

Improved Data Distribution for
Multipath TCP Communication

Yohei Hasegawa Ichiro Yamaguchi Takayuki Hama Hideyuki Shimonishi Tutomu Murase
System Platforms Research Laboratories, NEC Corporation

e-mail: {y-hasegawa@bk, i-yamaguchi@ap, t-hama@cd, h-shimonishi@cd, t-murase@ap}.jp.nec.com

Abstract—Multi-homed environments are increasingly
common, especially for mobile users. To efficiently utilize
multiple access lines for single file transfer, multipath TCP
communication methods have been proposed. A multipath
TCP enables simultaneous distributed data transfer
between two end-points on multiple TCP connections.
However, these methods cannot fully utilize the available
bandwidth of multiple paths because they do not properly
consider the end-to-end delay of packet transmission, so
out-of-order data arrival at a receiver causes a bottleneck
in data sort operations. This problem is more severe in
environments where the quality of each path is different or
unstable, such as in wireless environments. To solve this
problem, we propose a multipath TCP communication
method that includes a data distribution method to enable
in-order delivery at a receiver. We call this Arrival-Time
matching Load-Balancing (ATLB). ATLB continuously
calculates the delay of each path, including the TCP
queuing delay at a sender and the network delay, and then
sends a data segment through the TCP connection with the
lowest end-to-end delay. Simulation results show that
ATLB improves end-to-end throughput, especially in
heterogeneous environments where the quality of paths
differs. For example, ATLB enabled twice the throughput
with the conventional multipath TCP. We also report
performance evaluation results from our ATLB test bed
system in a wireless network environment. Our ATLB test
bed system was able to fully utilize the aggregate available
bandwidth of unstable multiple wireless links.

I. INTRODUCTION
Network environments with multiple paths are becoming

common between pairs of hosts [1]. The number of multi-
homed users is increasing especially fast since mobile or
wireless users often have multiple access channels.
Conventionally, multiple access lines were prepared to ensure
reliability. Today, in addition to high reliability, high
performance is desired, especially for mobile or wireless users
whose access lines are slow and unstable.

Although the number of users who have prepared multiple
paths is increasing, the single TCP cannot provide sufficient
throughput if packets are delivered via multiple network paths
[2, 3]. This is because TCP is designed for connections that
traverse a single path between a pair of hosts. Out-of-data
delivery via multiple paths degrades TCP throughput.

To improve TCP data communication performance on
multiple network paths, modifications of TCP [4, 5] and
communication schemes with multiple TCP connections [6, 7]
have been proposed. The former are modifications of single
TCP behavior. These are mainly aimed at improving TCP
performance in multipath forwarding networks where there
are out-of-order packet deliveries. These approaches cannot
always utilize each path, though, because their congestion
control mechanisms remain almost the same as those of
ordinary single TCP to enable friendliness and inter-
operability with ordinary TCP.

The latter are parallel data transfer techniques in the
application layer and multipath TCP communication methods
in a new sub-layer on top of the TCP layer. The application-
layer techniques are based on partial and parallel requests; for
example, the range request of http1.1 and gridftp [8]. The sub-
layer techniques [6, 7], which are called multipath TCP
communication, are based on the distribution of data and
parallel data transfer with multiple TCP connections between
two end-points. In many cases multipath TCP approaches can
provide higher throughput than the former approaches,
because congestion control for each path can be used to
determine the appropriate available rate of each path.
Unfortunately, application-layer approaches involve a trade-
off between data distribution efficiency and request data
length – a larger request data size for each request makes the
data distribution cruder. On the other hand, multipath TCP
communication enables packet-by-packet data distribution, so
data distribution efficiency can be higher than with application
layer approaches.

Conventional multipath TCP methods still encounter a
bottleneck in the data-sorting process at a receiver host.
Conventional multipath TCP methods send data segments to
each connection almost equally despite each path having a
different delay or bandwidth. As a result, out-of-data arrival
occurs at a receiver host. A conventional multipath TCP
receiver needs a huge receiving buffer to sort the data
segments from each path; otherwise an exhausted receiving
buffer will result in a small TCP receiving window and
degraded throughput. In addition, in high-speed
communication the data-sorting bottleneck becomes more
serious because a larger TCP window in each path increases
end-to-end delay. Thus, high-performance multipath TCP
communication requires an efficient data distribution method.

In this paper, we propose a data distribution method for
multipath TCP communication that improves end-to-end

matter experts for publication in the IEEE GLOBECOM 2005 proceedings.This full text paper was peer reviewed at the direction of IEEE Communications Society subject

IEEE Globecom 2005 271 0-7803-9415-1/05/$20.00 © 2005 IEEE

performance and reduces the data-sorting cost. We call this
method Arrival-Time matching Load-Balancing (ATLB). The
method calculates the data arrival time for each path,
considering the time that data segments spend in the TCP
queue at a sender and the time needed for data segments to
pass through the network. ATLB enables in-order data
delivery to a receiver, and the data sort cost at a receiver is
reducible. Thus, ATLB enables high throughput
communication.

The rest of this paper is organized as follows. We briefly
review related work in Section II. We describe the ATLB
multipath TCP communication method in Section III. We
present performance evaluation results in Section IV, and
conclude in Section V.

II. MULTIPATH TCP COMMUNICATION
This section describes a multipath TCP communication

scheme [6, 7].
The composition of multipath TCP communication

assumed in this paper is shown in Figure 1. An end-host with
multipath TCP includes an application layer and a transport
layer. The transport layer is divided into two sub-layers – the
multipath TCP layer and the TCP layer.

When a sender starts multipath TCP communication with a
receiver, the sender opens N concurrent TCP connections to
the receiver, where N is the number of paths the network
provides between the sender and the receiver. The application
layer then sends a data stream to the multipath layer, and the
multipath TCP layer divides the data stream into multiple data
segments, adding a control header to each segment. The
control header contains a sequence number from the original
data stream with which the receiver can reconstruct the data
stream. The multipath TCP layer next transfers the data
segments to the TCP layer, distributing some of the data
segments to each TCP connection. When a destination TCP
connection receives segments from its TCP sending peer, the
multipath TCP receiver then reads the TCP data stream to
recover the control data. Referring to the control data, the
multipath TCP receiver reconstructs the original data stream.
This data stream is then returned to the receiving application
layer.

Figure 1 also shows an example of multipath TCP
communication. In Figure 1, the sender uses multipath TCP to
send a data stream to the receiver. The figure shows that the
sender multipath TCP opens a TCP connection on each of the
N paths provided by the network. The sender passes a data

Fig. 1: Example of multipath TCP communication

stream to multipath TCP which is divided into five segments,
labeled 1 through 5. The multipath TCP sequence numbers
each segment and sends them onto the different TCP
connections. The boxes above each TCP connection in Figure
1 denote TCP frames being transmitted by that connection.
The number in the box denotes the multipath TCP sequence
number which is contained in a control header.

As a multipath TCP communication data distribution
strategy, the method in [6] uses dynamic data distribution
where data segments are transmitted via the connection with
the shortest TCP queue length, and the method in [7] uses a
round-robin technique. These methods are aimed at
maximizing the throughput of each path by putting data
segments into each TCP connection to prevent buffer-under-
run. These methods, though, suffer from the disadvantage of
data sorting at the receiver. Along the various network paths,
data segments transmitted from a sender experience different
delays. In addition, the time that data spends in the TCP queue
will differ, because each TCP’s congestion control and
retransmission mechanism become delay factors. Ultimately,
the end-to-end delay of each TCP connection differs. Thus,
data segments are not sequentially delivered to a receiver. A
receiver must wait until a series of data segments arrives from
each path.

Consequently, conventional multipath TCP cannot provide
the desired application level throughput, because out-of-order
data arrival on the receiver side causes a bottleneck in the
data-sorting process.

III. PROPOSED METHOD (ATLB)
To solve the above problem, we developed the ATLB

multipath TCP communication method. ATLB consists of a
data distribution method to reduce the cost of data alignment
in a receiver and a path-failure detection and recovery
mechanism to prevent stalling of the data transfer.

1) Data distribution method
We show how ATLB calculates the data arrival time in

Figure 2. With ATLB, the data arrival time at a receiver is
estimated by taking into consideration the queuing delay in the
sender’s transmitting buffer and the network path delay
(Figure 2). The queuing delay is dynamically calculated from
each TCP connection's throughput history. The network path
delay is calculated from the TCP’s smoothed round-trip time
(RTT). In addition to these two types of delay, there is a delay
in the receiver buffer of each TCP connection. Since this is
usually negligible, though, we do not take it into consideration
here.

Fig. 2: ATLB Data distribution

Path 1Path 1

Path 2Path 2

Path NPath N

conn.1

conn.2

conn.N
Sender Receiver

TCP1 TCPn

Multi-path TCP

Application Layer
Transport Layer

1

2

3

4

5
multi-path TCP Path 1Path 1

Path NPath N Receiver

Sender

Application
Layer

Data
Stream

ATLB
operator

QN

Transport Layer

Queuing Delay Network Delay

Q1

GN

G1
Queue Length Throughput

Queue Length Throughput

Gi

Qi

2
sRTTi

matter experts for publication in the IEEE GLOBECOM 2005 proceedings.This full text paper was peer reviewed at the direction of IEEE Communications Society subject

IEEE Globecom 2005 272 0-7803-9415-1/05/$20.00 © 2005 IEEE

The ATLB data distribution method is based on Eq. (1).
ATLB calculates a score for each connection and sends a data
segment via the connection having the lowest score. The first
term in Eq. (1) is the queuing delay of the transmitting buffer,
and the second term is the network path delay. Thus, ATLB
dynamically sends a data segment through the connection
having the lowest delay.

Q
G

sRTT
2

i
i

iscore =i +
 (1)

where Q is the data length in the sender’s transmitting buffer,
sRTT is the smoothed RTT, and G is the smoothed throughput
of connectioni, calculated as

Gj = α×Gj-1 + (1 - α) × TPUTj (2)
where α (0 < α < 1) is a constant, and TPUTj is the throughput
of a TCP connection which is continuously measured for
every β milliseconds.

Parameters α and β determine whether ATLB should
follow the latest throughput of each path. In a situation where
throughput is steady from a long-term viewpoint, a larger α
should be set. Otherwise, a smaller α is reasonable. β should
be twice as large as RTT to stably measure the throughput of
each connection in case of TCP’s fast retransmission. We
chose 1/2 and 100 for α and β, respectively, for the network
environment we assumed in the performance evaluation
because the network had a delay of 10 ms or more and the link
bandwidth varied rapidly.

The buffer amount needed for sorting data segments in a
receiver is reducible through the above method because the
data from a sender will arrive at a receiver in an almost in-
order sequence. Of course, momentary out-of-order data
arrival will still occur, especially at the beginning of
communication and due to TCP data retransmission, TCP
congestion control, and network delay dynamics. If these
dynamics are reflected in the TCP throughput, ATLB will
react automatically by considering the queuing delay and
network delay.

2) Path-failure detection and recovery method
ATLB has the following path-failure detection and

recovery mechanism to prevent data transfer stalling.

a) Path-failure detection
ATLB maintains a failure-detection timer which expires

after timeout T. T should be carefully chosen because a small
T can be useful for detecting failure quickly, but misdetection
becomes more likely. We assume that if a data segment just

Fig. 3: Network topology in the simulation

after a retransmit timeout (RTO) is lost, the path has failed or
is heavily congested. We therefore make T equal to RTO + θ ×
RTT (θ > 2).

b) Failure recovery
When path failure is detected, ATLB starts to send probe

packets via the failed path every P milliseconds. ATLB also
calculates the packet loss rate every S milliseconds. If the
packet loss rate is less than R %, ATLB assumes that the path
has recovered. ATLB then restarts data transmission along
that path. For example, we made P, S, and R respectively
equal to 50, 500, and 10 to enable recovery within a second.

IV. PERFORMANCE EVALUATION
In this section, we look at the ATLB performance

evaluation results. First, we show NS2 simulation results [9]
to show that ATLB can improve end-to-end throughput when
there is a data-sorting bottleneck in a receiver host. Second,
we show experimental results with our test bed system in a
wireless LAN.

A. Simulation
To test the effectiveness of ATBL when there is a data-

sorting bottleneck in a receiver host, we compared the ATLB
system to a conventional system.

1) Simulation settings
The simulation was done with the topology shown in

Figure 3. We assumed that multipath TCP was applied to
proxy servers to measure the end-to-end throughput, including
the data sorting at a multipath TCP receiver, rather than to
measure the aggregate throughput of each connection.

In the communication between sender H1 and receiver H2,
GW1 and GW2 operated as proxy servers. Sender H1 tried to
communicate with receiver H2 via GW1 and GW2. Multipath
TCP communication was then established between GW1 and
GW2.

To see whether ATLB improved performance, we
compared the ATLB system to a conventional system with
data distribution based on minimum queue length. In addition,
to test the efficiency of data sorting at a multipath TCP
communication receiver, we gave GW2 an infinitely large
receiving buffer for sorting data segments from each TCP
connection. The following two systems were prepared in this
simulation.
-- ATLB

GW1 and GW2 enable the proposed ATLB communication.
-- MinQue

GW1 and GW2 enable data distribution where data
segments are transmitted through the TCP connection with the
shortest queue length.

Other basic simulation settings are shown in Figure 3 or
stated elsewhere. The maximum size of the congestion
window (the TCP transmitting buffer) was 2 Mbyte for each
TCP connection. The maximum segment size was 1000 bytes.

H1 H2

200Mbps
15ms

GW1 GW2

200Mbps

link1

link2

100Mbps
1ms

100Mbps
1ms

100Mbps
1ms

100Mbps
1ms

matter experts for publication in the IEEE GLOBECOM 2005 proceedings.This full text paper was peer reviewed at the direction of IEEE Communications Society subject

IEEE Globecom 2005 273 0-7803-9415-1/05/$20.00 © 2005 IEEE

2) Robustness for link bandwidth differentiation
Figure 4 compares the application level throughput at

receiver H2 when the link 2 bandwidth was varied between 10
and 100 Mbps. The link 1 bandwidth was fixed at 100 Mbps.
Each point of the graph is average throughput during a 10-s
data transfer. We also show the ideal throughput, which is the
aggregate throughput of links 1 and 2, and is not affected by
the data sorting overhead at receiver H2. The results show that
ATLB can fully utilize the aggregate bandwidth of links 1 and
2, considering the roughly 5% overhead of the TCP/IP header
and multipath TCP control header. For example, when the
respective bandwidths of links 1 and 2 were 100 and 20 Mbps,
ATLB enabled throughput of about 115 Mbps, while the
MinQue throughput was only about 63 Mbps.

 The MinQue throughput was limited to about twice the
bandwidth of the bottlenecked link 2. When the data transfer
started, MinQue sent data segments at an almost equal rate to
each TCP connection. This caused a data-sorting bottleneck at
GW2. If we assume that the TCP congestion window of each
path grew to 1 Mbyte in GW1, then MinQue would have sent
1 Mbyte data segments over each path. Since link 2 was
limited to 10 Mbps, the data transfer on link 2 would take at
least 800 ms, while the data transfer on link 1 would be done
in about 80 ms. Until the data transfer on link 2 was complete,
though, the data segments from link 1 had to wait at GW2.
This means that data transfer from GW2 to H2 would be
limited to roughly twice the bandwidth of bottlenecked link 2.
Thus, the throughput between sender H1 and receiver H2
would be limited along with the bandwidth of the bottlenecked
link.

3) Robustness against link delay differentiation
Figure 5 compares throughput at receiver H2 when the link

delay of link 2 was varied between 7.5 and 75 ms. The link
delay of link 1 was fixed at 15 ms. Each point of the graph is
average throughput during a 10-s data transfer. The results
show that both ATLB and MinQue can utilize almost the
entire aggregate bandwidth.

When the link delay differs between paths, GW2 with
MinQue has some data segments waiting to be sorted.
However, if each path’s throughput is the same, the queue
length in GW2 almost remains at a fixed size Qsb which can
be approximately calculated as

Qsb = || D1 – D2 || * B
where D1 is the delay of link 1, D2 is the delay of link 2, and
B is the single-path bandwidth.

The ATLB and MinQue results were therefore almost the
same in environments where only the delay differed between
links. Both MinQue and ATLB have the same overhead at
communication start up before the TCP congestion window on
link 2 grows. These results help confirm that the simulation
results are correct.

4) Robustness against packet loss
Figure 6 compares the robustness against packet loss. The

packet loss rate of link 2 was set between 0.001% and 1%. We
also show the ideal throughput, which is the aggregate
throughput of links 1 and 2.

Fig. 4: Robustness for link bandwidth differentiation

Fig. 5: Robustness for link delay differentiation

Fig. 6: Robustness for link packet loss rate differentiation

ATLB achieved higher throughput than MinQue,
especially when the packet loss rate was 1%; in that case, the
ATLB throughput was ten times that of MinQue. However,
the ATLB throughput was below the ideal throughput. Since
heavy packet loss causes frequent TCP fast retransmission and
retransmission timeouts, the queuing delay of data transfer on
link 2 gradually became larger. If a TCP retransmission
timeout occurred, data transfer would have been stalled for at
least 1 s. That would cause a lot of data segments to queue in
GW2, so the data sorting in GW2 would be inefficient.

0

50

100

150

200

0 0.2 0.4 0.6 0.8 1 1.2

Bandwidth ratio (Link 2 / Link 1)

Th
ro

ug
hp

ut
 [M

bp
s]

MinQue
ATLB
ideal

180

184

188

192

196

200

0 1 2 3 4 5 6

Delay ratio (Link2 / Link1)

Th
ro

ug
hp

ut
 [M

bp
s]

MinQue

ATLB
ideal

0

50

100

150

200

0.001 0.01 0.1 1 10

Packet loss rate [%]

Th
rro

ug
hp

ut
 [M

bp
s]

MinQue

ATLB
ideal

matter experts for publication in the IEEE GLOBECOM 2005 proceedings.This full text paper was peer reviewed at the direction of IEEE Communications Society subject

IEEE Globecom 2005 274 0-7803-9415-1/05/$20.00 © 2005 IEEE

B. Performance Evaluation on the Test Bed System
In this section, we report the performance evaluation

results for our ATLB test bed system on Linux in a real
wireless LAN environment. To test whether our method can
utilize all available bandwidth, we compared the ATLB
throughput to the throughput of a conventional TCP data
transfer established independently via each wireless link.

The test environment is shown in Figure 7. The network
topology was the same as in the former simulation tests. Links
1 and 2 were IEEE802.11g wireless LAN links, and the others
were 100Base/TX links. We introduced two background TCP
connections on each wireless link as shown in Figure 7.
Although each background TCP worked independently on
links 1 and 2, each connection was supposed to utilize the
available bandwidth of the wireless link. If the ATLB and
background TCP throughput shared the bandwidth of links 1
and 2 fairly, this would show that the ATLB test bed system
can utilize all of the available bandwidth of multiple wireless
links.

 To measure the ATLB performance in unstable wireless
links, we introduced a test scenario which included a variety
of wireless link speeds and wireless links being down or up.
 The test scenario was as follows:

Time 0: The lengths of link 1 and link 2 were set to 4 m. A
sender started data transfer.

Time 150: Link 1 went down.
Time 180: The length of link 1 was set to 60 cm, and then

link 1 was up.
Time 250: Link 2 went down.
 Time 300: The length of link 2 was set to 60 cm, and then

link 2 was up.
Figure 8 shows the throughput trace under the test scenario.

The bold line is the throughput trace on H2 where ATLB was
introduced (ATLB-TCP). The bold broken line is the
aggregate throughput of the background TCP connections
(B.G.TCP1, B.G.TCP2).

The aggregate throughput was almost the same with the
background TCP connections and with ATLB-TCP under this
test scenario. This confirms that our test bed system utilized
all available bandwidth, and the data sorting at GW2 worked
well without degrading performance. In addition, when the
link speeds were drastically changed, as when links went
down or came up, the ATLB data distribution and failure
recovery followed properly.

Fig. 7: Network topology

Fig. 8: Throughput on Wireless LAN

V. CONCLUSION
ATLB is a multipath TCP communication method that

consists of a distributed data transfer method and a path-
failure detection/recovery method.

 Simulation results show that the ATLB data distribution
method improves end-to-end throughput, especially in
environments where the quality differs between paths. For
example, the throughput of a multipath TCP system with
ATLB was twice that of a conventional multipath TCP system.

We also evaluated the performance of our ATLB test bed
system in a wireless LAN environment. The ATLB test bed
system utilized all available bandwidth, even though it was
applied in an unstable wireless LAN environment.

VI. REFERENCES
[1] S. Savage, A. Collins, and E. Hoffman, “The end-to-end effects of

Internet path selection,” in Proceedings of ACM SIGCOMM, Aug. 1999.
[2] C. Barakat, E. Altman, and W. Dabbous, "On TCP Performance in a

Heterogeneous Network: A Survey," IEEE Communications Magazine,
vol. 38, no. 1, pp. 40--46, 2000.

[3] M. Zhang, B. Karp, S. Floyd and L Peterson, “RR-TCP: A Reordering-
Robust TCP with DSACK,” in Proceedings of the Eleventh IEEE
International Conference on Networking Protocols (ICNP 2003),
November 2003.

[4] Youngseok Lee, Ilkyu Park, and Yanghee Choi, "Improving TCP
Performance in Multipath Packet Forwarding Networks," Journal of
Communication and Networks (JCN), pp. 148 - 157, vol. 4 no. 2, June
2002.

[5] Johnny Chen, “New Approaches to Routing for Large-Scale Data
Networks,” Rice University, TR99-344, pp.119-144, June 1999.

[6] M. Zhang, A. Krishnamurthy, L. Peterson, R. Wang, “A Transport Layer
Approach for Improving End-to-End Performance and Robustness
Using Redundant Paths,” USENIX 2004, June 2004.

[7] Kultida Rojviboonchai and Hitoshi Aida, “An Evaluation of Multipath
Transmission Control Protocol (M/TCP) with Robust Acknowledgement
Schemes,” Internet Conference 2002, Oct. 2002.

[8] Pablo Rodriguez and Ernst W. Biersack, "Dynamic Parallel Access to
Replicated Content in the Internet," IEEE/ACM Transactions on
Networking, vol. 10, num. 4, Aug. 2002.

[9] The network simulator– ns-2, http://www.isi.edu/nsnam/ns

Th
ro

ug
hp

ut
 [M

bp
s]

Time [sec]

ATLB-TCP
Aggregated B.G.TCP

B.G.TCP1
B.G.TCP2

Link1 down

Link1 up

Link2 down

Link2 up

Link1 4m Link1 60cm
Link2 4m Link2 60cm

0

5

10

15

20

25

30

35

0 60 120 180 240 300 360
0

5

10

15

20

25

30

35

0 60 120 180 240 300 360

H1 H2
GW1 GW2

ATLB-TCP

B.G.TCP1

B.G.TCP2

link1

link2

IEEE802.11G

100Base/T 100Base/T

IEEE802.11G

matter experts for publication in the IEEE GLOBECOM 2005 proceedings.This full text paper was peer reviewed at the direction of IEEE Communications Society subject

IEEE Globecom 2005 275 0-7803-9415-1/05/$20.00 © 2005 IEEE

