)			
Cxmax	343000.0	Easting of last column (m)			
Cdx	1000.0	Column spacing in Easting (m)			
CNx	247	Number of columns			
Cymax	579000.0	Northing of first row (m)			
Cymin	321000.0	Northing of last row(m)			
Cdy	-3000.0	Row spacing in Northing (m). Negative to emphasize North-up imagery in geocoded products			
CNy	87	Number of rows			
Czmin	-1500	Height of the first layer (m)			
Czmax	9000	Height of the last layer (m)			
Cdz	1500	Layer spacing in height (m)			
CNz	8	Number of height layers			

Table 6-1 Example metadata cube properties.

Suppose we are interested in computing the Perpendicular Baseline (Bperp) at a pixel of interest located at UTM coordinates point (Px,Py). Since these are coordinates on a map domain, we can look up a DEM to get the height at this point. The three-dimensional point of interest then becomes (Px, Py, h(Px,Py)).

The metadata cube for Perpendicular baseline can be thought of as a three-dimensional field Bperp(x,y,z) - even though it is oriented as (Nz,Ny,Nx) in the HDF5 file for ease of use with a GIS. The user can use standard built-in regular grid three-dimensional interpolation routines in languages like MATLAB (e.g, interp3), IDL or Python (e.g, RegularGridInterpolator) to interpolate the Bperp array. We recommend cubic interpolation for best results. If a three-dimensional interpolator is not available, one could use two-dimensional cubic interpolation for each height layer followed by a one-dimensional cubic interpolation in the following manner:

1. Populate f(i), i=0,...Nz-1 by two-dimensional cubic interpolation of each height layer:

$$f(i) = Bperp\left[i, \frac{Py - Cymax}{Cdy}, \frac{Px - Cxmax}{Cdx}\right]$$

where the numbers in the square brackets indicate indices into the three-dimensional cube. For example, if we are interested in the point (107590.0 East, 555870.0 North, 300.0 Height), we would interpolate at Row 7.71 and Column 10.59 for each height layer.

2. Interpolate f(i) using one-dimensional cubic interpolation:

$$Bperp(Px, Py, h(Px, Py)) = f\left[\frac{h(Px, Py) - Czmin}{Cdz}\right]$$

where the number in the square bracket indicates an index into a one-dimensional array. For example, for a height value of 200.0, we would interpolate at an index of 1.2.

6.2 Metadata Cube Usage Note

Note that the metadata cubes are designed to accommodate one double-precision cube within 1 MB of memory, allowing for information to be easily stored in memory for on-the-fly computation within GIS frameworks or software without much overhead. The metadata cubes are not a replacement for traditional SAR processing approaches or very high-resolution analyses. They are meant to facilitate rapid processing and analysis by non-experts and will serve the needs for most SAR applications. Analyses show that the geolocation error is on the order of 1.5 cm due to interpolation which is significantly smaller than errors from sources such as DEM, orbits, and atmospheric path delay. Interpolation errors for each of the metadata layers will be reported after additional study.

7 APPENDIX A: ACRONYMS

ADT	Algorithm Development Team
API	Application Programming Interface
AT	Along Track
AWS	Amazon Web Services
BFPQ	Block adaptive Floating-Point Quantization
Cal/Val	Calibration and Validation (also sometimes cal/val)
CDR	Critical Design Review
CF	Climate and Forecast
CPU	Central Processing Unit
CRSD	Calibration Raw Signal Data
CSV	Comma-separated values
DAAC	Distributed Active Archive Center
DEM	Digital Elevation Model
DN	Digital Number
EAR	Export Administration Regulations
ECMWF	European Centre for Medium-Range Weather Forecasts
ECEF	Earth Centered Earth Fixed
EPSG	European Petroleum Survey Group
ESA	European Space Agency
FM	Frequency Modulation
FOP	Forecast Orbit Ephemeris
FOV	Field of View
GCOV	Geocoded Polarimetric Covariance (also as L2_GCOV)
GCP	Ground Control Point
GDAL	Geospatial Data Abstraction Library
GDS	Ground Data System
GIS	Geographic Information System
GMTED	Global Multi-resolution Terrain Elevation Data
GOFF	Geocoded Pixel Offsets (also as L2_GOFF)
GPU	Graphics Processing Unit
GSLC	Geocoded Single Look Complex (also as L2_GSLC)
GUNW	Geocoded d Unwrapped Interferogram (also as L2_GUNW)
HDF5	Hierarchical Data Format version 5
НК, НКТМ	Housekeeping Telemetry
InSAR	Interferometric Synthetic Aperture Radar
ISCE	InSAR Scientific Computing Environment
ISCE3	InSAR Scientific Computing Environment Enhanced Edition (for NISAR)
ISO	International Organization for Standardization

ISRO	Indian Space Research Organisation (British spelling)
LOB	Level-0B (data)
L1	Level-1 (data)
L2	Level-2 (data)
LOS	Line-Of-Sight
LUT	Lookup Table
Mbps	Megabits per second
MHz	Megahertz
MOE	Medium-precision Orbit Ephemeris
NCSA	National Center for Supercomputing Applications
NetCDF4	Network Common Data Form version 4
NISAR	NASA-ISRO Synthetic Aperture Radar
NOE	Near-Realtime Orbit Ephemeris
PDR	Preliminary Design Review
PLM	Product Lifecycle Management
POD	Precision Orbit Determination
POE	Precision Orbit Ephemeris
PRF	Pulse Repetition Frequency
QA	Quality Assurance
REE	Radar Echo Emulator
RFI	Radio Frequency Interference
RIFG	Range-Doppler Interferogram (also as L1_RIFG)
ROFF	Range-Doppler Pixel Offsets (also as L1_ROFF)
RRSD	Radar Raw Signal Data
RRST	Radar Raw Science Telemetry
RSLC	Range-Doppler Single Look Complex (also as L1_RSLC)
RUNW	Range-Doppler UnWrapped Interferogram (also as L1_RUNW)
SAR	Synthetic Aperture Radar
SAS	Science Algorithm Software
SDS	Science Data System
SDT	Science Definition Team
SIS	Software Interface Specification
SLC	Single Look Complex
SNAPHU	Statistical-cost, Network-flow Algorithm for Phase Unwrapping
SRTM	Shuttle Radar Topography Mission
ST	Science Team
TAI	International Atomic Time (Temps Atomique International)
TCF	Terrain Correction Factor
TEC	Total Electron Content
TFdb	Track-frame Database
SWST	Sampling Window Start Time

UR	Urgent Response
UTC	Universal Time Coordinated
UTM	Universal Transverse Mercator
WGS84	World Geodetic System 84
XML	eXtensible Markup Language (xml in code)
YAML	YAML Ain't Markup Language