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Abstract

Using a dynamical network model of society, we show that
cooperation is the norm in the Hawks-Doves game when in-
dividuals are allowed to break ties with undesirable neighbors
and to make new acquaintances in their extended neighbor-
hood. This is an interesting result, as standard theory for mix-
ing populations prescribes that a certain fraction of defectors
must always exist at equilibrium. We discuss the empirical
network structure reasons that allow cooperators to thrive in
the population.

Introduction and Previous Work
Hawks-Doves, also known as Chicken, is a two-person,
symmetric game with the following payoff bi-matrix:

C D
C (R,R) (S,T)
D (T,S) (P,P)

In this matrix, D stands for strategy “hawk”, and C stands for
strategy “dove”. Metaphorically, a hawkish behavior means
a strategy of fighting, while a dove, when facing a confronta-
tion, will always yield. R is the reward the two players re-
ceive if they both cooperate (C), P is the punishment for bi-
lateral defection (D), and T is the temptation, i.e. the payoff
that a player receives if it defects, while the other cooper-
ates. In this case, the cooperator gets the sucker’s payoff
S. The game has a structure similar to that of the Prisoner’s
Dilemma (Axelrod, 1984). However, the ordering of payoffs
for the Prisoner’s Dilemma is T > R > P > S rendering
defection the best rational individual choice, while in the
Hawks-Doves game the ordering is T > R > S > P thus
making mutual defection, i.e. result (D,D), the worst possi-
ble outcome. Note that in game theory, as long as the above
orderings are respected, the actual numerical payoff values
do not matter (Vega-Redondo, 2003).

In contrast to the Prisoner’s Dilemma which has a unique
Nash equilibrium that corresponds to both players defecting,
the strategy pairs (C,D) and (D,C) are both Nash equilibria
of the Hawks-Doves game in pure strategies, so the game is

antagonistic, and there is a third equilibrium in mixed strate-
gies in which strategy D is played with probability p, and
strategy C with probability 1− p, where 0 ≤ p ≤ 1 depends
on the actual payoff values. We recall that a Nash equilib-
rium is a combination of strategies (pure or mixed) of the
different players such that any unilateral deviation by any
agent from this combination can only decrease her expected
payoff (Vega-Redondo, 2003).

As is the case for the Prisoner’s Dilemma (Axelrod, 1984;
Lindgren and Nordahl, 1994), Hawks-Doves, for all its sim-
plicity, appears to capture some important features of social
interactions. In this sense, it applies in many situations in
which “parading”, “retreating”, and “escalating” are com-
mon. One striking example of a situation that has been
thought to lead to a Hawks-Doves dilemma is the Cuban
missile crisis in 1962 (Poundstone, 1992). Other well
known applications are found in the animal kingdom (May-
nard Smith, 1982).

Considering now not just two players but rather a large,
mixing population of identical players where randomly cho-
sen pairs play a sequence of two-person games, evolutionary
game theory (Hofbauer and Sigmund, 1998) prescribes that
the only Evolutionary Stable Strategy (ESS) of the popula-
tion is the mixed strategy, giving rise, at equilibrium, to a
frequency of hawks in the population equal to p, the proba-
bility with which strategy hawk, i.e. D, would be played in a
mixed strategy.

In the case of the Prisoner’s Dilemma, one finds a unique
ESS with all the individuals defecting. However, Nowak
and May (1992) showed that cooperation in the population
is sustainable in the Prisoner’s Dilemma under certain con-
ditions, provided that the network of the interactions be-
tween players has a lattice spatial structure. Killingback
and Doebeli (1996) extended the spatial approach to the
Hawks-Doves game and found that a planar lattice structure
with only nearest-neighbor interactions may favor cooper-
ation, i.e. the fraction of doves in the population is often
higher than what is predicted by evolutionary game theory.
In a more recent work however, Hauert and Doebeli (2004)
were led to a different conclusion, namely that spatial struc-
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ture does not seem to favor cooperation in the Hawks-Doves
game. Further studies (Tomassini et al., 2006) extended the
structured population approach to other graph structures rep-
resenting small worlds. Small-world networks are produced
by randomly rewiring a few links in an otherwise regular
lattice such as a ring or a grid (Watts and Strogatz, 1998).
These “shortcuts”, as they are called, give rise to graphs
that have short path lengths between any two nodes in the
average as in random graphs, but in contrast to the latter,
also have a great deal of local structure as conventionally
measured by the clustering coefficient1. These structures are
much more typical of the networks that have been analyzed
in technology, society, and biology than regular lattices or
random graphs (Newman, 2003). In Tomassini et al. (2006)
it was found that cooperation may be either enhanced or in-
hibited in small-world networks depending on the gain-to-
cost ratio r = R/(R− P ), and on the strategy update rule.
But Watts–Strogatz small worlds and scale-free networks,
although more realistic than lattices or random graphs, are
not faithful representation of typical social networks. San-
tos and Pacheco (2005) and Santos et al. (2006b) extended
the study of the Hawk-Doves game to scale-free networks,
i.e. to networks having a power-law distribution of the con-
nectivity degree (Newman, 2003). They found that cooper-
ation is remarkably enhanced in them with respect to previ-
ously described population structures through the existence
of highly connected cooperator hubs. However, pure static
scale-free networks are not found among the typical socio-
economic networks that have been studied (Amaral et al.,
2000; Newman, 2001, 2003). Using real and model static
social networks, Luthi et al. (2008) also found that cooper-
ation is enhanced, although to a lesser degree, thanks to the
existence of tight clusters of cooperators that reinforce each
other. Static networks having a resemblance with actual so-
cial networks are a good starting point; however, the static
approach ignores fluctuations and non-equilibrium phenom-
ena. Instead, real social networks are dynamical, i.e. nodes
may join the network forming new links, and old nodes may
leave it as social actors come and go. Furthermore, new
links between agents already in the network may also form
or be dismissed. Thus, the motivation of the present work is
to study the co-evolution of strategy and network structure
and to investigate under which conditions cooperative be-
havior may emerge and be stable in the Hawks-Doves game.
A related goal is to study the topological structures of the
emergent networks and their relationships with the strategic
choices of the agents. Some previous work has been done

1The clustering coefficient Ci of a node i is defined as Ci =
2Ei/ki(ki − 1), where Ei is the number of edges in the neigh-
borhood of i. Thus Ci measures the amount of “cliquishness” of
the neighborhood of node i and it characterizes the extent to which
nodes adjacent to node i are connected to each other. The cluster-
ing coefficient of the graph is simply the average over all nodes:
C = 1

N

PN
i=1 Ci (Newman, 2003).

on evolutionary games on dynamic networks (Zimmermann
and Eguı́luz, 2005; Luthi et al., 2006; Santos et al., 2006a).
The only one citing the Hawks-Doves game is (Santos et al.,
2006a) but our model differs in several important respects
and we obtain new results on the structure of the cooperat-
ing clusters.

The paper is organized as follows. In the next section
we present our dynamical models. This is followed by an
exhaustive numerical study of the game’s parameter space.
After that we describe and discuss the statistical structure of
the emerging networks and finally we give our conclusions.

Model and Dynamics
Our model is strictly local. No player uses information
other than the strength of the links with its neighbors and
the knowledge of her own payoff and, indirectly, the payoffs
of her immediate neighbors. Moreover, as the model is an
evolutionary one, no rationality, in the sense of game theory,
is needed (Vega-Redondo, 2003). Players just adapt their
behavior such that they imitate more successful strategies
in their environment with higher probability. Furthermore,
they are able to locally assess the worth of an interaction and
possibly dismiss a relationship that does not pay off enough.
The model and its dynamics are described in detail in the
following sections.

Network and Interaction Structure. The network of
agents is represented by an undirected graph G(V,E),
where the set of vertices V represents the agents, while the
set of edges (or links) E represents their symmetric inter-
actions. The population size N is the cardinality of V . A
neighbor of an agent i is any other agent j such that there is
an edge {ij} ∈ E. The set of neighbors of i is called Vi and
its cardinality is the degree ki of vertex i ∈ V . The average
degree of the network will be called k̄. Although there is for-
mally a single undirected link between a player i and another
player j ∈ Vi, we shall maintain two links: one going from
i to j and another one in the reverse direction. Each link
has a weight or “force” fij (respectively fji). This weight,
say fij , represents in an indirect way the “trust” player i at-
tributes to player j. This weight may take any value in [0, 1]
and its variation is dictated by the payoff earned by i in each
encounter with j, as explained below.

The idea behind the introduction of the forces fij is
loosely inspired by the potentiation/depotentiation of con-
nections between neurons in neural networks, an effect
known as the Hebb rule (Hebb, 1949). In our context, it can
be seen as a kind of “memory” of previous encounters. How-
ever, it must be distinguished from the memory used in iter-
ated games, in which players “remember” a certain number
of previous moves and can thus conform their future strat-
egy on the analysis of those past encounters (Vega-Redondo,
2003). Our interactions are strictly one-shot, i.e. players
“forget” the results of previous rounds and cannot recognize
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previous partners and their possible playing patterns. How-
ever, a certain amount of past history is implicitly contained
in the numbers fij and this information may be used by an
agent when it will come to decide whether or not an interac-
tion should be dismissed (see below).

We also define a quantity si called satisfaction of an agent
i which is the sum of all the weights of the links between i
and its neighbors Vi divided by the total number of links of
that node ki:

si =
∑

j∈Vi
fij

ki
.

We clearly have 0 ≤ si ≤ 1.

Initialization. The constant size of the networks during
the simulations is N = 1000. The initial graph is gener-
ated randomly with a mean degree k̄ = 10 which is of the
order of those actually found in many social networks; see,
for instance, (Newman, 2003). Players are distributed uni-
formly at random over the graph vertices with 50% cooper-
ators. Forces between any pair of neighboring players are
initialized at 0.5.

We use a parameter q which is a real number in [0, 1] and
it represents the frequency with which an agent wishes to
dismiss a link with one of its neighbors. The higher q, the
faster the link reorganization in the network. This parameter
has a role analogous to the “time scale” parameter of (San-
tos et al., 2006a) and it controls the speed at which topolog-
ical changes occur in the network. All the agents have the
same value of q. It is an important consideration, as social
networks may structurally evolve at widely different speeds,
depending on the kind of interaction between agents. For
example, e-mail networks change their structure at a faster
pace than, say, scientific collaboration networks.

Update Timing. Usually, agents systems such as the
present one, are updated synchronously (Nowak and May,
1992; Santos and Pacheco, 2005; Zimmermann and Eguı́luz,
2005). However, strictly speaking, simultaneous update is
physically unfeasible as it would require a global clock,
while real extended systems in biology and society in gen-
eral have to take into account finite signal propagation speed.
Simultaneity may cause some artificial effects in the dynam-
ics which are not observed in real systems (Huberman and
Glance, 1993; Luthi et al., 2006). On the other hand, updat-
ing a randomly chosen agent at a time also seems a rather
arbitrary extreme case that is not likely to represent reality
very accurately. We have thus chosen to update our pop-
ulation in a partially synchronous manner. In practice, we
define a fraction f = n/N (with N = an, a ∈ N) and, at
each simulated discrete time step, we update only n ≤ N
agents randomly chosen with replacement. This is called a
microstep. After N/n microsteps a whole population up-
date, i.e. a macrostep will have taken place. With n = N

we recover the fully synchronous update, while n = 1 gives
the extreme case of the fully asynchronous update. In this
work we use f = 0.01.

Strategy and Link Dynamics
Here we describe in detail how individual strategies, links,
and link weights are updated. Once a given node i is chosen
to be activated, i.e. it belongs to the fraction f of nodes that
are to be updated in a given microstep, i goes through the
following steps:

• if the degree of agent i, ki = 0 then player i is an isolated
node. In this case a link with strength 0.5 is created from i
to a player j chosen uniformly at random among the other
N − 1 players in the network.

• otherwise,

– either agent i updates its strategy according to a local
replicator dynamics rule with probability 1− q or, with
probability q, agent i may delete a link with a given
neighbor j and creates a new 0.5 force link with another
node k ;

– the forces between i and its neighbors Vi are updated

Let us now describe each step in more detail.

Strategy Evolution. We use a local version of replicator
dynamics (RD) as described in (Luthi et al., 2008). The local
dynamics of a player i only depends on its own strategy and
on the strategies of the ki players in its neighborhood Vi. Let
us call πij the payoff player i receives when interacting with
neighbor j. This payoff is defined as

πij = σi(t) M σT
j (t),

where M is the payoff matrix of the game and σi(t) and
σj(t) are the strategies played by i and j at time t. The
quantity

Π̂i(t) =
∑

j∈Vi

πij(t)

is the rescaled accumulated payoff (Luthi et al., 2008) col-
lected by player i at time step t. The rule according to
which agents update their strategies is the conventional RD
in which strategies that do better than the average increase
their share in the population, while those that fare worse than
average decrease. To update the strategy of player i, another
player j is drawn at random from the neighborhood Vi. It is
assumed that the probability of switching strategy is a func-
tion φ of the payoff difference; φ is required to be monotonic
increasing; here it has been taken linear (Hofbauer and Sig-
mund, 1998). Strategy σi is replaced by σj with probability

pi = φ(Π̂j − Π̂i). (1)
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The major differences with standard RD is that two-
person encounters between players are only possible among
neighbors, instead of being drawn from the whole popula-
tion, and the latter is finite in our case. Other commonly used
strategy update rules include imitating the best in the neigh-
borhood (Nowak and May, 1992; Zimmermann and Eguı́luz,
2005), or replicating in proportion to the payoff (Hauert and
Doebeli, 2004; Tomassini et al., 2006).

Link Evolution. The active agent i, which has ki $= 0
neighbors will, with probability q, attempt to dismiss an in-
teraction with one of its neighbors in the following way.
Player i will look at its satisfaction si. The higher si, the
more satisfied the player, since a high satisfaction is a con-
sequence of successful strategic interactions with the neigh-
bors. Thus, the natural tendency is to try to dismiss a link
when si is low. This is simulated by drawing a uniform
pseudo-random number r ∈ [0, 1] and breaking a link when
r ≥ si. Assuming that the decision is taken to cut a link,
which one, among the possible ki, should be chosen? Our
solution only relies on the strength of the relevant links.
First a neighbor j is chosen with probability proportional to
1−fij , i.e. the stronger the link, the less likely it is that it will
be selected. This intuitively corresponds to i’s observation
that it is preferable to dismiss an interaction with a neighbor
j that has contributed little to i’s payoff over several rounds
of play. However, in our system dismissing a link is not free:
j may “object” to the decision. The intuitive idea is that, in
real social situations, it is seldom possible to take unilateral
decisions: often there is a cost associated, and we represent
this hidden cost by a probability 1−(fij +fji)/2 with which
j may refuse to be cut away. In other words, the link is less
likely to be deleted if j appreciates i, i.e. when fji is high.
If the link is not cut there is no further attempt during the
current microstep update.

Assuming that the {ij} link is finally cut, how is a new
link to be formed? The solution adopted here is inspired
by the observation that, in social settings, links are usually
created more easily between people who have a mutual ac-
quaintance than those who do not. First, a neighbor k is
chosen in Vi \ {j} with probability proportional to fik, thus
favoring neighbors i trusts. Next, k in turn chooses player
l in his neighborhood Vk using the same principle, i.e. with
probability proportional to fkl. If i and l are not connected,
a link {il} is created, otherwise the process is repeated in
Vl. Again, if the selected node, say m, is not connected to
i, a new link {im} is established. If this also fails, a new
link between i and a randomly chosen node is created. In all
cases the new link is initialized with a strength of 0.5 in both
directions. This rewiring process is schematically depicted
in Fig. 1 for the case in which a link can be successfully
established between players i and l thanks to their mutual
acquaintance k.

At this point, we would like to stress several important dif-

i

j

k

l

fik
fkl

fil

Figure 1: Illustration of the rewiring of link {ij} to {il}.
Agent k is chosen to introduce player l to i (see text).

ferences with previous work in which links can be dismissed
in evolutionary games on networks. In (Zimmermann and
Eguı́luz, 2005), only links between defectors are allowed to
be cut unilaterally and the study is restricted to the Prisoner’s
Dilemma. Instead, in our case, any link has a finite proba-
bility to be abandoned, even a profitable link between co-
operators if it is recent, although links that are more stable,
i.e. have high strengths, are less likely to be rewired. This
smoother situation is made possible thanks to our bilateral
view of a link which is completely different from the undi-
rected choice made in (Zimmermann and Eguı́luz, 2005).
It also allows for a moderate amount of “noise” in the sys-
tem, which could reflect to a certain extent the uncertainties
present in the system.

In (Santos et al., 2006a), links can be cut by an unsatisfied
player, where the concept of satisfaction is different from
ours, and simply means that a cooperator or a defector will
wish to break a link with a defector but there is no analogous
of our “negotiation” process as the concept of link strength
is absent. In (Luthi et al., 2006) links are cut according to a
threshold decision rule and are rewired randomly anywhere
in the network.

Updating the Link Strengths. Once the chosen agents
have gone through their strategy or link update steps, the
strengths of the links are updated accordingly in the follow-
ing way:

fij(t + 1) = fij(t) +
πij − π̄ij

ki(πmax − πmin)
,

where πij is the payoff of i when interacting with j, π̄ij is
the payoff earned by i playing with j, if j were to play his
other strategy, and πmax (πmin) is the maximal (minimal)
possible payoff obtainable in a single interaction. This up-
date is performed in both directions, i.e. both fij and fji are
updated ∀j ∈ Vi.

Numerical Simulations
Simulation Parameters. We simulated the Hawks-Doves
game with the dynamics described above exploring the en-
tire game space by limiting our study to the variation of only
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two game parameters. We set R = 1 and P = 0 and the
two parameters are 1 ≤ T ≤ 2 and 0 ≤ S ≤ 1. Set-
ting R = 1 and P = 0 determines the range of S (since
T > R > S > P ) and gives an upper bound of 2 for T , due
to the 2R > T + S constraint, which ensures that mutual
cooperation is preferred over an equal probability of unilat-
eral cooperation and defection. Note however, that the only
valid value pairs of (T, S) are those that satisfy the latter
constraint.

We simulated networks of size N = 1000, randomly gen-
erated with an average degree k̄ = 10 and randomly initial-
ized with 50% cooperators and 50% defectors. In all cases,
the parameters are varied between their two bounds in steps
of 0.1. For each set of values, we carry out 50 runs of at most
10000 macrosteps each, using a fresh graph realization in
each run. After an initial transient period, the system is con-
sidered to have reached a pseudo-equilibrium strategy state
when the strategy of the agents (C or D) does not change
over 150 further macrosteps, which means 15×104 individ-
ual updates. We speak of pseudo-equilibria or steady states
and not of true evolutionary equilibria because there is no
analog of equilibrium conditions in the dynamical systems
sense.

Cooperation and Stability. Cooperation results in con-
tour plot form are shown in Fig. 2. We remark that, as
observed in other structured populations, cooperation is
achieved in almost the whole configuration space. Thus, the
added degree of freedom represented by the possibility of
refusing a partner and choosing a new one does indeed help
to find player’s arrangements that help cooperation. When
considering the dependence on the fluidity parameter q, one
sees in Fig. 2 that the higher q, the higher the cooperation
level, although the differences are small, since full cooper-
ation prevails already at q = 0.2. This was a somewhat
expected result, since being able to break ties more often
clearly gives cooperators more possibilities for finding and
keeping fellow cooperators to interact with. The same ef-
fect has been previously observed in (Santos et al., 2006a)
with the use of a different model both for strategy evolution
and tie breaking. Thus the finding is robust and relatively
independent of the other details of the models.

Compared with the level of cooperation observed in sim-
ulations in static networks, we can say that results are con-
sistently better for co-evolving networks. For all values
of q (Fig. 2) there is significantly more cooperation than
what was found in model and real social networks (Luthi
et al., 2008) where the same local replicator dynamics was
used but with the constraints imposed by the invariant net-
work structure. A comparable high cooperation level has
only been found in static scale-free networks (Santos et al.,
2006b), which is theoretically interesting, but those topolo-
gies are unlikely models for social networks, which often
show fat-tailed degree distribution functions but not pure

power-laws (see, for instance, (Amaral et al., 2000; New-
man, 2001)). As a further indication of the latter, we shall
see later that, indeed, emerging networks do not have a
power-law degree distribution.

The above considerations are all the more interesting
when one observes that the standard RD result is that the
only asymptotically stable state for the game is a polymor-
phic population in which there is a fraction α of doves and a
fraction 1−α of hawks, with α depending on the actual nu-
merical payoff matrix values. To see the positive influence
of making and breaking ties we can compare our results with
what is prescribed by the standard RD solution. Referring to
the payoff table of the Introduction section, let’s assume that
the column player plays C with probability α and D with
probability 1 − α. In this case, the expected payoffs of the
row player are:

Er[C] = αR + (1− α)S

and
Er[D] = αT + (1− α)P

The row player is indifferent to the choice of α when
Er[C] = Er[D]. Solving for α gives:

α =
P − S

R− S − T + P
. (2)

Since the game is symmetric, the result for the column
player is the same and (αC, (1 − α)D) is a NE in mixed
strategies. We have numerically solved the equation for all
the sampled points in the game’s parameter space. Let us
now use the following payoff values in order to bring them
within the explored game space (remember that NEs are in-
variant w.r.t. such an affine transformation):

C D
C (1, 1) (2/3, 4/3)
D (4/3, 2/3) (0, 0)

Substituting in 2 gives α = 2/3, i.e. the dynamically sta-
ble polymorphic population should be composed by about
2/3 cooperators and 1/3 defectors. Now, if one looks at
Fig. 2 at the points where S = 2/3 and T = 4/3, one can
see that the point, and the region around it, is one of full
cooperation instead. Even within the limits of the approx-
imations caused by the finite population size and the local
dynamics, the non-homogeneous graph structure and an in-
creased level of tie rewiring has allowed the cooperation to
be greatly enhanced with respect to the theoretical predic-
tions of standard RD.

Structure of the Emerging Networks
In this section we present a statistical analysis of the global
and local properties of the networks that emerge when
the pseudo-equilibrium states of the dynamics are attained.
First, the mean degree k̄ increases only slightly and tends
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Figure 2: Average cooperation values for the Hawks-Doves game when the steady-state has been reached. Results are the
average of 50 runs.
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Figure 3: Average values of the clustering coefficient over 50 runs.

to stabilize around k̄ = 11. Next, let us consider first the
clustering coefficient C, which was previously defined. Ran-
dom graphs are locally homogeneous in the average and
for them C is simply equal to the probability of having an
edge between any pair of nodes independently. In contrast,
real networks have local structures and thus higher values
of C. Fig. 3 gives the average clustering coefficient C̄ =
1
50

∑50
i=1 C for each sampled point in the Hawks-Doves con-

figuration space, where 50 is the number of network realiza-
tions used for each simulation. The networks self-organize
through dismissal of partners and choice of new ones and
they acquire local structure, since the clustering coefficients
are higher than that of the random graph with the same num-
ber of edges and nodes, which is k̄/N = 10/1000 = 0.01.
This effect was expected, since the model favors relinking
with closer neighbors rather than arbitrary individuals. The
clustering tends to increase with q (i.e. from left to right in
Fig. 3).

The degree distribution function (DDF) p(k) of a graph
represents the probability that a randomly chosen node has
degree k. Random graphs are characterized by DDF of Pois-
sonian form p(k) = k̄ke−k̄/k!, while social and technologi-
cal real networks often show long tails to the right, i.e. there
are nodes that have an unusually large number of neigh-
bors (Newman, 2003). In some extreme cases the DDF has
a power-law form p(k) ∝ k−γ ; the tail is particularly ex-
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Figure 4: Empirical cumulative degree distribution functions
for three different values of the temptation T . A Poissonian
and an exponential distribution are also plotted for compari-
son. Distributions are discrete, the continuous lines are only
a guide for the eye. Lin-log scales.

tended and there is no characteristic degree. The cumulative
degree distribution function (CDDF) is just the probability
that the degree is greater than or equal to k and has the ad-
vantage of being less noisy for high degrees. Fig. 4 shows
the CDDFs for the Hawks-Doves for three values of T , and
q = 0.5. A Poisson and an exponential distribution are also
shown for comparison. The Poisson curve actually repre-
sents the initial degree distribution of the (random) popula-
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Figure 5: Empirical cumulative degree distribution functions
for three different values of the parameter T . Log-log scales.

tion graph. The distributions are far from the Poissonian that
would apply if the networks would remain essentially ran-
dom. However, they are also far from the power-law type,
which would appear as a straight line in the log-log plot of
Fig 5. Although a reasonable fit with a single law appears
to be difficult, these empirical distributions are closer to ex-
ponentials, in particular the curve for T = 1.7. It can be
observed that the distribution is broader the higher T is. In
fact, although cooperation is attained nearly everywhere in
the game’s configuration space, higher values of the tempta-
tion T mean that agents have to rewire their links more ex-
tensively, which results in a higher number of neighbors for
some players, and thus it leads to a longer tail in the CDDF.
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Figure 6: Empirical cumulative degree distribution functions
for three different values of the temptation q. Lin-log scales.

The influence of the q parameter on the shape of the de-
gree distribution functions is shown in Fig. 6 where aver-
age curves for three values of q, T = 1.7, and S = 0.2,
are reported. For high q, the cooperating steady-state is
reached faster, which gives the network less time to rear-
range its links. For lower values of q the distributions be-
come broader, despite the fact that rewiring occurs less of-
ten, because cooperation in this region is harder to attain and
more simulation time is needed.

Cooperator Clusters
From the results of the previous section, it appears that a
larger amount of cooperation than what is predicted by the
standard theory for mixing populations can be reached when
ties can be broken and rewired. We have seen that this dy-
namics causes the graph to acquire local structure, and thus
to loose its initial randomness in terms of links. In other
words, the network self-organizes in order to allow play-
ers to cooperate as much as possible. At the microscopic,
i.e. agent level, this happens through the formation of clus-
ters of players using the same strategy. Fig. 7 shows one
typical cooperator cluster .

Figure 7: A typical cooperator cluster. Links to the rest of
the network have been suppressed for clarity. The size of a
node is proportional to its connectivity in the whole graph.
The most connected central cooperator is shown as a square.

In the figure one can clearly see that the central cooperator
is a highly connected node and there are many links also
between the other neighbors. Such a tightly packed structure
has emerged to protect cooperators from defectors that, at
earlier times, were trying to link to cooperators to exploit
them. These observations help understand why the degree
distributions are long-tailed (see previous section), and also
the higher values of the clustering coefficient in this case.

Conclusions
In this paper we have introduced a new dynamical popu-
lation structure for agents playing a series of two-person
Hawks and Doves game. The most novel feature of the
model is the introduction of a variable strength of the bi-
directional social ties between pairs of players. These
strengths change dynamically and independently as a func-
tion of the relative satisfaction of the two end points when
playing with their immediate neighbors in the network. A
player may wish to break a tie to a neighbor and the proba-
bility of cutting the link is higher the weaker the directed link
strength is. The ensemble of weighted links implicitly rep-
resent a kind of memory of past encounters although, tech-
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nically speaking, the game in not iterated. The model takes
into account recent knowledge coming from the analysis of
the structure and of the evolution of social networks and, as
such, should be a better approximation of real social con-
flicting situations than static graphs such as regular grids.
In particular, new links are not created at random but rather
taking into account the “trust” a player may have on her rela-
tionally close social environment as reflected by the current
strengths of its links. This, of course, is at the origin of the
de-randomization and self-organization of the network, with
the formation of stable clusters of cooperators. The main re-
sult concerning the nature of the pseudo-equilibrium states
of the dynamics is that cooperation is greatly enhanced in
such a dynamical artificial society. This is encouraging, as
the Hawks-Doves game is a paradigm for a number of social
and political situations in which aggressivity play an impor-
tant role. The standard result is that bold behavior does not
disappear at evolutionary equilibrium. However, we have
seen here that a certain amount of plasticity of the networked
society allows for cooperation to be attained. Although the
model is an extremely abstract one, it shows that there is
place for peaceful resolution of conflict. Ongoing and fu-
ture work for which there is no space here will deal with the
stability of the system against massive and targeted defector
invasions in a society of cooperators. Other strategy evolu-
tion models based on more refined forms of learning than
simple imitation should also be investigated.
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