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Abstract—Multi-homed environments are increasingly 
common, especially for mobile users. To efficiently utilize 
multiple access lines for single file transfer, multipath TCP 
communication methods have been proposed. A multipath 
TCP enables simultaneous distributed data transfer 
between two end-points on multiple TCP connections. 
However, these methods cannot fully utilize the available 
bandwidth of multiple paths because they do not properly 
consider the end-to-end delay of packet transmission, so 
out-of-order data arrival at a receiver causes a bottleneck 
in data sort operations. This problem is more severe in 
environments where the quality of each path is different or 
unstable, such as in wireless environments. To solve this 
problem, we propose a multipath TCP communication 
method that includes a data distribution method to enable 
in-order delivery at a receiver. We call this Arrival-Time 
matching Load-Balancing (ATLB). ATLB continuously 
calculates the delay of each path, including the TCP 
queuing delay at a sender and the network delay, and then 
sends a data segment through the TCP connection with the 
lowest end-to-end delay. Simulation results show that 
ATLB improves end-to-end throughput, especially in 
heterogeneous environments where the quality of paths 
differs. For example, ATLB enabled twice the throughput 
with the conventional multipath TCP. We also report 
performance evaluation results from our ATLB test bed 
system in a wireless network environment. Our ATLB test 
bed system was able to fully utilize the aggregate available 
bandwidth of unstable multiple wireless links.   

I. INTRODUCTION 
Network environments with multiple paths are becoming 

common between pairs of hosts [1]. The number of multi-
homed users is increasing especially fast since mobile or 
wireless users often have multiple access channels. 
Conventionally, multiple access lines were prepared to ensure 
reliability. Today, in addition to high reliability, high 
performance is desired, especially for mobile or wireless users 
whose access lines are slow and unstable.  

Although the number of users who have prepared multiple 
paths is increasing, the single TCP cannot provide sufficient 
throughput if packets are delivered via multiple network paths 
[2, 3]. This is because TCP is designed for connections that 
traverse a single path between a pair of hosts. Out-of-data 
delivery via multiple paths degrades TCP throughput.   

To improve TCP data communication performance on 
multiple network paths, modifications of TCP [4, 5] and 
communication schemes with multiple TCP connections [6, 7] 
have been proposed. The former are modifications of single 
TCP behavior. These are mainly aimed at improving TCP 
performance in multipath forwarding networks where there 
are out-of-order packet deliveries. These approaches cannot 
always utilize each path, though, because their congestion 
control mechanisms remain almost the same as those of 
ordinary single TCP to enable friendliness and inter-
operability with ordinary TCP.  

The latter are parallel data transfer techniques in the 
application layer and multipath TCP communication methods 
in a new sub-layer on top of the TCP layer. The application-
layer techniques are based on partial and parallel requests; for 
example, the range request of http1.1 and gridftp [8]. The sub-
layer techniques [6, 7], which are called multipath TCP 
communication, are based on the distribution of data and 
parallel data transfer with multiple TCP connections between 
two end-points. In many cases multipath TCP approaches can 
provide higher throughput than the former approaches, 
because congestion control for each path can be used to 
determine the appropriate available rate of each path. 
Unfortunately, application-layer approaches involve a trade-
off between data distribution efficiency and request data 
length – a larger request data size for each request makes the 
data distribution cruder. On the other hand, multipath TCP 
communication enables packet-by-packet data distribution, so 
data distribution efficiency can be higher than with application 
layer approaches.  

Conventional multipath TCP methods still encounter a 
bottleneck in the data-sorting process at a receiver host. 
Conventional multipath TCP methods send data segments to 
each connection almost equally despite each path having a 
different delay or bandwidth. As a result, out-of-data arrival 
occurs at a receiver host. A conventional multipath TCP 
receiver needs a huge receiving buffer to sort the data 
segments from each path; otherwise an exhausted receiving 
buffer will result in a small TCP receiving window and 
degraded throughput. In addition, in high-speed 
communication the data-sorting bottleneck becomes more 
serious because a larger TCP window in each path increases 
end-to-end delay. Thus, high-performance multipath TCP 
communication requires an efficient data distribution method.  

In this paper, we propose a data distribution method for 
multipath TCP communication that improves end-to-end 
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performance and reduces the data-sorting cost. We call this 
method Arrival-Time matching Load-Balancing (ATLB). The 
method calculates the data arrival time for each path, 
considering the time that data segments spend in the TCP 
queue at a sender and the time needed for data segments to 
pass through the network. ATLB enables in-order data 
delivery to a receiver, and the data sort cost at a receiver is 
reducible. Thus, ATLB enables high throughput 
communication.  

The rest of this paper is organized as follows. We briefly 
review related work in Section II. We describe the ATLB 
multipath TCP communication method in Section III. We 
present performance evaluation results in Section IV, and 
conclude in Section V.   

II. MULTIPATH TCP COMMUNICATION 
This section describes a multipath TCP communication 

scheme [6, 7].  
The composition of multipath TCP communication 

assumed in this paper is shown in Figure 1. An end-host with 
multipath TCP includes an application layer and a transport 
layer. The transport layer is divided into two sub-layers – the 
multipath TCP layer and the TCP layer.  

When a sender starts multipath TCP communication with a 
receiver, the sender opens N concurrent TCP connections to 
the receiver, where N is the number of paths the network 
provides between the sender and the receiver. The application 
layer then sends a data stream to the multipath layer, and the 
multipath TCP layer divides the data stream into multiple data 
segments, adding a control header to each segment. The 
control header contains a sequence number from the original 
data stream with which the receiver can reconstruct the data 
stream. The multipath TCP layer next transfers the data 
segments to the TCP layer, distributing some of the data 
segments to each TCP connection. When a destination TCP 
connection receives segments from its TCP sending peer, the 
multipath TCP receiver then reads the TCP data stream to 
recover the control data. Referring to the control data, the 
multipath TCP receiver reconstructs the original data stream. 
This data stream is then returned to the receiving application 
layer.  

Figure 1 also shows an example of multipath TCP 
communication. In Figure 1, the sender uses multipath TCP to 
send a data stream to the receiver. The figure shows that the 
sender multipath TCP opens a TCP connection on each of the 
N paths provided by the network. The sender passes a data  
  
  
  
  
  
  
  

Fig. 1: Example of multipath TCP communication 

stream to multipath TCP which is divided into five segments, 
labeled 1 through 5. The multipath TCP sequence numbers 
each segment and sends them onto the different TCP 
connections. The boxes above each TCP connection in Figure 
1 denote TCP frames being transmitted by that connection. 
The number in the box denotes the multipath TCP sequence 
number which is contained in a control header.  

As a multipath TCP communication data distribution 
strategy, the method in [6] uses dynamic data distribution 
where data segments are transmitted via the connection with 
the shortest TCP queue length, and the method in [7] uses a 
round-robin technique. These methods are aimed at 
maximizing the throughput of each path by putting data 
segments into each TCP connection to prevent buffer-under-
run. These methods, though, suffer from the disadvantage of 
data sorting at the receiver. Along the various network paths, 
data segments transmitted from a sender experience different 
delays. In addition, the time that data spends in the TCP queue 
will differ, because each TCP’s congestion control and 
retransmission mechanism become delay factors. Ultimately, 
the end-to-end delay of each TCP connection differs. Thus, 
data segments are not sequentially delivered to a receiver. A 
receiver must wait until a series of data segments arrives from 
each path.  

Consequently, conventional multipath TCP cannot provide 
the desired application level throughput, because out-of-order 
data arrival on the receiver side causes a bottleneck in the 
data-sorting process.  

III. PROPOSED METHOD (ATLB) 
To solve the above problem, we developed the ATLB 

multipath TCP communication method. ATLB consists of a 
data distribution method to reduce the cost of data alignment 
in a receiver and a path-failure detection and recovery 
mechanism to prevent stalling of the data transfer.  

1) Data distribution method 
We show how ATLB calculates the data arrival time in 

Figure 2. With ATLB, the data arrival time at a receiver is 
estimated by taking into consideration the queuing delay in the 
sender’s transmitting buffer and the network path delay 
(Figure 2). The queuing delay is dynamically calculated from 
each TCP connection's throughput history. The network path 
delay is calculated from the TCP’s smoothed round-trip time 
(RTT). In addition to these two types of delay, there is a delay 
in the receiver buffer of each TCP connection. Since this is 
usually negligible, though, we do not take it into consideration 
here. 

  
  
  
  
  
  
  

Fig. 2:  ATLB Data distribution 
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The ATLB data distribution method is based on Eq. (1). 
ATLB calculates a score for each connection and sends a data 
segment via the connection having the lowest score. The first 
term in Eq. (1) is the queuing delay of the transmitting buffer, 
and the second term is the network path delay. Thus, ATLB 
dynamically sends a data segment through the connection 
having the lowest delay.  

Q 
G

sRTT
2

i
i

iscore  =i +
                       (1) 

where Q is the data length in the sender’s transmitting buffer, 
sRTT is the smoothed RTT, and G is the smoothed throughput 
of connectioni, calculated as  

Gj = α×Gj-1 + (1 - α) × TPUTj                  (2) 
where α (0 < α < 1 ) is a constant, and TPUTj is the throughput 
of a TCP connection which is continuously measured for 
every β milliseconds.  

Parameters α and β determine whether ATLB should 
follow the latest throughput of each path. In a situation where 
throughput is steady from a long-term viewpoint, a larger α 
should be set. Otherwise, a smaller α is reasonable. β should 
be twice as large as RTT to stably measure the throughput of 
each connection in case of TCP’s fast retransmission. We 
chose 1/2 and 100 for α and β, respectively, for the network 
environment we assumed in the performance evaluation 
because the network had a delay of 10 ms or more and the link 
bandwidth varied rapidly.  

The buffer amount needed for sorting data segments in a 
receiver is reducible through the above method because the 
data from a sender will arrive at a receiver in an almost in-
order sequence. Of course, momentary out-of-order data 
arrival will still occur, especially at the beginning of 
communication and due to TCP data retransmission, TCP 
congestion control, and network delay dynamics. If these 
dynamics are reflected in the TCP throughput, ATLB will 
react automatically by considering the queuing delay and 
network delay.  

2) Path-failure detection and recovery method 
ATLB has the following path-failure detection and 

recovery mechanism to prevent data transfer stalling.  

a) Path-failure detection 
ATLB maintains a failure-detection timer which expires 

after timeout T. T should be carefully chosen because a small 
T can be useful for detecting failure quickly, but misdetection 
becomes more likely. We assume that if a data segment just  
  
  
  
  
  
  

Fig. 3: Network topology in the simulation 

after a retransmit timeout (RTO) is lost, the path has failed or 
is heavily congested. We therefore make T equal to RTO + θ × 
RTT (θ > 2).   

b) Failure recovery 
When path failure is detected, ATLB starts to send probe 

packets via the failed path every P milliseconds. ATLB also 
calculates the packet loss rate every S milliseconds. If the 
packet loss rate is less than R %, ATLB assumes that the path 
has recovered. ATLB then restarts data transmission along 
that path. For example, we made P, S, and R respectively 
equal to 50, 500, and 10 to enable recovery within a second.  

IV. PERFORMANCE EVALUATION 
In this section, we look at the ATLB performance 

evaluation results. First, we show NS2 simulation results [9] 
to show that ATLB can improve end-to-end throughput when 
there is a data-sorting bottleneck in a receiver host. Second, 
we show experimental results with our test bed system in a 
wireless LAN.  

A. Simulation 
To test the effectiveness of ATBL when there is a data-

sorting bottleneck in a receiver host, we compared the ATLB 
system to a conventional system.  

1) Simulation settings 
The simulation was done with the topology shown in 

Figure 3.  We assumed that multipath TCP was applied to 
proxy servers to measure the end-to-end throughput, including 
the data sorting at a multipath TCP receiver, rather than to 
measure the aggregate throughput of each connection.  

In the communication between sender H1 and receiver H2, 
GW1 and GW2 operated as proxy servers. Sender H1 tried to 
communicate with receiver H2 via GW1 and GW2. Multipath 
TCP communication was then established between GW1 and 
GW2.  

To see whether ATLB improved performance, we 
compared the ATLB system to a conventional system with 
data distribution based on minimum queue length. In addition, 
to test the efficiency of data sorting at a multipath TCP 
communication receiver, we gave GW2 an infinitely large 
receiving buffer for sorting data segments from each TCP 
connection.  The following two systems were prepared in this 
simulation.  
-- ATLB  

GW1 and GW2 enable the proposed ATLB communication.  
-- MinQue 

GW1 and GW2 enable data distribution where data 
segments are transmitted through the TCP connection with the 
shortest queue length. 

Other basic simulation settings are shown in Figure 3 or 
stated elsewhere. The maximum size of the congestion 
window (the TCP transmitting buffer) was 2 Mbyte for each 
TCP connection. The maximum segment size was 1000 bytes.  
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2) Robustness for  link bandwidth differentiation 
Figure 4 compares the application level throughput at 

receiver H2 when the link 2 bandwidth was varied between 10 
and 100 Mbps. The link 1 bandwidth was fixed at 100 Mbps. 
Each point of the graph is average throughput during a 10-s 
data transfer. We also show the ideal throughput, which is the 
aggregate throughput of links 1 and 2, and is not affected by 
the data sorting overhead at receiver H2. The results show that 
ATLB can fully utilize the aggregate bandwidth of links 1 and 
2, considering the roughly 5% overhead of the TCP/IP header 
and multipath TCP control header. For example, when the 
respective bandwidths of links 1 and 2 were 100 and 20 Mbps, 
ATLB enabled throughput of about 115 Mbps, while the 
MinQue throughput was only about 63 Mbps.  

 The MinQue throughput was limited to about twice the 
bandwidth of the bottlenecked link 2. When the data transfer 
started, MinQue sent data segments at an almost equal rate to 
each TCP connection. This caused a data-sorting bottleneck at 
GW2. If we assume that the TCP congestion window of each 
path grew to 1 Mbyte in GW1, then MinQue would have sent 
1 Mbyte data segments over each path. Since link 2 was 
limited to 10 Mbps, the data transfer on link 2 would take at 
least 800 ms, while the data transfer on link 1 would be done 
in about 80 ms. Until the data transfer on link 2 was complete, 
though, the data segments from link 1 had to wait at GW2. 
This means that data transfer from GW2 to H2 would be 
limited to roughly twice the bandwidth of bottlenecked link 2. 
Thus, the throughput between sender H1 and receiver H2 
would be limited along with the bandwidth of the bottlenecked 
link.  

3) Robustness against link delay differentiation 
Figure 5 compares throughput at receiver H2 when the link 

delay of link 2 was varied between 7.5 and 75 ms. The link 
delay of link 1 was fixed at 15 ms. Each point of the graph is 
average throughput during a 10-s data transfer. The results 
show that both ATLB and MinQue can utilize almost the 
entire aggregate bandwidth.  

When the link delay differs between paths, GW2 with 
MinQue has some data segments waiting to be sorted. 
However, if each path’s throughput is the same, the queue 
length in GW2 almost remains at a fixed size Qsb which can 
be approximately calculated as 

Qsb = || D1 – D2 || * B 
where D1 is the delay of link 1, D2 is the delay of link 2, and 
B is the single-path bandwidth.  

The ATLB and MinQue results were therefore almost the 
same in environments where only the delay differed between 
links. Both MinQue and ATLB have the same overhead at 
communication start up before the TCP congestion window on 
link 2 grows. These results help confirm that the simulation 
results are correct.  

4)  Robustness against packet loss 
Figure 6 compares the robustness against packet loss. The 

packet loss rate of link 2 was set between 0.001% and 1%. We 
also show the ideal throughput, which is the aggregate 
throughput of links 1 and 2.   

  
  
  
  
  
  
  
  
  
  

Fig. 4: Robustness for link bandwidth differentiation 
  
  
  
  
  
  
  
  
  
  

Fig. 5: Robustness for link delay differentiation 
  
  
  
  
  
  
  
  
  
  
Fig. 6: Robustness for link packet loss rate differentiation  

ATLB achieved higher throughput than MinQue, 
especially when the packet loss rate was 1%; in that case, the 
ATLB throughput was ten times that of MinQue. However, 
the ATLB throughput was below the ideal throughput. Since  
heavy packet loss causes frequent TCP fast retransmission and 
retransmission timeouts, the queuing delay of data transfer on 
link 2 gradually became larger. If a TCP retransmission 
timeout occurred, data transfer would have been stalled for at 
least 1 s. That would cause a lot of data segments to queue in 
GW2, so the data sorting in GW2 would be inefficient.  
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B.  Performance Evaluation on the Test Bed System 
In this section, we report the performance evaluation 

results for our ATLB test bed system on Linux in a real 
wireless LAN environment. To test whether our method can 
utilize all available bandwidth, we compared the ATLB 
throughput to the throughput of a conventional TCP data 
transfer established independently via each wireless link.  

The test environment is shown in Figure 7. The network 
topology was the same as in the former simulation tests. Links 
1 and 2 were IEEE802.11g wireless LAN links, and the others 
were 100Base/TX links. We introduced two background TCP 
connections on each wireless link as shown in Figure 7. 
Although each background TCP worked independently on 
links 1 and 2, each connection was supposed to utilize the 
available bandwidth of the wireless link. If the ATLB and 
background TCP throughput shared the bandwidth of links 1 
and 2 fairly, this would show that the ATLB test bed system 
can utilize all of the available bandwidth of multiple wireless 
links.  

 To measure the ATLB performance in unstable wireless 
links, we introduced a test scenario which included a variety 
of wireless link speeds and wireless links being down or up.  
 The test scenario was as follows: 

Time 0: The lengths of link 1 and link 2 were set to 4 m. A 
sender started data transfer. 

Time 150: Link 1 went down.  
Time 180: The length of link 1 was set to 60 cm, and then 

link 1 was up. 
Time 250: Link 2 went down. 
 Time 300: The length of link 2 was set to 60 cm, and then 

link 2 was up. 
Figure 8 shows the throughput trace under the test scenario. 

The bold line is the throughput trace on H2 where ATLB was 
introduced (ATLB-TCP). The bold broken line is the 
aggregate throughput of the background TCP connections 
(B.G.TCP1, B.G.TCP2).  

The aggregate throughput was almost the same with the 
background TCP connections and with ATLB-TCP under this 
test scenario. This confirms that our test bed system utilized 
all available bandwidth, and the data sorting at GW2 worked 
well without degrading performance. In addition, when the 
link speeds were drastically changed, as when links went 
down or came up, the ATLB data distribution and failure 
recovery followed properly.  
  
  
  
  
  
  
  

Fig. 7: Network topology 

  
  
   
  
   
  
   
  
   
   
   
  

Fig. 8: Throughput on Wireless LAN  

V. CONCLUSION 
ATLB is a multipath TCP communication method that 

consists of a distributed data transfer method and a path-
failure detection/recovery method.  

 Simulation results show that the ATLB data distribution 
method improves end-to-end throughput, especially in 
environments where the quality differs between paths. For 
example, the throughput of a multipath TCP system with 
ATLB was twice that of a conventional multipath TCP system.  

We also evaluated the performance of our ATLB test bed 
system in a wireless LAN environment. The ATLB test bed 
system utilized all available bandwidth, even though it was 
applied in an unstable wireless LAN environment.  
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