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COMMUTING SPECTRAL MEASURES ON HILBERT SPACE

JOHN WERMER

1. Introduction. By a "spectral measure" on Hubert space H we mean a

family of bounded operators E (σ) on H defined for all Borel sets σ in the plane.

We suppose:

( i) If σ0 denotes the empty set and σ± the whole plane, then

where / is the identity,

(ii) For all σί9 σ2,

M σ ι n σ 2 ) = E(σι )E(σ2 );

and for disjoint σl9 σ2,

E (σ t u σ2 ) = E(σι ) + E (σ2 ) .

(i i i) There exists a constant M with | | £ ( σ ) | | < M9 all σ. It follows that

£ ( σ ) 2 = £ ( σ ) f o r each σ, and E (σi )E (σ2 ) = 0 if σl9 σ2 are disjoint.

Mackey has shown in [ 3 ] , as part of the proof of Theorem 55 of [ 3 ] , that if

E (σ) is a spectral measure with the properties just stated, then there exists a

bicontinuous operator A such that A" ι E (σ)A is self-adjoint for every σ. In a

special case this result was proved by Lorch in [ 2 ] . We shall prove:

T H E O R E M 1. Let E(σ) and F (η) be two commuting spectral measures on

H; that is,

E(σ)F(η) = F(η)E(σ)

for every σ, η. Then there exists a bicontinuous operator A such that A" E(σ)A

and A"1 F (η)A are self-adjoint for every σ, η.

As a corollary of Theorem 1, we shall obtain:
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THEOREM 2. // J 1 ? T2 are spectral operators on H9 in the sense of Dun ford

[ l ] f and Ί\Ί2 — T2 T\9 then Ί\ + T2 and Ίγ T2 are again spectral operators.

2. Lemmas. We shall use two lemmas in proving Theorem 1.

LEMMA 1. Let PXiP2$ 9Pn be operators on Hilbert space with

Suppose that3 for every set bγ , δ2, , δn of zeros and ones,

Σ s i p i \ \ < M

Then for every x we have

,-=,

This Lemma is proved in [ 3 , p . 147]; we include the proof for completeness .

Proof. We note that

where the sum is taken over all possible se t s ( e l f €2, >>, en)9 where e t = ±1 .

Hence

n
I 2 s V * I I Ό I I 2

1 = 1

for some choice of the e^ and e^. Now
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where the δ̂  and the δj are 1 or 0

Hence

Let now P + = Σ / ^ , summed over those i with €^ = 1; and let P~

summed over those i v/ith e ' =• — 1« Ί h e n

(p + _ p- Ϋ = »+ + Γ = / and 11 P \ - P χ 112 = α% .

Now jj ,'-' + |j < M and Π /'- | | < ,i; anri s

<{2M)2ax < (2MΫ Σ \\Piχ\\2
\\iχ\

LEMMA 2. Let E(σ) and F (η) be commuting spectral measures on Hubert

space. Then there is a fixed K such that for any set σ 1 ? cr29 ?<7rt of disjoint

Borel sets, and set η^ η2, , ηn of arbitrary Borel sets.

Proof. F i x x. By ( i i i ) t h e r e e x i s t c o n s t a n t s L and M, with | | £ ( σ ) | | <_M9

F (77 ) 11 < Zv for any σ, η . L e t 0"Λ + t he the complernent of

U σ .

T h e n

j

by Lemma 1;
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C = 4 M 2 Σ,\\E{σv)F(ηv)x\\*,

since E (σv)E(σi) = E(σvn σ{)

by commutativity of the E (σ) and F (η);

v=l

since | | F ( η v ) | | < L ;

C < ( 4 A f 2 ) 2 . L 2 | | * | | 2 ,

by Lemma 1. Hence

In the proof of Theorem 1 we shall use the method of Mackey in [ 3 ] , together

with Lemmas 1 and 2.

3. Proof of Theorem 1. By a "partition" π of the plane we mean a finite

family of Borel sets σ 1 ? σ 2, , σn, mutually disjoint and with union equal to

the whole plane. If (x, y) denotes the given scalar product in H, and

are two partitions, set

1=1 /=!

It is easily verified that the quantity (x9y)Ή π is a scalar product in H.

Further, it follows by Lemma 2 that the operators
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(i = 1 , 2 , . . . , rc; ; = 1 , 2 , . . . , m , )

satisfy the hypotheses of Lemma 1.

Hence Lemma 1 yields

Ί n m

— 11*11' < Σ Σ \\E{σ.)F{η.)x\\2 <

where K depends only on sup σ 11 E (σ) 11 and sup 11 F (η ) \ | . But

Finally, each E (σi ) and F (17.) (« = 1, 2, n; j = 1, 2, , m) is self-

adjoint in the scalar product (x9 γ)Ή π , as is readily verified.

For each pair of vectors x,y EH, now, let Sxγ be the disk in the complex

plane consisting of all z with

If 5 denotes the cartesian product of the disks SXy over all pairs x9 y9 then S

is a compact topological space, by Tychonoff's theorem. Further, as we saw

above,

H e n c e b y S c h w a r z ' s i n e q u a l i t y , a p p l i e d t o t h e s c a l a r p r o d u c t (x9 y ) _ , w e
7 7 1 * "2

see that the number (x9y)Ή lies in the disk SXy for every pair x9y% Hence

there is a point p π π in S whose x? y- coordinate is (x9y)π n .

Let us now partially order the set of points pπ π in S by saying that

Pπ'ifττ'2
 i s " g r a t e r than" p ^ ^ (in symbols Pπ^π^ > P ^ , ^ ) i f ^ί i s a re-

finement of the partion πι, and 7Γ2 is a refinement of the partition π2 This

ordering makes the set of points ρπ ^ in 5 into a directed system. Since S is

a compact space, this directed system has a point of accumulation p. Let {x9y)p

denote the (x9y) coordinate of p.

Then given a finite set of vector pairs (xi9 y f.), i = 1, 2, , n, and e > 0,

and a pair π®, π® of partitions, we have
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for some

Since {xiy)Ή π is a scalar product for all TΓI, 772 it thus follows that (x9y)

HHis a scalar product, and since the norm
Ή

f

is equivalent to the original

norm with constants of equivalence independent of ni9 π2, it follows that

is also equivalent to the original norm.

Finally, fix a Borel set σ and vectors x9y. Let π° be the partition defined

by σ and its complement, and 77° be arbitrary. Then, if

we have

since 77! is a refinement of 77°, and so σ is a finite union of sets involved in

the partition 771. Thus

(E(σ)x,y)p = (x,E(σ)y)p,

and so the E(σ) are self-adjoint with respect to the scalar product (x?y) ,

and similarly the F(η) are self-adjoint with respect to this scalar product.

Since \\x\\ is equivalent to the given norm, it now follows that there exists

a bi-continuous operator A with {x, y) = {Ax^Ay), and hence AE {σ)A~ ι and

AF(η)A"1 are all self-adjoint.

4. Proof of Theorem 2. By Theorem 8 of [ l ] , an operator T is spectral if

and only if there exist two commuting operators S and N such that N is quasi-

nilpotent and S admits a representation:

S=JλE(dλ),

where E (dλ) denotes integration with respect to a certain spectral measure.
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Such an 5 is called in [ l ] a " s c a l a r type operator . "

Now, by hypothesis, 7\ and T2 are commuting spectral operators. We write

in accordance with the preceding. Then by Theorem 5 of [ l ] the operators

Si? S 2 9 ΛΊ , /V2 all commute with one another. We thus have

Ίi + T2 = Sι + S2 + Q and 7\ T2 = 3^2 + Q',

where Q and Q' are quasi-nilpotent, Q commutes with S t + S 2 , and Q' commutes

with SιS2. By Theorem 8, quoted above, it is thus sufficient to show that

S t + S2 and S t S2 are spectral operators of type 0; that is, of scalar type.

Let Eι(σ) and E2(σ) be the spectral measures for Sί and S 2 , respectively.

By Theorem 5 of [1] it follows, from the fact that Sx S2 ~S2Si9 that Eι(σ)

and E2(σ) commute with one another for all σ. By our Theorem 1, then, there

exists an operator A such that the operators AEι(σ)A"1 and AE2(σ)A~ι are

all self-adjoint. Hence

Jι —ASγA"1 and J2 = AS2 A'

are normal operators. Also Jγ J2 = / 2 / i ? s ince Sx S2 = S 2 S i It follows that

11 + ]2 a n d Ji JΓ2 a r e again normal operators, for they commute with their ad-

joints as we verify by direct computation, using the fact that J \ and / * commute

and ]2 and / * commute, since J\ and / 2 commute.

Thus A ( S t + S 2 ) A" ι and A(SιS2)A~ι are normal operators and so of scalar

type. But if / is a scalar type operator and A bi-continuous, then, as is easi ly

seen, A"1 JA is again a scalar type operator. Hence S t -f S2 and Si S 2 are scalar

type operators, and all is proved.
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